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1. Introduction and Overview of Results

1.1. MAIN PROBLEM STUDIED: THE COMPLEXITY OF ACYCLIC CONJUNCTIVE

QUERIES. Conjunctive queries, equivalent in expressive power to Select–
Project–Join queries, constitute the most basic, most important, and best-studied
type of database queries. The problem of evaluating a conjunctive query over a
relational database is a fundamental problem in the field of database systems.
Since the early days of relational databases, the complexity of this problem and
of its variants was studied, and various evaluation algorithms, either for general
conjunctive queries or for syntactical restrictions, were developed. The complex-
ity research actually started in 1977 with a landmark paper by Chandra and
Merlin [1977], where, among other results, it was proven that the problem of
evaluating a Boolean conjunctive query over a relational database is NP-
complete. This problem, which also appears as Problem SR31 in Garey and
Johnson’s book [Garey and Johnson 1979], will be referred to as Boolean
Conjunctive Query (BCQ) in the present paper. Since Chandra and Merlin’s 1977
paper, complexity issues related to conjunctive queries have been of lasting
interest as witnessed by a number of very recent contributions.1

In this paper, we adopt the logical representation of a relational database
[Abiteboul and Hull 1995; Ullman 1989], where data tuples are identified with
logical ground atoms, and conjunctive queries are represented as datalog rules.
We will, in the first place, deal with Boolean conjunctive queries represented by
rules whose heads are variable free, that is, propositional (see Example 1.1
below). From our results on Boolean queries, we are able to derive complexity
results on important database problems concerning general (not necessarily
Boolean) conjunctive queries, as discussed at the end of this section.

Example 1.1. Consider a relational database with the following relation
schemas:

works(Emp#, Proj#, Assigned)

manages(Emp#, Proj#, Assigned)

relative(Emp1, Emp2)

The Boolean conjunctive query Q1 below checks whether some employee
works in a project managed by his/her relative.

Q1 : ans 4 works�E, P, A� ∧ manages�M, P, A�� ∧ relative�E, M�.

1 See, for example, Chekuri and Rajaraman [2000], Gottlob et al. [2000b], Kolaitis and Vardi [2000],
and Papadimitriou and Yannakakis [1997].
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Here E, P, M, A, A� are variables, and the query is answered positively if there
exists a substitution � assigning data values (constants) to these variables such
that the rule body evaluates to true over the given database.

The Boolean conjunctive query Q2 below checks whether there is a manager
who has a relative working in the company.

Q2 : ans 4 works�E, P, A� ∧ manages�M, P�, A�� ∧ relative�E, M�.

The hypergraph H(Q) associated to a conjunctive query Q is defined as
H(Q) � (V, E), where the set V of vertices consists of all variables occurring in
the body of Q, while the set E of hyperedges contains, for each atom A in the
rule body, the set var( A) of all variables occurring in A. The hypergraphs
corresponding to queries Q1 and Q2 of the above example are depicted in Figure
1.

A query Q is cyclic (acyclic) if its associated hypergraph H(Q) is cyclic
(acyclic). We refer to the standard notion of cyclicity/acyclicity (also called
�-acyclicity [Fagin 1983]) in hypergraphs used in database theory [Abiteboul and
Hull 1995; Maier 1986; Ullman 1989] (a formal definition is given in Section 2.2).

Note that query Q1 of Example 1.1 is cyclic, while Q2 is acyclic. Acyclic queries
arise very often in real database applications.

The main decision problem studied in this paper is the following:

ABCQ Given a database db and an acyclic Boolean conjunctive query Q, decide
whether Q evaluates to true on db.

Our main goal is to determine the precise complexity of ABCQ. Note that,
since both the database db and the query Q are part of an input-instance of
ABCQ, what we are interested in is often referred to as the combined complexity
[Vardi 1982].

Acyclic conjunctive queries were the object of a large number of investiga-
tions.2 In particular, it was shown that the class of acyclic queries coincides with
the class of tree queries [Beeri et al. 1983], see also Abiteboul et al. [1995], Maier
[1986], and Ullman [1989]. The latter are queries that are representable by a join

2 See, for example, Bernstein and Goodman [1981], Chekuri and Rajaraman [2000], D’Atri and
Moscarini [1986], Fagin [1983], Fagin et al. [1982], Goodman and Shmueli [1982], Kolaitis and Vardi
[2000], Malvestuto [1986], Papadimitriou and Yannakakis [1997], Saccà [1985], Sagiv and Shmueli
[1993], Yannakakis [1981], and Yu and Özsoyoğlu [1984].

FIG. 1. (a) Hypergraph H(Q1), and (b) hypergraph H(Q2) of queries Q1 and Q2, in Example 1.1.
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tree (or join forest). A join forest F(Q) for an acyclic conjunctive query Q is a
forest whose vertices are the atoms in the body of Q such that, whenever the
same variable X occurs in two atoms A1 and A2, then A1 and A2 are connected
in F(Q), and X occurs in each atom on the unique path linking A1 and A2. A
join tree is a join forest having a single connected component.

Example 1.2. Consider the following query:

Q3 : ans 4 r�Y, Z� ∧ g�X, Y� ∧ s�Y, Z, U� ∧ s�Z, U, W� ∧ t�Y, Z� ∧ t�Z, U�.

A join tree for Q3 is shown in Figure 2.
By well-known results of Yannakakis [1981] acyclic Boolean conjunctive

queries (and even non-Boolean acyclic conjunctive queries) are solvable in
polynomial time. In the Boolean case, the algorithm roughly works as follows.
First compute a join tree (or forest) T for the given query Q. Then process (each
component of) T in a bottom-up manner (from the leaves towards the root) by
performing a sequence of semi-joins, one for each tree edge, starting at the
leaves. For each bottom-top directed edge (R, S) of the join-tree, the relation s
corresponding to node S is reduced by semi-joining it with the relation r
corresponding to R. The Boolean query evaluates to true if and only if at the end
of this procedure the relation corresponding to the root is not empty. Note that,
in a slightly restricted setting, a very similar semi-join based evaluation procedure
was independently developed by Bernstein and Chiu [1981].

Yannakakis’s algorithm is of sequential nature. In particular, if Q has a chain
of length n as join tree, then the algorithm performs n � 1 joins in sequence.
Notwithstanding the sequential character of Yannakakis’s algorithm, ABCQ
could not be shown to be complete for polynomial time. In an unpublished
manuscript, Dahlhaus [1990] proved that acyclic conjunctive query non-empti-
ness, which is equivalent to ABCQ, is in NC2. For restricted versions of ABCQ,
NC2 algorithms have been given in [Kasif and Delcher 1994; Zhang and
Mackworth 1993] (see the discussion in Section 7.4). However, the precise
complexity of ABCQ has never been pinpointed. We solve it in the present
paper.

A problem closely related to ABCQ is the following problem JTREE:

JTREE: Given a database db and a join tree of an acyclic Boolean conjunctive
query Q, decide whether Q evaluates to true on db.

JTREE is thus a version of ABCQ, where the join tree is already given and does
not need to be computed. We are also interested in the precise complexity of
JTREE.

FIG. 2. A join tree for the acyclic query Q3 in Example 1.2.
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1.2. RESULTS. In Section 3, we relate the problems ABCQ and JTREE by
proving that the following tasks are in SL (Symmetric Logspace):

—Deciding whether a given conjunctive query Q is acyclic.
—Deciding whether a pair � A1, A2� of query atoms of an acyclic query Q is an

edge of a canonical join forest of Q.

Intuitively, this means that testing acyclicity and computing join trees are
extremely easy tasks, and there is thus a very easy reduction from ABCQ to
JTREE. The reduction can be carried out by a logspace machine with oracle in
SL and is thus highly parallelizable.

Note that linear-time sequential methods for computing a join tree are well
known [Tarjan and Yannakakis 1984] (see also Bernstein and Goodman [1981],
Graham [1979], and Yu and Özsoyoğlu [1979] for earlier polynomial algorithms),
while the previous best parallel complexity result was an NC2 upper bound by
Naor et al. [1989] (see also Dahlhaus and Karpinski [1996] and Klein [1996] for
similar results on related problems).

In Section 4, we prove our main result:

ABCQ and JTREE are both complete for LOGCFL.

The complexity class LOGCFL consists of all decision problems that are
logspace-reducible to a context-free language. As shown in Borodin et al. [1989],
LOGCFL is closed under complementation. An example of a problem complete
for LOGCFL is Greibach’s hardest context-free language [Greibach 1973]. There
are relatively few other natural problems known to be LOGCFL-complete (see,
e.g., Bédard et al. [1993], Skyum and Valiant [1985], and Sudborough [1977]).
The relationship between LOGCFL and the other relevant complexity classes
used in this paper is summarized in the following chain of inclusions:

AC0 � NC1 � L � SL � NL � LOGCFL � AC1 � NC2 � P � NP.

Here, L is logspace, ACi and NCi are logspace-uniform parallel complexity
classes based on the corresponding types of Boolean circuits (see Section 2), SL
is symmetric logspace, NL is nondeterministic logspace, P is polynomial time,
and NP is nondeterministic polynomial time.

The membership part of our completeness proof uses an important character-
ization of LOGCFL by Sudborough [1977; 1978]. LOGCFL coincides with the
class of languages accepted by nondeterministic auxiliary push-down automata in
logarithmic space and polynomial time. We construct such an automaton for
processing a join tree over a database. The key idea is that, unlike Yannakakis’s
algorithm, our automaton processes the tree top down by choosing nondetermin-
istically a set of witness tuples.

The hardness part of our completeness proof relies on another important
characterization of LOGCFL, found by Venkateswaran [1991]: LOGCFL coin-
cides with the class SAC1 of problems solvable by logspace-uniform families of
semi-unbounded AC1 Boolean circuits (SAC1 circuits). We show that SAC1

circuits can be translated into acyclic conjunctive queries. We prove that the
problems ABCQ and JTREE remain hard for LOGCFL, even in case the acyclic
hypergraph corresponding to the query is an acyclic graph.
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Our main complexity result is somewhat surprising and provides perhaps a
better understanding of the nature of LOGCFL. Intuitively, problems in
LOGCFL contain two seemingly orthogonal dimensions (or sources) of nonde-
terminism: (i) the different choices of a suitable tree shape, and (ii) the different
possible choices of filling the chosen tree structure with suitable data items such
that some local consistency conditions along the edges of the tree are satisfied.
To illustrate this, think of a context-free language � generated by a context-free
grammar G. To show that a word w belongs to �, we need to construct a
derivation tree for w. There is, in general, a choice of several possible shapes for
such trees (from short and bushy to long and thin). Moreover, each suitable tree
skeleton can be filled (or labeled) possibly in various ways with actual derivation
rules such that the root is labeled with a rule for start symbol S and each further
rule in the tree matches the rule chosen for its parent node (this is the local
consistency condition). All previously known problems complete for LOGCFL
we are aware of carry these two (apparently orthogonal) dimensions of nonde-
terminism.

On the other hand, the problem JTREE carries only source (ii) of nondeter-
minism. Source (i) does not subsist in JTREE, given that with each instance of
JTREE the join tree is provided, and the aim is just to fill this tree with
appropriate data values (by finding an appropriate substitution for the variables).
From the LOGCFL-completeness of JTREE, it thus follows that LOGCFL can
be characterized as the class of problems logspace-reducible to fill-in problems,
where a “mould” in form of an acyclic graph should be filled with values from a
given set such that certain local consistency conditions are met. Such problems
are a restricted version of the constraint satisfaction problem in AI, which will be
discussed below.

The problem ABCQ of conjunctive query evaluation is logspace-equivalent to
a number of well-known and important database and AI problems that are all
NP-complete in their general version. From our main result, we easily obtain
complexity results for the acyclic versions of those problems. In particular, we
show that the following four problems are all complete for LOGCFL, and thus
highly parallelizable:

—The Acyclic Query Output Tuple Problem. Given an acyclic conjunctive query
Q, a database db, and a tuple t, determine whether t belongs to the answer
Q(db) of Q over db. Note that, if the number of variables in Q’s head
predicate is bounded by a constant, then computing the complete output of Q
is actually in LLOGCFL and can thus be done by AC1 circuits, as well as by NC2

circuits.
—Acyclic Conjunctive Query Containment. Decide whether a conjunctive query

Q1 is contained in an acyclic conjunctive query Q2. Query Q1 is contained in
query Q2 if for each database instance db, the answer Q1(db) is a subset of
Q2(db). Polynomial sequential methods for solving this restriction of the
general (NP-complete) conjunctive query containment problem were described
by Qian [1996], and independently by Chekuri and Rajaraman [2000].

—Acyclic Clause Subsumption. Check whether a (general) acyclic clause C
subsumes a clause D, that is, whether there exists a substitution � such that
C� � D. A (general) clause is a disjunction of (positive or negative) literals,
possibly containing function symbols. Note that subsumption is an extremely
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important technique used in clause-based theorem proving [Bachmair et al.
1996].

—Acyclic Constraint Satisfaction. Given a finite set Var of variables, a finite
domain U of values, a set of constraints � � {C1, C2, . . . , Cq}, where each
constraint Ci is a pair (Si, ri), and where Si is a list of variables of length mi

and ri is an mi-ary relation over U, such that the hypergraph of the sets of
variables corresponding to the sets Si is acyclic, decide whether there is a
substitution �: Var 3 U, such that, for each 1 � i � q, Si� � ri. The
connection between constraint satisfaction problems in the AI setting and
conjunctive queries has been well acknowledged in the literature, and it is well
known that acyclic constraint satisfaction problems are solvable in polynomial
time.3 Also note that NC algorithms for restricted versions of the acyclic case
were previously known. In particular, Kasif and Delcher [1994] presented an
NC2 parallel algorithm for acyclic constraint networks having only binary
constraints; hence, their problem can be represented by a tree, rather than by
an acyclic hypergraph. A parallel algorithm for constraint-networks with
nonbinary constraints is due to Zhang and Mackworth [1993]. Their algorithm
takes as input a join tree T such that, for any relation in T, the number of
attributes is bounded by a constant; moreover, they assume a fixed universe U.

From the proof of our main theorem, it follows that all these problems remain
LOGCFL-complete even in case the associated acyclic hypergraph is restricted to
be an acyclic graph (i.e., if only binary relations or constraints are used).

Graph or hypergraph acyclicity is a key-property responsible for the polyno-
mial solvability of problems that are in general NP-hard, such as ABCQ and all
other equivalent problems we just described. In graph theory, the notion of
constant treewidth has been introduced as an approximation of the concept of
acyclicity. The treewidth of a graph is a measure of its cyclicity. In particular, the
acyclic graphs have treewisth 1, while the class of all graphs of treewidth bounded
by a constant k � 1 is much larger, but still shares many good computational
properties with the class of acyclic graphs [Arnborg et al. 1991; Wanke 1994].

Formally, the concept of treewidth is introduced via the notion of tree-
decomposition (see Section 6 for details). A graph G has treewidth c if c is the
smallest possible width of any tree-decomposition of G. The concept of bounded
treewidth can be generalized to hypergraphs, and thus to conjunctive queries
[Chekuri and Rajaraman 2000].

Chekuri and Rajaraman [2000] have recently shown that the conjunctive query
containment problem, that is, checking whether Q1 is contained in Q2, is
decidable in polynomial time for instances where the treewidth of Q2 is bounded
by a constant k. Since BCQ is efficiently reducible to the conjunctive query
containment problem [Chandra and Merlin 1977], it follows that the evaluation
problem for Boolean conjunctive queries of bounded treewidth is feasible in
polynomial time. In Section 6, we determine the precise complexity of this
problem by showing that BCQ restricted to queries of bounded treewidth is

3 See, for example, Dechter and Pearl [1989], Gyssens et al. [1994], Kolaitis and Vardi [2000], and
Pearson and Jeavons [1997], where the polynomiality result is extended to generalizations of the
acyclic case.
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complete for LOGCFL. Note that this result holds even if a tree-decomposition
is not part of the problem instance.

The treewidth is not the only possible cyclicity measure for graphs, hyper-
graphs, and queries. Two related yet more general concepts, the degree of cyclicity
[Gyssens et al. 1994], and the query-width [Chekuri and Rajaraman 2000] have
been discussed in the literature. The first is based on the notion of hinge-tree
decomposition, while the second is based on the concept of query-decomposition
(details are given in Section 6). We show that solving Boolean conjunctive
queries whose degree of cyclicity is bounded by a constant or whose query-width
is bounded by a constant is LOGCFL-complete, provided a suitable decomposi-
tion is given together with the problem instance.

Since LOGCFL � AC1 � NC2, by our results, the problems ABCQ and
JTREE as well as all other equivalent problems discussed in this paper, are highly
parallelizable. In fact, they are solvable in logarithmic time by a concurrent-read
concurrent-write parallel random access machine (CRCW PRAM) with a poly-
nomial number of processors, or in log2-time by an exclusive-read exclusive-write
(EREW) PRAM with a polynomial number of processors. Such PRAM algo-
rithm can be derived easily by well-known methods [Karp and Ramachandran
1990; Ruzzo 1980].

However, note that the PRAM model does not really match the features of
parallel relational database management systems (DBMS), where the relational
operators (selection, projection, join, semi-join, etc.) are treated as primitives. In
such database models, there is a distinction between intra-operation parallelism,
that is, the parallel execution of a single primitive operation (e.g., join), and
inter-operation parallelism, that is, processing different primitive operations in
parallel [Wilschut et al. 1995]. We may assume that in a given parallel DBMS the
issues of intra-operation parallelism are solved, that is, that a set of highly
parallel procedures for performing single relational operations is given. The
remaining key problem for query optimization is thus to exploit inter-operation
parallelism as much as possible for each query Q. This means that a parallel
query execution plan for Q should be found, where as many as possible
operations are performed in parallel.

In Section 7, we present a method for solving acyclic Boolean conjunctive
queries achieving a very high degree of inter-operation parallelism. We assume
that the query is given in form of a join tree, thus, actually we solve the problem
JTREE (but as said before, ABCQ is easily reduced to JTREE). Our parallel
method for evaluating JTREE is based on a tree contraction technique that
closely resembles the method of Karp and Ramachandran [1990] for evaluating
arithmetical expressions. In analogy to Karp and Ramachandran [1990] we
introduce a shunt operation for tree contraction. This shunt operation is entirely
defined in terms of relational algebra and thus directly executable by a relational
DBMS. We present a parallel algorithm, called DB-SHUNT, which is based on
such an operation and evaluates a given JTREE instance by performing O(log n)
parallel steps using O(n) processors. In each step, every processor performs a
constant number of relational operations, while keeping the size of any interme-
diate relation quadratic in the maximum relation size of the database.

As a slight modification of the DB-SHUNT algorithm, we present an algorithm
ACQ that computes the output of a non-Boolean acyclic conjunctive query in a
highly parallel fashion, performing a sequence of O(log n) parallel joins. Note
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that the size of the result of such a query may be exponential in the size of the
database. But in many cases of practical relevance, the number of output
attributes (i.e., the number of variables in the head-atom) of a query is rather
small. It thus makes sense to assume that the number of output-attributes is
bounded by a constant, in which case the size of the output is polynomial in the
size of the input. Under this assumption, the ACQ algorithm behaves extremely
well, using a polynomial total number of operations and requiring a rather
limited intermediate storage space. In a follow-up paper [Gottlob et al. 2000], we
describe a more sophisticated parallel algorithm whose intermediate storage
space is polynomially bounded in the combined size of the input plus the output,
even if the number of output-attributes is unbounded.

2. Preliminaries and Basic Concepts

2.1. DATABASES AND QUERIES. For a background on databases, conjunctive
queries, etc., see Abiteboul et al. [1995], Maier [1986], and Ullman [1989]. We
define only the most relevant concepts here.

A relation schema R consists of a name (name of the relation) r and a finite
ordered list of attributes. To each attribute A of the schema, a countable domain
Dom( A) of atomic values is associated. A relation instance (or, simply, a relation)
over schema R � ( A1, . . . , Ak) is a finite subset of the Cartesian product
Dom( A1) 	 . . . 	 Dom( Ak). The elements of relations are called tuples. A
database schema DS consists of a finite set of relation schemas. A database
instance, or simply database, db over database schema DS � {R1, . . . , Rm}
consists of relation instances r1, . . . , rm for the schemas R1, . . . , Rm,
respectively, and a finite universe U � �Ri( A1

i, . . . , Aki
i )�DS(Dom( A1

i ) � . . . �
Dom( Aki

i )) such that all data values occurring in db are from U.
In this paper, we will adopt the standard convention [Abiteboul et al. 1995;

Ullman 1989] of identifying a relational database instance with a logical theory
consisting of ground facts. Thus, a tuple �a1, . . . ak�, belonging to relation r, will
be identified with the ground atom r(a1, . . . , ak). The fact that a tuple �a1, . . . ,
ak� belongs to relation r of a database instance db is thus simply denoted by r(a1,
. . . , ak) � db.

A (rule-based) conjunctive query Q on a database schema DS � {R1, . . . ,
Rm} consists of a rule of the form

Q: ans�u� 4 r1�u1� ∧ · · · ∧ rn�un�,

where n � 0; r1, . . ., rn are relation names (not necessarily distinct) of DS; ans
is a relation name not in DS; and u, u1, . . . , un are lists of terms (i.e., variables
or constants) of appropriate length. The set of variables occurring in Q is
denoted by var(Q). The set of atoms contained in the body of Q is referred to as
atoms(Q).

The answer of Q on a database instance db with associated universe U, consists
of a relation ans whose arity is equal to the length of u, defined as follows.
Relation ans contains all tuples u� such that �: var(Q) 3 U is a substitution
replacing each variable in var(Q) by a value of U and such that for 1 � i � n,
ri(ui)� � db. (For an atom A, A� denotes the atom obtained from A by
uniformly substituting �(X) for each variable X occurring in A.)
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The conjunctive query Q is a Boolean conjunctive query if its head predicate
ans has arity 0, thus the head is a purely propositional atom and does not contain
variables.

Query Q evaluates to true if there exists a substitution � such that, for 1 � i �
n, ri(ui)� � db; otherwise, the query evaluates to false.

The head literal in Boolean conjunctive queries is actually inessential, and
therefore we may omit it when specifying a Boolean conjunctive query.

Note that conjunctive queries as defined here are equivalent to conjunctive
queries in the more classical setting of relational calculus, as well as to
Select-Project-Join queries in the classical setting of relational algebra, or to
simple SQL queries of the type

SELECT Ri1 .Aj1 , . . . , Rik .Ajk FROM R1 , . . . , Rn WHERE cond,

such that cond is a conjunction of conditions of the form Ri. A � Rj.B or Ri. A �
c, where c is a constant.

Two sample queries are shown in Example 1.1.
In order to study the complexity of evaluating Boolean conjunctive queries, we

will refer to Turing-machine-based complexity classes. The algorithms appearing
in our proofs mainly use high-level primitive operations which abstract from
specific machine-level encodings of the used concepts. Notwithstanding, it is
useful and instructive to describe how the low-level encoding of the main
concepts may look like. We will refer to this encoding in Section 2.5 where we
will briefly explain why certain primitive database operations are indeed feasible
in logarithmic space.

Atomic data items are represented by (variable-length) bit-strings. A k-ary
data-tuple is encoded as a list of k data items. Lists and list elements are suitably
delimited by special tape symbols such as parentheses and commas. A relation is
encoded as a list (r, a, t1, . . . , tn), where r is a bit-string encoding of the
relation name, a is the (binary representation of the) arity of the relation, and t1,
. . . , tn are the encodings of the tuples belonging to the relation. A database db
consists of a list (r1, . . . , rm), where (r1, . . . , rm) are the encodings of the
relations belonging to db. The encoding of a query atom consists of a relation
name followed by a list (a1, . . . , ah) of term encodings. A variable is encoded as
a sequence vs, where v is a special symbol and s is a bit-string encoding the
variable name. A constant is an atomic data item. A query is encoded as a list of
atoms. In the sequel of the paper, the encoding of any data structure X is
denoted by enc(X).

2.2. ACYCLIC HYPERGRAPHS. The concept of hypergraph acyclicity plays a
very important role in database theory [Abiteboul et al. 1995; Maier 1986;
Ullman 1989].

A hypergraph H � (V, E) consists of a set V of vertices (nodes) and a set E �
2V of hyperedges (short: edges).

Given a hypergraph H � (V, E), the GYO-reduct GYO(H) [Graham 1979; Yu
and Özsoyoğlu 1979] is the hypergraph obtained from H by repeatedly applying
the following rules as long as possible:

(1) Remove hyperedges that are empty or contained in other hyperedges;
(2) Remove vertices that appear in at most one hyperedge.
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Observe that, since E is a set of hyperedges, also the execution of step (2) may
reduce the number of hyperedges, if two hyperedges become identical after the
removal of some of their vertices.

It was noted [Beeri et al. 1983] that the order of rule applications does not
matter and that the final hypergraph GYO(H) is unique.

A hypergraph H is acyclic if GYO(H) is the empty hypergraph, that is,
GYO(H) � (�, �).

There exist various equivalent characterizations of acyclic hypergraphs.4

In Figure 3, examples of cyclic and acyclic hypergraphs are exhibited.
Acyclicity as defined here is the usual concept of acyclicity in the context of

databases. It is referred to as �-acyclicity in Fagin [1983]. This is the least
restrictive concept of hypergraph acyclicity among all those defined in the
literature. There are several more restrictive notions of acyclicity such as, for
example, �-acyclicity, �-acyclicity, and Berge-acyclicity [Berge 1976; Fagin 1983].
In particular, the following chain of implications holds for any hypergraph H: H
is Berge-acyclic f H is �-acyclic f H is �-acyclic f H is acyclic (i.e., �-acyclic).
However, in general, none of the reverse implications holds.

As we will see, our main result, the LOGCFL-completeness of acyclic Boolean
conjunctive queries, does not only hold for �-acyclic hypergraphs, but does
actually hold for any of the above-mentioned types of hypergraph acyclicity. The
same holds for all LOGCFL-completeness results presented in Section 5.

2.3. ACYCLIC CONJUNCTIVE QUERIES AND JOIN TREES. If Q is a conjunctive
query, we define the hypergraph H(Q) � (V, E) associated to Q as follows: The
set of vertices V consists of all variables occurring in Q. For each atom ri(ui) in
the body of Q, the set E contains a hyperedge consisting of all variables
occurring in ui. Note that the cardinality of E can be smaller than the cardinality
of atoms(Q) because two query atoms having exactly the same set of variables in
their arguments give rise to only one edge in E. For example, the three query
atoms r(X, Y), r(Y, X), and s(X, X, Y) all correspond to a unique hyperedge
{X, Y}.

If H(Q) is acyclic, then Q is referred to as an acyclic conjunctive query.

Example 2.1. Consider again query Q1 and Q2 of Example 1.1 (see Introduc-
tion). The hypergraphs H(Q1) and H(Q2) corresponding to queries Q1 and Q2,
respectively, are depicted in Figure 1. It is easy to see that H(Q1) is a cyclic
hypergraph, while H(Q2) is an acyclic hypergraph. As a consequence, Q1 is a
cyclic query and Q2 is an acyclic query.

4 See, for example, Beeri et al. [1981; 1983], Chase [1981], Goodman and Shmueli [1983], Hull [1983],
and Maier [1986].

FIG. 3. Cyclic and acyclic hypergraphs.
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Acyclic conjunctive queries were the object of a large number of investiga-
tions.5 In particular, it was shown that the class of acyclic queries coincides with
the class of tree queries [Beeri et al. 1983] (see also Abiteboul et al. [1995], Maier
[1986], and Ullman [1989]). The latter are queries which are representable by a
join tree (or join forest).

A join forest for a query Q is a forest G whose set of vertices VG is the set
atoms(Q) and such that, for each pair of atoms A1 and A2 in VG having variables
in common, the following conditions hold:

(1) A1 and A2 belong to the same connected component of G, and
(2) all variables common to A1 and A2 occur in every atom on the (unique) path

in G from A1 to A2.

If G is a tree, then it is called a join tree for query Q.
Figure 2 shows a join tree for the query Q3 of Example 1.2.
At the machine level, a join forest is encoded by a list containing the atom

encodings of all atoms occurring in the query, followed by a list containing, for
each edge {A, A�} belonging to the join forest, a pair (enc( A), enc( A�)), where
enc( A) lexicographically precedes enc( A�).

2.4. LOGCFL AND OTHER RELEVANT COMPLEXITY CLASSES. We shall iden-
tify a formal language � over an alphabet A with the following decision problem:

Instance: A word w from A*

Question: Does w belong to �?

The complexity class LOGCFL consists of all those decision problems that are
logspace-reducible to a context-free language. An obvious example of a problem
complete for LOGCFL is Greibach’s hardest context-free language [Greibach
1973]. There are very few other natural problems known to be LOGCFL-
complete (see, e.g., Skyum and Valiant [1985] and Sudborough [1977]). Symmet-
ric Logspace, denoted by SL, is the class of all those decision problems solvable
by logspace symmetric nondeterministic Turing machines [Johnson 1990; Lewis
and Papadimitriou 1982]. A symmetric Turing machine is a machine whose
transition relation between configurations is symmetric.

The relationship between LOGCFL, SL, and the other relevant complexity
classes used in this paper is summarized in the following chain of inclusions:

AC0 � NC1 � L � SL � NL � LOGCFL � AC1 � NC2 � P � NP.

Here, ACi and NCi are logspace-uniform circuit-based parallel computation
classes defined below, L is logspace, SL is symmetric logspace, NL is nondeter-
ministic logspace, P is polynomial time, and NP is nondeterministic polynomial
time. For definitions of the latter classes, for complete problems, and for
references concerning their mutual relationships, see Johnson [1990].

It is conjectured that problems complete for P are inherently sequential, and
cannot take advantage from parallel computation. A problem is instead called
highly parallelizable if it can be solved in polylogarithmic time using a polynomial

5 See, for example, Bernstein and Goodman [1981], D’Atri and Moscarini [1986], Fagin [1983], Fagin
et al. [1982], Goodman and Shmueli [1982], Malvestuto [1986], Papadimitriou and Yannakakis [1997],
Saccà [1985], Sagiv and Shmueli [1993], and Yannakakis [1981].
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number of processors working in parallel [Greenlaw et al. 1995]. There are
several models of parallel computation. One of the simplest and most accepted
models is the Boolean circuit model, which we describe below. There are other
models of parallel computation such as, for instance, the model of Parallel
Random Access Machines (PRAM) [Greenlaw et al. 1995; Karp and Ramachand-
ran 1990]. Even though these models are very different in terms of primitive
operations, they coincide in the notion of high parallelizability.

A Boolean circuit Gn with n inputs is a finite directed acyclic graph whose
nodes are called gates and are labeled as follows. Gates of fan-in (indegree) zero
are called circuit input gates and are labeled from the set {false, true, z1, z2, . . . ,
zn, ¬ z1, ¬ z2, . . . , ¬ zn}. All other gates are labeled either AND, OR, or NOT.
The fan-in of gates labeled NOT must be one. The unique node with fan-out
(outdegree) zero is called output gate. The evaluation of Gn on input string w of
length n is defined in the standard way. In particular, any input gate g labeled by
zi (respectively, ¬ zi) gets value true (respectively, false) if the ith bit of w is 1
(respectively, 0); otherwise, g gets value false (respectively, true).

A Boolean circuit is thus given as a triple (N, A, label), where N is the set of
nodes (gates), A is the set of arcs, and label is the labeling of the nodes as
described.

The depth of a Boolean circuit G is the length of a longest path in G from a
circuit input gate to the output gate of G. The size S(G) of G is the number of
gates (including input-gates) in G.

A family � of Boolean circuits is a sequence (G0, G1, G2, . . .), where the nth
circuit Gn has n inputs. Such a family is logspace-uniform if there exists a
logspace Turing machine which, on the input string containing n bits 1, outputs
the circuit Gn [Ruzzo 1981]. Note that the size of the nth circuit Gn of a
logspace-uniform family � is polynomial in n.

The language L accepted by a family � of circuits is defined as follows: L �
�n�0 Ln, where Ln is the set of input strings accepted by the nth member Gn of
the family. An input string w of length n is accepted by the circuit Gn if Gn

evaluates to true on input w.
A family � of Boolean circuits has bounded fan-in if there exists a constant c

such that each gate of each member Gn of � has its fan-in bounded by c.
A family � of Boolean circuits is semi-unbounded if the following two

conditions are met:

—All circuits of � involve as non-leaves only AND and OR gates, but no NOT
gates (negation may thus only occur at the circuit input gates); and

—There is a constant c such that each AND gate of any member Gn of � has its
fan-in bounded by c (the OR gates may have unbounded fan-in).

For i � 1, ACi denotes the class of all languages recognized by logspace-
uniform families of Boolean circuits of depth O(logi n).

For i � 1, NCi denotes the class of all languages recognized by logspace-
uniform families of Boolean circuits of depth O(logi n) having bounded fan-in.

For i � 1, SACi denotes the class of all languages recognized by semi-
unbounded logspace-uniform families of Boolean circuits of depth O(logi n).

An important characterization of LOGCFL was found by Venkateswaran
[1991]. He showed that LOGCFL coincides with the class SAC1.
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PROPOSITION 2.2 [VENKATESWARAN 1991]. LOGCFL � SAC1.

Since LOGCFL � SAC1 � AC1 � NC2, the problems in LOGCFL are all
highly parallelizable. In fact, each problem in LOGCFL is solvable in logarithmic
time by a concurrent-read concurrent-write parallel random access machine
(CRCW PRAM) with a polynomial number of processors, or in log2-time by an
exclusive-read exclusive-write PRAM (EREW PRAM) with a polynomial number
of processors [Ruzzo 1980].

Another interesting characterization of LOGCFL in terms of alternating
Turing machines can be found in Ruzzo [1980].

Using the characterization of LOGCFL in Proposition 2.2, Borodin et al.
[1989] have shown that LOGCFL is closed under complementation:

PROPOSITION 2.3 [BORODIN ET AL. 1989]. LOGCFL is closed under comple-
mentation.

Let C be a complexity class. Turing machines that work in logspace but can use
an oracle in C are called LC machines. (This terminology extends to both,
acceptors and transducers.) We here adopt the standard model by Ladner and
Lynch [1976] where an oracle machine has a unique write-only oracle tape which
is not subject to the logarithmic space bound and which is automatically erased
after an oracle-query is made. Since the oracle space is not counted, an LC

machine may ask polynomially long queries to its oracle. For a more precise
description of oracle Turing machines, see Ladner and Lynch [1976] or Garey
and Johnson [1979].

For each class C, the complexity class LC consists of all those decision
problems solvable by an LC acceptor. In particular, LLOGCFL is the class of all
problems solvable in deterministic logspace with an oracle in LOGCFL, and LSL

is the class of all problems solvable in deterministic logspace with an oracle in
SL.

We denote by LLOGCFL(LOGCFL) the closure of LOGCFL under LLOGCFL

reductions, that is, the class of all problems that are many-one-reducible via a
deterministic logspace oracle Turing machine with oracle in LOGCFL to a
problem in LOGCFL. In other words, a problem belongs to LLOGCFL(LOGCFL)
if it can be transformed by an LLOGCFL transducer into an equivalent problem in
LOGCFL.

Sudborough [1977] remarked (without proof) that Proposition 2.3 implies that
LLOGCFL � LOGCFL. A slightly stronger result has been recently shown in
Gottlob et al. [2000a].

LEMMA 2.4 [GOTTLOB ET AL. 2000A]. LLOGCFL(LOGCFL) � LLOGCFL �
LOGCFL.

LOGCFL-completeness is considered under logspace reductions. Thus, a
problem A is complete for LOGCFL if A belongs to LOGCFL and if each other
problem in LOGCFL can be transformed to A by a logspace reduction.

2.5. ON LOGSPACE COMPUTATIONS. In this section, we briefly recall some
well-known results about (deterministic) logspace computations that will be used
in many of our proofs.
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A logspace machine has an unbounded read-only input tape and a worktape
subject to the logarithmic space bound.6

Some key capabilities of logspace machines are informally summarized as
follows:

—they can maintain (a constant number of) counters on the worktape and
increment or decrement such counters;

—they can locate particular items of a well-structured input, for example, by
counting parentheses and other separators. For example, given a list and an
index i, they can locate the first bit of the ith list element. Moreover, they can
represent input items (e.g., integers, lists, list elements, etc.) via pointers
consisting of input-tape addresses (or other suitable indices);

—they can access, process and compare input items in a bit-by-bit fashion,
without ever loading an entire input item into the workspace;

—they can iterate any process a polynomial number of times, perform WHILE
loops, and logspace subroutines. In particular, they can cycle over (tuples of)
elements of input lists, identify common elements, and process them one by
one.

From these properties, it can be seen that many commonly used functions and
operations, such as addition, subtraction, and multiplication of binary integers,
comparing data items or lists, copying data items, searching, sorting, merging and
reversing lists, and so on, are feasible in logspace (cf., e.g., Jones [1997] and
Papadimitriou [1994]). In the database context, the following important result is
well known.

PROPOSITION 2.5 [VARDI 1982]. (For a proof, see also Abiteboul et al. [1995].)
Let Q be any fixed query expressible in first-order logic or, equivalently, in relational
algebra over a fixed database schema. The result of Q can be computed in logspace.
In particular, for every database db, Q(db) can be computed in space O(log�db�).

For illustration, let us sketch a logspace transducer T that performs the join of
two relations r and s on attribute A, where r and s are encoded as described in
Section 2.1. T maintains two tuple pointers � r and �s for the tuples of the
relations r and s, respectively. In an outer loop, � r is advanced to point
successively to each tuple of r. For each such tuple tr, an inner loop makes �s

successively point to each tuple ts of s. For each combination of tuples tr, ts, a
subroutine identifies the locations of the respective fields corresponding to
attribute A and checks, bit after bit, whether the A-values of tr and ts are equal.
If so, the relevant parts of tr and ts are (bitwise) copied to the output tape, so to
form a tuple of the result. Note that the result of a join may be quadratic in the
sizes of the operand relations.

Actually, we will need the following slightly stronger result on joins, where the
relational schemas are not fixed:

6 Without loss of generality, we limit our attention to machines having a single worktape. In fact, each
logspace Turing machine with several worktapes can be simulated by an equivalent logspace machine
having only one worktape (cf. Hopcroft and Ullman [1979]).
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PROPOSITION 2.6. The following problem is feasible in logspace. Given in input
two relations r and s and their respective schemas R and S (represented as attribute
lists), compute the result of the natural join r ”“ s.

PROOF. A logspace transducer solving this task behaves similarly to the above
described transducer T, except that it must identify the join attributes and check
the equality of two tuples with respect to several attributes (the common
attributes of the schemas). For identifying the join attributes, additional pointers
that scan the two attribute lists can be used. The bit-by-bit comparison of the
respective data fields of two tuples is still feasible in logspace. e

There are some graph search problems whose feasibility in logspace is not easy
to show. For example, it is proven in [Cook and McKenzie 1987] that a logspace
machine can traverse a rooted tree in depth-first order:

PROPOSITION 2.7 ([COOK AND MCKENZIE 1987]). The following problem can
be solved by a logspace transducer. Given a rooted tree, compute a depth-first
traversal of the tree starting at the root (i.e., list the nodes of the tree in any order
consistent with the recursive paradigm: “visit a node and then visit each of its
subtrees”).

This result is valid for any of the standard encodings of graphs, in particular,
for the encodings by adjacency lists as used later on in this paper.

An important property of logspace reductions is that they are transitive.
Indeed, the composition of a constant number of logspace transducers can be
performed by a single logspace transducer, as well.

PROPOSITION 2.8. Logspace reductions are transitive. That is, if a problem A is
logspace reducible to a problem B, and if B in turn is logspace reducible to a
problem C, then A is logspace reducible to C.

For a proof see, for example, Papadimitriou [1994, Proposition 8.2]. The proof
is simple but not trivial, given that the intermediate result of the composition of
two logspace computations may be of polynomial size and may not fit into
logarithmic space.

Let � be a complexity class among L, NL, SL, and LOGCFL. For proving
membership of a problem A in �, we will often proceed as follows. We first note
that any instance I of A can be converted in logspace to an instance I� of another
problem A�, then we actually prove that A� is in �. This approach is justified by
the following well-known proposition.

PROPOSITION 2.9. The classes L, SL, NL, and LOGCFL are all closed under
logspace reductions, that is, if a problem A is logspace reducible to a problem A� in
any of these classes, then A lies in the same class.

Proofs for L and NL can be found in textbooks such as, for example, Balcázar
et al. [1988]. For LOGCFL, the assertion follows immediately from the definition
of LOGCFL and Proposition 2.8. For SL, the assertion was shown in Lewis and
Papadimitriou [1982].

By iterated application of Proposition 2.8, we immediately get the following
generalization of Proposition 2.6:
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PROPOSITION 2.10. Let k be a constant. The following problem can be solved in
logspace. Given in input a list of k relations r1, . . . , rk and their respective schemas
R1, . . . , Rk (represented as attribute lists), compute the natural join r1 ”“ r2 ”“ . . .
”“ rk.

2.6. DEFINITION OF MAIN DECISION PROBLEMS. We define below three deci-
sion problems: BCQ, ABCQ, and JTREE.

BCQ: Given a database db and a Boolean conjunctive query Q, decide whether
Q evaluates to true on db.

ABCQ: Given a database db and an acyclic Boolean conjunctive query Q, decide
whether Q evaluates to true on db.

JTREE: Given a database db and a join tree of an acyclic Boolean conjunctive
query Q, decide whether Q evaluates to true on db.

Note that BCQ is a very well-known problem. It appears as Problem number
SR31 in Garey and Johnson [1979]. It was shown to be NP-complete by Chandra
and Merlin [1977].

ABCQ is just the acyclic version of BCQ. We will show as the main result of
this paper that ABCQ is complete for LOGCFL.

The formulation of ABCQ assumes that it is guaranteed that the hypergraph of
the given query is acyclic. This condition on the input is not known to be
verifiable in logspace. Thus, ABCQ, as it stands, is actually a promise problem.
However, this is not really relevant. We will show in the next section that testing
whether a query has an acyclic hypergraph is in SL, and thus also in LOGCFL.
Thus, this test comes—in a precise sense—for free.

A nonpromise version of ABCQ having— by our results—the same complexity
as ABCQ is the following:

ABCQ�: Given a database db and a Boolean conjunctive query Q, decide
whether Q is acyclic and evaluates to true.

3. Determining Acyclicity and Computing Join Forests

In this section, we show that determining whether a conjunctive query Q is
acyclic is in SL (Symmetric Logspace). Moreover, we prove that a join forest for
Q can be “computed” in SL. Both results are not difficult to show as they are
consequences of results by other authors.

Since SL is a class of decision problems, by “computing” we actually mean
determining implicitly a particular join forest T for Q by providing a method for
deciding whether a given pair {A1, A2} of atoms of Q is an edge of T.

For two atoms A, A� � atoms(Q) of a query Q, we define the weight
w( A, A�) as the number of variables that A and A� have in common.

We now define the Weighted Query Graph WG(Q) of a Boolean conjunctive
query Q. This graph has as vertices the set atoms(Q). The edges of WG(Q) are
all (unordered) pairs of query atoms {A, A�} such that A 
 A� and w( A, A�) 

0. Moreover, edges of WG(Q) are weighted according to w, that is, the weight of
{A, A�} is w( A, A�).

At the machine level, the graph WG(Q) is encoded by a list containing the
atom encodings of all atoms occurring in the query, followed by a list containing
a triple (enc( A), enc( A�), w( A, A�)) for each edge {A, A�} belonging to
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WG(Q), where w( A, A�) is represented in binary, and enc( A) lexicographically
precedes enc( A�).

We define a total ordering � on the edges of WG(Q) as follows: for any pair
of edges {A, A�} and {B, B�} of WG(Q), {A, A�} � {B, B�} if either
w( A, A�) � w(B, B�) or w( A, A�) � w(B, B�) and the encoding of the pair
{A, A�} is, as bit string, lexicographically before the encoding of the pair
{B, B�}. Note that WG(Q) is logspace-computable from Q. This can be easily
seen in the light of the discussion in Section 2.5. Indeed, a logspace machine may
cycle over all pairs A, A� � atoms(Q) and count the number of common
variables. In a similar way, a logspace machine can compute the ordering �, that
is, the list of all ordered pairs (e, e�) of edges of WG(Q) such that e � e�.

Given two spanning forests F and F� of WG(Q), let (e1, . . . , en) and (e�1,
. . . , e�n) be, respectively, the lists of the edges of F and of F� ordered according
to �. We say that F lexicographically precedes F� with respect to the basic
ordering �, if there exists an index i such that (i) ei � e�i, and (ii) ek � e�k for
each 1 � k � i. We denote by LFF�(Q) the lexicographically first spanning
forest of WG(Q) with respect to the basic ordering �.

LEMMA 3.1. LFF�(Q) is a maximal-weight spanning forest of WG(Q).

PROOF. Apply Kruskal’s [1956] well-known greedy algorithm (see also, e.g.,
Papadimitriou and Steiglitz [1982]) for computing a maximal-weight spanning
forest to WG(Q). Kruskal’s algorithm requires to consider the edges of WG(Q)
by decreasing weight. Thus the order � is a correct order for Kruskal’s
algorithm, and, when adopting this order, the algorithm outputs a maximal-
weight spanning forest. Moreover, by the chosen edge-ordering �, Kruskal’s
algorithm obviously outputs the lexicographically first spanning forest according
to �, that is, LFF�(Q). e

Based on earlier ideas of Reif [1984] and Cook [1985], the following complex-
ity result was recently shown by Nisan and Ta-Shma [1995]:

PROPOSITION 3.2 [NISAN AND TA-SHMA 1995]. Let � be a given total ordering
on the edges of a graph G. Checking whether an edge of G belongs to the
lexicographically first spanning forest according to the basic ordering � is in SL.

Using this result, they could show the following:

PROPOSITION 3.3 [NISAN AND TA-SHMA 1995]

(1) SL is closed under complementation.
(2) LSL � SL.

From Propositions 3.2 and 3.3, and from the already noted fact that the
ordering � is logspace-computable from any given query, we get the following
lemma:

LEMMA 3.4. For any given query Q and pair {A1, A2} of query atoms, the
following tasks are both in SL:

—checking whether {A1, A2} is an edge of LFF�(Q);
—checking whether {A1, A2} is not an edge of LFF�(Q).
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Let Q be a query. For each variable X � var(Q), let Class(X) � {A �
atoms(Q) �X occurs in A}. The weight w(Q) of query Q is defined by

w�Q� � �
X�var�Q�

��Class�X�� 	 1�.

The following results on acyclic queries and join forests are immediate
consequences of results by Bernstein and Goodman [1981] (and the fact that
their tree-queries are equivalent to the acyclic queries [Beeri et al. 1983]).

PROPOSITION 3.5 [BERNSTEIN AND GOODMAN 1981]. Let Q be a conjunctive
query:

(1) The query Q is acyclic if and only if the weight w(Q) is equal to the weight of a
maximal-weight spanning forest of WG(Q). Thus, in particular, Q is acyclic if
and only if w(Q) � �{A, A�}�LFF�(Q) w( A, A�).

(2) If Q is acyclic, then any maximal-weight spanning forest of WG(Q) is a join
forest for Q . Thus, in particular, LFF�(Q) is a join forest for Q .

We now state the main result of this section:

THEOREM 3.6. The following tasks are in SL:

(1) deciding whether a given conjunctive query is acyclic;
(2) deciding whether a pair of query atoms {A1, A2} of an acyclic conjunctive

query Q is an edge of its join forest LFF�(Q);
(3) deciding whether a pair of query atoms {A1, A2} of an acyclic conjunctive

query Q is not an edge of its join forest LFF�(Q).

PROOF

Part (1). Let Q be a conjunctive query. By Proposition 3.5(1), it suffices to
check whether w(Q) is equal to the weight of LFF�(Q).

This can be done by an LSL machine T as follows: First, T computes w(Q).
This is just a logspace task. A counter c is initialized to 0. In an outer loop, T
cycles over all the variables of Q. Each variable X is successively addressed by a
pointer VP that points to the leftmost occurrence of enc(X) in enc(Q). An inner
loop counts the number of atoms of Q where the variable X designated by VP
occurs, using another counter c�, and increments c by c� � 1. Next, T computes
the total weight �{A, A�}�LFF�(Q) w( A, A�) of LFF�(Q). A counter cw is
initialized to 0. Then, T cycles through all pairs of query atoms {A, A�} and
decides whether {A, A�} belongs to LFF�(Q); if so, cw is incremented by
w( A, A�). Since computing w( A, A�) is a simple counting task in L, the overall
process is, by Lemma 3.4, in LSL, and thus, by Proposition 3.3, in SL. Finally, T
checks whether c � cw and accepts if so.

Parts (2) and (3) of the theorem follow immediately from Lemma 3.4. e

Since we can trivially associate a conjunctive query to every hypergraph, the
above theorem entails the following complexity result on hypergraphs.

COROLLARY 3.7. Deciding whether a given hypergraph is acyclic is in SL.

SL is currently the best known upper-bound in terms of parallel complexity
classes for hypergraph acyclicity testing. An NC2 parallel algorithm for this task
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has been developed by Naor et al. [1989]. Note that very efficient sequential
algorithms were proposed much earlier. Tarjan and Yannakakis [1984] showed
that checking whether a hypergraph is acyclic as well as computing a join forest
for an acyclic conjunctive query can be done in linear time.

4. The Complexity of ABCQ and JTREE

The problem BCQ was shown to be NP-complete by Chandra and Merlin [1977].
Its acyclic version ABCQ (as well as JTREE) was shown to be solvable in
polynomial time by Yannakakis [1981]. The precise complexity of ABCQ and
JTREE, however, remained unsolved since then. The algorithm for computing
the answer to acyclic conjunctive queries proposed by Yannakakis [1981] is
inherently sequential. It processes the join tree T of a query Q in a bottom-up
manner by performing a sequence of joins (or semi-joins in the case of Boolean
queries), one join (or semi-join) for each edge of the tree, starting at the leaves.
In particular, if Q has a chain of length n as join tree, then the answer to Q is
computed by processing this chain by performing n � 1 joins in sequence.
Notwithstanding the sequential character of Yannakakis’s algorithm, ABCQ
could not be shown to be complete for P.

Our main result—proved in the present section—states that ABCQ and
JTREE are complete for LOGCFL. Consequently, these problems are highly
parallelizable.

THEOREM 4.1. JTREE and ABCQ are LOGCFL-complete.

Given that the proof is rather involved, we deal with membership and hardness
in two separate subsections.

4.1. JTREE AND ABCQ ARE IN LOGCFL. To prove membership of JTREE
and ABCQ in LOGCFL, we use an important characterization of LOGCFL by
Sudborough [1977; 1978].

A nondeterministic auxiliary pushdown automaton (NAuxPDA) [Cook 1971]
consists of a nondeterministic Turing machine having a two-way end-marked
read-only input tape, one or more read/write worktapes and, in addition, a
pushdown store (stack). The space used on the pushdown store is not subject to
a space bound on a NAuxPDA.

PROPOSITION 4.2 (SUDBOROUGH [1977; 1978]). LOGCFL coincides with the
class of languages accepted by NAuxPDAs in logarithmic space and polynomial
time.

THEOREM 4.3. JTREE and ABCQ are in LOGCFL.

PROOF. We first show that JTREE is in LOGCFL. Let T be a join tree of an
acyclic Boolean conjunctive query Q on a database schema DS � {R1, . . . ,
Rk}. Let atoms(Q) � {A1, . . . , An}. At the machine level, T is encoded as
described in Section 2.3.

Let db � {r1, . . . , rk} be a database over schema DS and let U be the
universe of db. For 1 � i � n, we denote by rel( Ai) the relation referred to by
query atom Ai, that is, if Ai � rj(t1, . . . , tk), then rel( Ai) � rj. Moreover, for
1 � i � n, 
(i) denotes the index of the relation rel( Ai), that is, if rel( Ai) � rj,
then 
(i) � j.
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Recall from Section 2.1 that the tuples (i.e., ground atoms) of each relation ri

of db are stored as a list, and refer to the jth tuple of ri as t i
j. Each tuple t i

j is thus
unambiguously identified by the pair of indices (i, j) whose storage requires
logarithmic space only.

As a preprocessing step, root the tree T in any arbitrary node, say, in A1. For
1 � i � n, let parent( Ai) be the parent node of Ai and let �(i) be the index
such that A�(i) � parent( Ai). Rooting the tree is obviously feasible in logspace.
From Proposition 2.7, it follows that the computation of �(i) from i is feasible in
logspace, too.

Recall that Q evaluates to true over db if there exists a substitution �: var(Q)3 U
such that, for each atom Ai, 1 � i � n, Ai� � db.

For an atom A � {A1, . . . , An}, denote by var( A) the set of variables
occurring in A.

A local substitution for A � {A1, . . . , An} is a mapping �: var( A) 3 U. For
such a substitution �, let dom(�) :� var( A).

Let � i and � j be two local substitutions for the atoms Ai and Aj, respectively.
We say that � i agrees with � j if for each variable X � var(Q) occurring in both
Ai and Aj, � i(X) � � j(X). The following claim is proved in Appendix A.

CLAIM A. Q evaluates to true over db if and only if there exist n local
substitutions �1, . . . , �n, for the atoms A1, . . . , An, respectively, such that, (i) for
1 � i � n, Ai�i � db, and (ii) for 1 � i � n, �i agrees with ��(i).

Let Ai be an atom of Q and t a tuple (i.e., ground atom) belonging to db. We
say that t is a matching tuple for Ai if there exists a local substitution �: var( Ai)
3 U such that Ai� � t. Since t is a ground atom, this substitution is uniquely
determined by t, and will be denoted by subst( Ai, t). If the atom Ai is given by
its index i, and if the matching tuple t is given by a pair � � (
(i), j), where j is
an index, then, by abuse of notation, let subst(i, �) :� subst( Ai, t).

We now describe a polynomial-time logspace NAuxPDA M that accepts input
�db, T� if and only if the query Q corresponding to T evaluates to true over db.

The automaton M has a single worktape on which it maintains four data
structures referred to as registers:

—AA (for actual atom), which will contain the index i of the query atom Ai of
the currently visited node N of T;

—PA (for parent atom), which will contain the index p of the atom Ap of the
parent node of N;

—AT (for actual tuple), which will contain a tuple identifier (k, j), where k is a
relation index and j a tuple index;

—PT (for parent tuple), which will also contain a tuple identifier.

The automaton M traverses the tree T in a depth-first left-to-right manner
starting from the root by moving downward and upward along the edges of T.
The pushdown stack of M always contains the path from the root to the actual
node and information about the last child of the actual node which was already
visited, allowing the machine to backtrack and thus to traverse the tree in the
described manner. We will not describe the (rather trivial) maintenance of this
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path information on the stack.7 The stack will also contain further information as
described below.

The registers AA, PA, AT, and PT are initially empty.
When the root node A1 is initially visited, AA is set to 1 and a tuple

tuple( A1) � t
(1)
j from relation r
(1) � rel( A1) is nondeterministically chosen

whose indices (
(1), j) are stored in register AT.
When a node Ni of T labeled with atom Ai is entered by a downward move

(coming from its parent node Np), then the values PA and PT are pushed onto
the stack, the assignments PA :� AA, PT :� AT, and AA :� i are performed,
and M chooses nondeterministically a tuple tuple( Ai) � t
(i)

j from relation
r
(i) � rel( Ai) whose indices (
(i), j) are stored in register AT. The machine
then performs the following subroutines MATCH( AA, AT) and COMPARE
( AA, AT, PA, PT):

—MATCH( AA, AT). Check whether the atom identified by AA matches the
tuple (i.e., ground atom) identified by AT. If so, RETURN, else HALT and
REJECT;

—COMPARE( AA, AT, PA, PT). Check whether the local substitutions sub-
st(PA, PT) and subst( AA, AT) agree. If so, RETURN, else HALT and
REJECT.

After successful termination of these subroutines, machine M proceeds as
follows:

—If Ni is the rightmost leaf, M stops in the ACCEPT state.
—If Ni is a leaf, but not the rightmost one, then the machine M proceeds by

making an upward move in the tree T and revisiting the parent node Np of Ni.
—If Ni is not a leaf, then M proceeds by visiting the first child of Ni.

If a node Ni is entered by an upward move (i.e., coming from one of its
children), then the correct (previously computed) values of AA and AT for Ni

are obtained by performing the assignments AA :� PA, and AT :� PT, and the
correct values of PA and PT are obtained by popping these values from the stack
and storing them into the respective registers.

If all children of Ni have been visited, then M moves up to Ni’s parent node.
Otherwise, M visits the next child of Ni. This completes the description of M.

It is not hard to see that M stops in the ACCEPT state if and only if Q
evaluates to true over db. In fact, if Q evaluates to true over db, then there exist
partial substitutions �1, . . . , �n as required by Claim A. It is clear that by
choosing tuple( Ai) :� Ai� i for 1 � i � n, machine M will accept. On the other
hand, if M accepts, then let � i :� subst( Ai, tuple( Ai)) for 1 � i � n. Clearly,
Ai� i � db, and thus condition (1) of Claim A is met. Moreover, for 1 � i � n,
the positive exit of subroutine COMPARE( AA, AT, PA, PT) while visiting the
node corresponding to Ai guarantees that � i agrees with ��(i), and hence also
condition (2) of the claim is met. Thus, by Claim A, Q evaluates to true over db.

Since the four registers AA, AT, PA, and PT contain indices rather than
atoms or tuples, they only require logarithmic space. Moreover, the subroutines

7 By using more sophisticated techniques, such as those described in Cook and McKenzie [1987], it is
possible to traverse the tree in logspace without using a pushdown store (see Proposition 2.7 of the
present paper). Thus, the pushdown store is not really necessary for controlling the tree traversal.
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MATCH and COMPARE require only deterministic logarithmic space. Thus, M is
a logspace NAuxPDA. Since the size of tree T visited by M is polynomial in the
size of the input instance (as T is part of the input), and M visits each node of T
only a polynomial number of times (once by a downward move, and at most m
times by an upward move, where m is the number of children), and since only
polynomial time is spent at each visit, M works in polynomial time. By Proposi-
tion 4.2, JTREE is thus in LOGCFL.

Denote by JFOREST the decision problem defined in a similar way as JTREE,
except that a join forest is given instead of a join tree. It is easy to see that
JFOREST � LJTREE. In fact, an instance of JFOREST is answered positive if
and only if all trees of the forest are yes-instances of JTREE. A logspace oracle
machine M* with JTREE oracle may act as follows to check a JFOREST
instance (db, F), where db is a database and F a join forest. For each node N of
F, M* first copies db to the oracle tape and then writes the connected
component of N to the oracle tape. (Doing the latter is feasible in logspace, since
connectivity in acyclic graphs can be checked in logspace [Cook and McKenzie
1987].) Then M* makes the oracle query and rejects in case the query is
answered negatively. The machine M* accepts when all nodes N of F have given
positive oracle answers. It thus holds that JFOREST is in LOGCFL, by Lemma
2.4.

By Theorem 3.6, the join forest LFF�(Q) of an acyclic query Q is computable
via an LLOGCFL procedure from Q. Thus, ABCQ is LLOGCFL-reducible to
JFOREST. Since JFOREST is in LOGCFL, ABCQ is in LLOGCFL(LOGCFL)
and thus, by Lemma 2.4, in LOGCFL. e

4.2. LOGCFL-HARDNESS. For proving the LOGCFL-hardness of JTREE
and of ABCQ, we use Venkateswaran’s characterization of LOGCFL as the class
SAC1 of problems solvable by logspace-uniform families of semi-unbounded AC1

Boolean circuits (SAC1 circuits) as described in Section 2.4.
A proof tree T for a semi-unbounded Boolean circuit G on input word w is a

rooted tree such that each node N of T is labeled with a gate gate(N) from G
and such that the following labeling conditions are satisfied:

(1) The root of T is labeled gout, where gout is the output gate of G.
(2) If gate(N) � g for some node N of T, and g is an AND gate of G having

fan-in k, then N has exactly k children N1, . . . , Nk in T that are labeled by
the k predecessor gates of gate g in G, respectively.

(3) If gate(N) � g for some node N of T, and g is an OR gate of G, then N has
a unique child in T, and this child is labeled by a gate g� of G that is a
predecessor of gate g in G.

(4) Each leaf N of T is labeled by an input gate g of G that corresponds to an
input bit 1 in w, or to the constant true. More precisely, g satisfies one of the
following conditions: g is labeled by zi in G and the ith bit of w is 1, or g is
labeled ¬ zi in G (i.e., g is a NOT gate connected to the ith input bit) and the
ith bit of w is 0, or g is labeled true in G.

Note that the concept of proof tree as defined above is just a syntactic variant
of the concept of accepting subtree defined in Venkateswaran [1991]. The
following proposition is well known (see, e.g., Fact 1 in Venkateswaran [1991])
and easy to verify.
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PROPOSITION 4.4. A semi-unbounded Boolean circuit G accepts w if and only if
there exists a proof tree for G on input w.

A SAC1 family � of Boolean circuits is in normal form (NF) if the following
conditions are satisfied:

(a) The fan-in of all AND gates in all members of � is 2.
(b) The nodes of each circuit can be assigned to levels so that circuit-inputs are

at level 0, and any gate of level i receives all its inputs from nodes of level
i � 1.

(c) The circuit is strictly alternating, that is, all odd-level gates are OR gates and
all even-level (non-input) gates are AND gates.

(d) Each circuit has an odd number of levels, and thus the output gate of each
circuit is an AND gate.

Example 4.5. Let � be a SAC1 family of Boolean circuits in normal form,
whose 7th circuit G7 is the one depicted in Figure 4. It can be verified easily that
G7 (and hence �) accepts the following input w: w1 � 0, w2 � 0, w3 � 0, w4 �
0, w5 � 1, w6 � 0, w7 � 1. Figure 6 shows two proof trees demonstrating that
G7 accepts w.

The following Lemma summarizes well-known normal-form results for SAC1

circuits that are either trivial or appear in Borodin et al. [1989].

LEMMA 4.6. For every logspace-uniform SAC1 family � of Boolean circuits,
there exists a logspace-uniform SAC1 family � in NF such that � and � accept
exactly the same language.

PROOF. Normal Form property (a) can be achieved by a simple logspace
computation that replaces AND gates with fan-in c � 2 by a suitable “pyramid”
(of fixed shape) of AND gates. For properties (b) and (c), see the proof of
Theorem 12 in Borodin et al. [1989]. Property (d) can be achieved by adding—if
necessary—a new level with an AND gate as new output gate on top of the
original output gate g (getting both its inputs from g). e

FIG. 4. A circuit G7 of depth 4.
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Observe that if G is a circuit in NF of depth d accepting w, then all proof trees
for G on w are of the same shape and are labeled with the same type of gates
(AND, OR, input) at the corresponding positions. In particular, each proof tree
for G on w is of even depth d with an odd number d  1 of levels. The bottom
level 0 contains the leaves (labeled by circuit input gates); each node at an even
level i � 0 is labeled by an AND gate and has two children that are both located
at level i � 1; each node at an odd level i is labeled OR and has exactly one
child, which is located at level i � 1. Note that, if i is even and 0 � i � d, then
each proof tree for G on input w has exactly 2(d�i)/ 2 nodes at level i, as well as
at level i  1. The number 
d(�) of nodes at level � (0 � � � d  1) of any
proof tree is thus 
d(�) � 2(d�2 �/ 2 )/ 2 � 2d/ 2� �/ 2 . It follows that each proof
tree for G on w is (as graph) isomorphic to the “skeleton tree” SKELd � (Vd,
Ed) defined by

Vd � �Nj
i�0 � i � d, 1 � j � 
d�i�� ,

and where the set of edges Ed is defined as follows: If i � 0 is even, then each
node Nj

i, for 1 � j � 
d(i), has as predecessors the nodes N2j�1
i�1 and N2j

i�1. If i
is odd, then each node Nj

i, for 1 � j � 
d(i), has as only predecessor the node
Nj

i�1. Intuitively, Nj
i represents the jth node, from left to right, of level i of

SKELd (see Figure 5). The nodes at even nonzero levels of SKELd are referred
to as AND nodes, while the nodes at odd levels are referred to as OR nodes.

As explained, the skeleton tree SKELd represents the common topological
structure of all accepting proof trees for G on w in case G accepts w. This
means that if we drop the label gate(v) from each node v of a proof tree for G on
w, then we obtain a tree isomorphic to SKELd. On the other hand, if we attach
to SKELd a labeling function gate obeying the labeling rules 1– 4 as described
above, then we get a proof tree (see Figure 6). The following lemma summarizes
these facts. Its validity follows from the validity of Proposition 4.4 and from the
definition of SKELd.

LEMMA 4.7. Let G � (V, E, label ) be a Boolean circuit of depth d in NF, and
let w be an input string for G. Then G accepts w if and only if there exists a function
gate: Vd 3 V, assigning to each node Nj

i of SKELd a gate gate (Nj
i) of G, such that

the following conditions are satisfied:

FIG. 5. The “Skeleton” tree SKEL4.

455The Complexity of Acyclic Conjunctive Queries



(1) gate(N1
d) � gout, the output gate of G .

(2) If gate (Nj
i) � g and Nj

i is an AND node of SKELd (i.e., i is even), then the
children N2j�1

i�1 and N2j
i�1 are assigned by the labeling function gate the

predecessor gates g� and g� of gate g in G , respectively.
(3) If gate(Nj

i) � g and Nj
i is an OR node of SKELd (i.e., i is odd), then the

unique child Nj
i�1 of Nj

i is assigned a gate g� � gate(Nj
i�1) of G that is a

predecessor of gate g in G .
(4) For each leaf Nj

0 of SKELd, gate(Nj
0) � g, where g is an input gate with label

l in G satisfying one of the following conditions: l is the constant true, or l � zi

and the ith bit of w is 1, or l � ¬ zi and the ith bit of w is 0.

We have now built all the necessary machinery for proving our hardness result.

THEOREM 4.8. Both problems ABCQ and JTREE are hard for LOGCFL under
logspace reductions. These problems remain LOGCFL-hard even in case the query
involves only binary relations, that is, in case the associated acyclic hypergraph is an
acyclic graph.

PROOF. By Proposition 2.2 and Lemma 4.6, it is sufficient to show that the
problem of deciding whether an input string w of length n is accepted by the nth
circuit Gn of a logspace-uniform family � of SAC1 circuits in NF, can be reduced
in logspace to instances of ABCQ and JTREE.

Let � be a logspace-uniform family of SAC1 circuits in NF and let w be a
binary string of length n. Denote by d the depth of the nth circuit Gn of �. (Note
that the depth of a circuit Gn in normal form can be easily computed in logspace
from Gn, and thus from 1n; in fact, the depth of Gn is equal to the length of any
path from a leaf of Gn to the root, i.e., it is the number of levels of Gn.)

We now construct an acyclic Boolean query Q and a database instance db such
that Q evaluates to true over db if and only if Gn accepts w. The hypergraph
H(Q) associated to Q is actually a tree isomorphic to the skeleton SKELd of Gn

(see Figures 5 and 8). The variables of Q correspond exactly to the nodes of
SKELd. If Q is satisfied over db, then each satisfying assignment of data values to
the variables of Q corresponds to a correct labeling of the nodes of the skeleton
SKELd by gate names such that the resulting labeled tree is a proof tree for Gn

on w.

FIG. 6. Labelings of SKEL4 corresponding to proof trees for circuit G7 on string w in Example 4.5.
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We first describe the construction of the database db. The universe of data
values U of db is the set of all gates of Gn (i.e., the set of nodes of the graph
Gn), say U � { g1, . . . , gm}. The database db contains three binary relations
leftand, rightand, and or. Intuitively, for an AND gate g of Gn, relation leftand
encodes the connection between g and its first (left) predecessor and relation
rightand the connection between g and its second (right) predecessor. The
relation or encodes the OR branchings of the circuit Gn. Formally, for each
AND gate ga of Gn with children gb and gc, leftand contains the tuple �ga, gb�
and rightand contains the tuple �ga, gc�. The relations leftand and rightand
contain no further tuples. For each OR gate ga of Gn at some level i � 1, and
for each child gb of ga, or contains the tuple �ga, gb�. Further, each OR gate ga at
level 1 of Gn, and each child gb of ga give rise to a tuple �ga, gb� of the relation
or if and only if the circuit-input gate gb is labeled by the constant true or gets
value true on w, that is, if and only if one of the following conditions applies:

—gb is labeled zi and the ith bit of string w is 1;
—gb is labeled ¬ zi and the ith bit of w is 0;
—gb is labeled true.

There are no further tuples in the relation or. We have completely described db.
For an example, see Figure 7.

Clearly, db can be computed from Gn and w by a logspace procedure.
Moreover, the family � is logspace-uniform. Thus, by definition of logspace
uniformity (see Section 2.4), Gn can be computed in logspace from w. Summa-
rizing, by Proposition 2.8, db can be generated in logspace from w.

Let us define the query Q, which is obtained in an extremely simple way from
SKELd. Recall that Vd denotes the set of nodes of SKELd. For each node Nj

i �
Vd, define a variable var(Nj

i) � Xj
i. Let var(SKELd) � {var(N) �N � Vd}.

Then

Q � �
Nj

i�Vd,i�0

form�Nj
i�,

where form(Nj
i) is a conjunction of atoms defined as follows:

—If Nj
i is labeled AND (i.e., i is even), then form(Nj

i) is the conjunction
leftand(var(Nj

i), var(M1)) ∧ rightand(var(Nj
i), var(M2)), where M1 and M2 are

the children of Nj
i in SKELd. Since we can name these children precisely as

FIG. 7. The database instance db � {leftand, rightand, or} for Example 4.5.
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M1 � N2j�1
i�1 and M2 � N2j

i�1, we have: form(Nj
i) � leftand(Xj

i, X2j�1
i�1 ) ∧

rightand(Xj
i, X2j

i�1).
—If Nj

i is labeled OR, then form(Nj
i) � or(var(Nj

i), var(M)), where M is the
only child of Nj

i in SKELd. Since we can name this child precisely as M �
Nj

i�1, we have: form(Nj
i) � or(Xj

i, Xj
i�1).

For example, from SKEL4, we get the following acyclic Boolean conjunctive
query Q4:

Q4 � �
leftand�X1

4 , X1
3� ∧ rightand�X1

4 , X2
3� ∧

or�X1
3 , X1

2� ∧ or�X2
3 , X2

2� ∧
leftand�X1

2 , X1
1� ∧ rightand�X1

2 , X2
1� ∧ leftand�X2

2 , X3
1� ∧ rightand�X2

2 , X4
1� ∧

or�X1
1 , X1

0� ∧ or�X2
1 , X2

0� ∧ or�X3
1 , X3

0� ∧ or�X4
1 , X4

0�.

We denote by var(Q) the variables occurring in Q. It holds: var(Q) �
var(SKELd).

Note that the hypergraph H(Q) is a tree, hence the query Q is clearly acyclic.
See Figure 8 for a picture.

The list of atoms of the query Q can be constructed by the following very
simple logspace computation: for each 0 � i � d and 1 � j � 
d(i), do

—if i is even, then output the atoms leftand(Xj
i, X2j�1

i�1 ) and rightand(Xj
i, X2j

i�1);
—if i is odd, then output the atom or(Xj

i, Xj
i�1).

We claim that Q evaluates to true over db if and only if Gn accepts w.
We first prove the if part of this claim. If Gn accepts w, then, by Lemma 4.7,

there exists a labeling function gate: Vd 3 U fulfilling the four properties of the
Lemma. Let � be the following substitution assigning to each variable in var(Q)
a data value from U: for each Xj

i � var(Q) � var(SKELd), �(Xj
i) � gate(Nj

i).
Observe that, by definition of db, for each atom A of Q, the substitution instance
A� occurs in any relation leftand, rightand or or of db. Thus, all ground atoms of
Q� are true in the database and, consequently, Q evaluates to true over db.

FIG. 8. Hypergraph corresponding to query Q4.
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We now prove the only-if part of the claim.
Assume that Q evaluates to true over db. Then there exists a substitution

�: var(Q) 3 U such that for each atom A of Q, A� � db.
Let gate: Vd 3 U be the labeling function attaching the gate name gate(Nj

i) :�
�(Xj

i) to each node Nj
i of SKELd. It suffices to prove that the labeling function

gate fulfills the properties (1)–(4) of Lemma 4.7.

Property 1. gate(N1
d) � gout, the output gate of G.

Before proving this property, let us make a simple observation deriving directly
from the definition of db. Call a sequence g1, g2, . . . , gk of distinct gate names
(i.e., of elements of U) an alternating chain of length k � 1 of db rooted in g1, if
db contains the ground atoms leftand( g1, g2), or( g2, g3), leftand( g3, g4), and so
on. We observe that, by construction of db, for all alternating chains g1, g2, . . . ,
gd1 of length d rooted in g1, it holds that g1 is identical to gout. In fact, it is
easily verified that any alternating chain of db rooted in g1 of length � coincides
with the gates encountered on a downward path of length � starting at some
AND gate g1 in Gn. Note, however, that the downward paths of length d of Gn

all start at the output gate gout.
To prove Property 1, consider the leftmost branch of SKELd. This branch is

made of the nodes

N1
d , N1

d�1 , N1
d�2 , . . . , N1

1 , N1
0 .

Let gi :� �(X1
i ) � gate(N1

i ) for 0 � i � d. By construction of the query Q, the
following atoms are all in db: leftand( gd, gd�1), or( gd�1, gd�2), leftand( gd�2,
gd�3), . . . , leftand( g2j, g2j�1), or( g2j�1, g2j�2), . . . , leftand( g2, g1), or( g1,
g0). Thus, the sequence gd, gd�1, . . . , g0 is an alternating chain of length d of
db rooted in gd. It follows that the label gd (i.e., gate(N1

d)) is identical to gout,
that is, to Gn’s output gate.

Property 2. If gate(Nj
i) � g and Nj

i is an AND node of SKELd (i.e., i is even),
then the children N2j�1

i�1 and N2j
i�1 are assigned by the labeling function gate the

predecessor gates g� and g� of gate g in G, respectively.
Let Nj

i be an AND node of SKELd, and let g � gate(Nj
i), that is, �(Xj

i) � g.
Note that, by construction of db, g occurs only in two atoms of db. These atoms
are of the form leftand( g, g1) and rightand( g, g2), where g1 and g2 are the gate
names of the first and of the second predecessor of gate g in Gn, respectively.
Since �(Xj

i) � g, there is only one choice for transforming the query atoms of
the conjunction form(Nj

i) � leftand(Xj
i, X2j�1

i�1 ) � rightand(Xj
i, X2j

i�1) via
substitution � into ground atoms contained in the database, and it must hold that
�(X2j�1

i�1 ) � g1 and �(X2j
i�1) � g2. It follows that gate(N2j�1

i ) � g1 and
gate(N2j

i ) � g2, which proves Property 2.

Property 3. If gate(Nj
i) � g and Nj

i is an OR node of SKELd (i.e., i is odd),
then the unique child Nj

i�1 of Nj
i is assigned a gate g� � gate(Nj

i�1) of G that is a
predecessor of gate g in G .

Let Nj
i, i � 0, be an OR node of T such that gate(Nj

i) � g. By definition of
SKELd, Nj

i has as unique child in SKELd the node Nj
i�1. It thus suffices to show

that Nj
i�1 is labeled with a predecessor of gate g in Gn. Note that �(Xj

i) � g.
The only or-atoms of db in which g occurs are the atoms or( g, g1), . . . ,
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or( g, gk), where g1, . . . , gk are the gate names of the children of gate g in Gn.
Query Q contains an atom form(Nj

i) � or(Xj
i, Xj

i�1). Since �(Xj
i) � g, and

or(Xj
i, Xj

i�1)� � db, it holds that �(Xj
i�1) � { g1, . . . , gk}. Therefore,

gate(Nj
i�1) � { g1, . . . , gk}, and property (3) is proved.

Property 4. For each leaf Ni
0 of SKELd, gate(Ni

0) is an input gate of G , which
either is labeled by the constant true or gets value true on w .

Let Ni
0 be an input node (i.e., leaf) of T. Then Ni

0 is the unique child of the
OR node Ni

1. Let gate(Ni
1) � �(Xi

1) � ga, and let gate(Ni
0) � �(Xi

0) � gb.
Since Q contains the atom form(Ni

1) � or(Xi
1, Xi

0), and form(Ni
1)� � db, it

holds that or( ga, gb) � db. By construction of relation or of db, this holds if and
only if gb is labeled by the constant true or gets value true on w.

This concludes the proof of the only-if part of our claim. We have thus shown
that ABCQ is hard for LOGCFL under logspace reductions.

To see that the same holds for JTREE, it is sufficient to observe that a join
tree JT(Q) � (V, E) for the query Q defined above is the tree having V �
{atoms(Q)} as its set of vertices, and whose set of edges is

E � ��A1 , A2� � V �var�A1� � var�A2�  ��.

The join tree JT(Q) can be computed in logspace from Q as follows: First, copy
the atoms of Q to the output tape. Then, let two pointers cycle over all pairs A1,
A2 � atoms(Q), where enc( A1) lexicographically precedes enc( A2). For each
such pair A1, A2, check whether var( A1) � var( A2) 
 � (this check is feasible
in logspace), and, if so, output the edge {A1, A2}. e

Observe that the join tree JT(Q) associated with the conjunctive query Q in
the above proof has depth logarithmic in the size of Q. Thus, LOGCFL-hardness
holds even for instances of JTREE, where the join tree has logarithmic depth
(compared to its size).

Note that we have also found a translation that directly translates the
membership problem for any fixed CFG in Chomsky Normal Form into an
ABCQ instance. This translation is somewhat more complicated and will be
presented elsewhere.

From Theorems 4.3 and 4.8, we thus get the following:

COROLLARY 4.9. ABCQ and JTREE are both complete for LOGCFL under
logspace reductions.

Recall from Section 2.2 that the notion of hypergraph acyclicity adopted in this
paper is the standard notion used in the database literature and corresponds to
Fagin’s [1983] �-acyclicity. However, several other notions of hypergraph acyclic-
ity exist, that all generalize the concept of graph-acyclicity [Fagin 1983]. Exam-
ples are �-acyclicity, �-acyclicity, and Berge-acyclicity [Berge 1976; Fagin 1983].

It can be seen that the LOGCFL-completeness of acyclic Boolean conjunctive
queries does not only hold for �-acyclic hypergraphs, but does actually hold for
any of the above-mentioned types of hypergraph acyclicity. Membership in
LOGCFL follows from the fact that, as noted in Section 2.2, the class of �-acyclic
hypergraphs is the largest class, comprising all other acyclic classes. Hardness for
LOGCFL follows from the fact that our hardness result (Theorem 4.8) holds
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even for queries whose associated hypergraph is actually a graph. On graphs, all
notions of hypergraph acyclicity coincide.

5. Equivalent Database and AI Problems

In this section, we describe several important decision problems in the fields of
databases and AI that involve hypergraphs. All these problems are logspace-
equivalent to BCQ and are thus NP-complete. The NP-completeness of these
problems is well-known. Moreover, one can find simple reductions between each
of these problems and BCQ and vice versa that preserve hypergraph acyclicity,
whence the acyclic version of all these problems is complete for LOGCFL and
thus highly parallelizable. For each problem �, we denote by A� its acyclic
version.

The first problem CQOT deals with general (and not necessarily Boolean)
conjunctive queries. It is a generalization of ABCQ.

Name: CQOT (conjunctive query output tuple).

Instance: Conjunctive query Q , tuple (i.e., ground atom) t , database instance db.

Question: Is t in the answer of Q on db?

Associated Hypergraph: The hypergraph H(Q).

THEOREM 5.1. The acyclic version ACQOT of CQOT is complete for
LOGCFL.

PROOF. To see that ACQOT is in LOGCFL, transform each instance I of
ACQOT in logspace into an instance I� of ABCQ as follows. Denote by head(Q)
and body(Q) the head and body of Q, respectively. Check in logspace whether t
matches head(Q). If t does not match head(Q), then let I� be any trivial
no-instance of ABCQ (e.g., an instance of ABCQ with an empty database).
Otherwise, let � be the substitution defined on the variables occurring in
head(Q), such that head(Q)� � t. Let I� � (db, body(Q)�). Clearly, I is a
yes-instance of ACQOT if and only if I� is a yes-instance of ABCQ. Moreover,
the transformation is logspace-computable. LOGCFL-hardness follows from the
fact that ABCQ is a special case of ACQOT. e

What about computing the complete answer Q(db) to an acyclic conjunctive
query Q over a database? This search problem requires exponential time in the
worst case, since Q(db) may contain an exponential number of tuples. The
problem is, however, output-polynomial: Yannakakis’s [1981] algorithm computes
Q(db) in time polynomial in the size of Q(db) plus the size of the input instance.
This computation problem becomes tractable—and highly parallelizable—if the
number of variables that may occur in the head head(Q) of Q is bounded by a
constant (a parallel database algorithm solving this problem with a logarithmic
number of parallel join operations is presented in Section 7.3).

Our next decision problem is Conjunctive Query Containment, a very well-
known problem since the early days of database theory (for references, see, e.g.,
Ullman [1989]).

Let Q1 and Q2 be two conjunctive queries. Q1 is contained in Q2, denoted
Q1 � Q2, if and only if for every database instance db, Q1(db) � Q2(db).

Name: CQ-CONTAINMENT (conjunctive query containment).
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Instance: Conjunctive queries Q1 and Q2.

Question: Is Q1 contained in Q2?

Associated Hypergraph: The hypergraph H(Q2).

As pointed out in Kolaitis and Vardi [2000], conjunctive-query containment is
a topic of high relevance to current database research issues such as the problem
of answering queries using materialized views [Levy et al. 1995; Rajamaran et al.
1995] and the related problem of integrating information from heterogeneous
sources (see Ullman [1997] for a survey).

NP-completeness of CQ-CONTAINMENT was proven in Chandra and Merlin
[1977]. The acyclic version ACQ-CONTAINMENT of this problem asks whether
an arbitrary query Q1 is contained in an acyclic query Q2.

A query folding for an instance (Q1, Q2) of CQ-CONTAINMENT is a
substitution � replacing each variable X � var(Q2) by suitable terms such that,
for each atom A occurring in the body of Q2, there is an atom B in the body of
Q1 with A� � B and head(Q2)� � head(Q1). The following proposition is
well-known (see, e.g., Theorem 14.1 in Ullman [1989] or Theorem 11.10 in Maier
[1986]):

PROPOSITION 5.2. Q1 � Q2 if and only if there exists a query folding for
(Q1, Q2).

The next proposition (also well known, see, e.g., Chandra and Merlin [1977]
for an equivalent formulation) follows as a simple corollary from Proposition 5.2.
It establishes a very tight relationship between CQ-CONTAINMENT and
CQOT, and thus also between CQ-CONTAINMENT and BCQ.

PROPOSITION 5.3. Let Q1 � A0 4 A1 ∧ . . . ∧ . . . ∧ An and Q2 be conjunctive
queries. Then Q1 � Q2 if and only if A0� belongs to Q2(db*), where � is a ground
substitution assigning to each variable X of var(Q1) a fresh constant cX, and db* �
{A1�, A2�, . . . , Ak�}. The instance (Q1, Q2) of CQ-CONTAINMENT is thus
equivalent to the instance (Q2, A0�, db*) of CQOT.

It follows that, if Q2 has an acyclic query hypergraph, then the test Q1 � Q2 is
feasible in polynomial time by applying Yannakakis’s algorithm. Thus, ACQ-
CONTAINMENT is polynomial. This polynomiality result was also observed by
Qian [1996], and independently by Chekuri and Rajaraman [2000], who devel-
oped a (sequential) special containment-checking algorithm for the acyclic case,
which is then extended to the more general setting where Q2 has bounded
treewidth.

The following theorem settles the exact complexity of ACQ-CONTAINMENT.

THEOREM 5.4. ACQ-CONTAINMENT is complete for LOGCFL.

PROOF. The reduction described in Proposition 5.3 from CQ-CONTAIN-
MENT to CQOT is clearly feasible by a logspace transducer. Moreover, it
trivially preserves acyclicity. Thus ACQ-CONTAINMENT is logspace-reducible
to the LOGCFL-complete problem ACQOT and is thus in LOGCFL.

To prove LOGCFL-hardness, let us reduce ABCQ to ACQ-CONTAINMENT.
This turns out to be very easy. Take an instance (db, Q) of ABCQ, where Q is,
without loss of generality, a conjunction of literals. Let A1, . . . , An be the

462 G. GOTTLOB ET AL.



ground atoms (tuples) of db. Let q be a new propositional atom. Form the two
queries Q1 and Q2 as follows:

Q1 � q 4 �
1�i�n

Ai , and

Q2 � q 4 Q.

Clearly, by Proposition 5.2, Q1 � Q2 if and only if Q evaluates to true over db.
The transformation is obviously feasible in logspace (it is a mere rewriting).
Thus, ACQ-CONTAINMENT is hard for LOGCFL. e

We now describe the clause subsumption problem SUBS, which is of central
importance in the field of Automated Theorem Proving [Chang and Lee 1973].
Indeed, the performance of automated theorem provers can be drastically
improved in reducing the search space by eliminating redundant formulas
[Bachmair et al. 1996], and a key deletion strategy is based on subsumption tests
[Wos et al. 1991].

Formally, a (general) clause is a set of literals, that is, of positive or negated
atoms. A clause represents the logical disjunction of its literals. Note that the
vocabulary here may contain function symbols too. A clause {A1 . . . , Ak, ¬ B1,
. . . , ¬ Br} can also be written in implicational form, A1 ∨ . . . ∨ Ak 4 B1 ∧ . . .
∧ Br. Each conjunctive query is thus a clause satisfying the following restrictions:
it is Horn (i.e., has at most one literal in its head) and it does not contain any
function symbol.

A clause C subsumes a clause D, denoted by C � D, if there exists a
substitution � assigning a term to each variable of C such that C� � D. The
problem SUBS is formally stated as follows:

Name: SUBS (clause subsumption).

Instance: Clauses C and D .

Question: Does C subsume D?

Associated Hypergraph: H � (V , E), where V � var(C) is the set of variables occurring
in C and E � {var(L) �L � C}, where var(L) denotes the set of variables occurring in
literal L .

By Proposition 5.2, SUBS is a generalization of CQ-CONTAINMENT. In
particular, any instance (C1, C2) of CQ-CONTAINMENT is equivalent to the
instance (C2, C1) of SUBS. The acyclic variant ASUBS of SUBS appears to be
of high practical value, since many of the clauses generated by a theorem prover
are acyclic (in fact most initial theories contain mainly acyclic clauses and
acyclicity is often preserved by resolution).

THEOREM 5.5. ASUBS is complete for LOGCFL.

PROOF. Hardness follows trivially from the LOGCFL-completeness of ACQ-
CONTAINMENT and the fact that ACQ-CONTAINMENT is a special case of
ASUBS. Let us prove membership. We denote by ABCQf and ACQOTf the
extensions of the respective problems ABCQ and ACQOT, where function
symbols are permitted both in database ground atoms and in the queries. For any
clause K, let K be the disjunction �L�K L, where L � L, if L is a positive
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literal and L � p�(t1, . . . , tm), if L � ¬ p(t1, . . . , tm), p� being a new
predicate symbol uniquely associated with predicate p.

Consider an instance (C, D) of ASUBS. It is clear that C � D if and only if
C � D. Note that Proposition 5.2 was actually shown to hold for queries with
function symbols [Ullman 1989]. Thus, by Proposition 5.3, the instance (C, D) of
ASUBS is (logspace-)equivalent to an instance of ACQOTf, and therefore to an
instance of ABCQf. It thus remains to see that ABCQf is in LOGCFL. This is
seen by showing that the proof of Theorem 4.3 holds in the presence of function
symbols. An inspection of that proof reveals that a sufficient condition for its
“survival” in the presence of function symbols is that suitable generalizations of
the subroutines MATCH and COMPARE to the setting with function symbols can
be given, which are feasible in nondeterministic logspace. The latter follows in
turn from the well-known fact that term matching is in NL even in the presence of
function symbols, and that the matching substitutions can be computed in
nondeterministic logspace [Dwork et al. 1984]. (Note that this holds even if terms
are represented compactly as directed acyclic graphs.) e

Finally, let us switch to the problem of constraint satisfaction, another funda-
mental problem in Artificial Intelligence.

There are several equivalent definitions of constraint satisfaction. The follow-
ing is taken almost verbatim from Jeavons et al. [1997]. An instance of a
constraint satisfaction problem (CSP) (also constraint network) consists of

—a finite set Var of variables;
—a finite domain U of values;
—a set of constraints � � {C1, C2, . . . , Cq}.

Each constraint Ci is a pair (Si, ri), where Si is a list of variables of length mi

called the constraint scope, and ri is an mi-ary relation over U, called the
constraint relation. (The tuples of ri indicate the allowed combinations of
simultaneous values for the variables Si).

A solution to a CSP instance is a substitution �: Var 3 U such that, for each
1 � i � q, Si� � ri. The decision problem constraint satisfiability (CS) is then
defined as follows:

Name: CS (constraint satisfiability).

Instance: CSP instance I � (Var, U , �) as described.

Question: Does I have a solution?

Associated Hypergraph: H � (V , E), where V � Var, and E � {var(S) �C � (S , r) �
�}, where var(S) denotes the set of variables in list S of constraint C .

From this definition, it is obvious that the problem CS is just a syntactic variant
of BCQ. In particular, the acyclic version ACS of CS is polynomially solvable.
This is well known, and, more generally, the connection between CSPs in the AI
setting and database theory has been well acknowledged in the literature (see,
e.g., Gyssens et al. [1994], Kolaitis and Vardi [2000], and Pearson and Jeavons
[1997], where the polynomiality result is extended to generalizations of the
acyclic case.). For the complexity of ACS, we (trivially) have the following:

THEOREM 5.6. ACS is complete for LOGCFL.
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We have thus shown in this section that four interesting decision problems are
complete for LOGCFL. This means that all these problems are highly paralleliz-
able as they are contained in AC1 and in NC2. It is thus easy to design logtime
CRCW PRAM algorithms using a polynomial number of processors, or log2-time
EREW PRAM algorithms with a polynomial number of processors solving these
problems.

To the best of our knowledge, nobody had previously determined the exact
complexity of any of these four problems. Actually, for ACQOT, ACQ-CON-
TAINMENT, and ASUBS, even membership in NC was unknown. NC algo-
rithms for restricted versions of CS have been presented by Kasif and Delcher
[1994] and by Zhang and Mackworth [1993], and will be discussed in Section 7.

6. Tractable Cyclic Queries

As explained in Section 1.2, many relevant cyclic queries are—in a precise
sense— close to acyclic queries because they can be decomposed via low-
bandwidth decompositions into acyclic queries.

The main classes of bounded-width queries considered in database theory and
in artificial intelligence are the following:

—Queries of bounded treewidth. Treewidth is the best-known graph-theoretic
measure of tree-similarity. The concept of treewidth is based on the notion of
tree-decomposition of a graph defined below in this section. The concept of
treewidth is easily generalized to hypergraphs and thus to conjunctive queries.
Conjunctive queries of bounded treewidth can be answered in polynomial time
[Chekuri and Rajaraman 2000]. For each fixed k, deciding whether a query has
treewidth k is in LOGCFL [Wanke 1994].

—Queries of bounded degree of cyclicity. This concept was introduced by Gyssens
et al. [1994] and Gyssens and Paredaens [1984] and is based on the notion of
hinge-tree decomposition. The smaller the degree of cyclicity of a hypergraph,
the more the hypergraph resembles an acyclic hypergraph. Queries of bounded
degree of cyclicity can be recognized and processed in polynomial time
[Gyssens et al. 1994].

—Queries of bounded query-width. This notion is based on the concept of query
decomposition [Chekuri and Rajaraman 2000]. Any tree-decomposition of
width k, as well as any hinge-tree decomposition of width k, is also a
query-decomposition of width k, but not vice-versa. Thus, query decomposi-
tions are the most general (i.e., most liberal) decompositions. It follows from
results in Chekuri and Rajaraman [2000] that queries of bounded query-width
can be answered in polynomial time, once a query-decomposition is given.

In this section, we extend our LOGCFL-completeness result for JTREE to the
above bounded-width classes. We thus show that answering queries that are given
together with a tree-decomposition, or with a hinge-tree decomposition or with a
query-decomposition of bounded width, is LOGCFL-complete.

For queries of bounded treewidth, we are able to state an even stronger result
(generalizing ABCQ rather than JTREE): answering queries of bounded tree-
width is LOGCFL-complete, even if a tree-decomposition is not given together
with the query. This stronger result relies on the recent results that, for fixed k,
recognizing graphs of bounded treewidth is in LOGCFL [Wanke 1994], and
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computing a tree-decomposition of width k is feasible by a logspace procedure
with an oracle in LOGCFL [Gottlob et al. 2000a].

All complexity results in this section are formulated for the evaluation problem
of Boolean conjunctive queries. However, all these results clearly carry over to
the corresponding versions of all problems described in Section 5, given that
those problems are all logspace-equivalent to BCQ under preservation of the
associated hypergraph.

For technical reasons, we will first consider bounded query-width (Section 6.1),
then bounded treewidth (Section 6.2), and finally bounded degree of cyclicity
(Section 6.3).

6.1. BOUNDED QUERY-WIDTH. The notion of query-width has been proposed
in Chekuri and Rajaraman [2000] to single out large classes of tractable instances
of the conjunctive query containment problem. As CQ-CONTAINMENT con-
tainment is strictly related to BCQ (see Section 5), the notion of query-width
turns out to be a useful tool also to single out tractable classes of conjunctive
queries.

The following definition is a slight modification of the original definition given
in Chekuri and Rajaraman [2000].

Definition 6.1. A query decomposition of a conjunctive query Q is a pair
�T, ��, where T � (N, E) is a tree, and � is a labeling function which associates
to each vertex p � N a set �( p) � (atoms(Q) � var(Q)), such that the
following conditions are satisfied:

(1) for each atom A of Q, there exists p � N such that A � �( p);
(2) for each atom A of Q, the set { p � N �A � �( p)} induces a (connected)

subtree of T;
(3) for each variable Y � var(Q), the set

� p � N �Y � �� p�� � � p � N �Y occurs in some atom A � ��p��

induces a (connected) subtree of T.
The width of the query decomposition �T, �� is maxp�N��( p) �. The query-

width qw(Q) of Q is the minimum width over all its query decompositions. A
query decomposition for Q is pure if, for each vertex p � N, �( p) � atoms(Q).

Example 6.2. Figure 9 shows a 2-width query decomposition for the cyclic
query of Example 1.1. Since the query-width of any cyclic query is strictly greater
than one, it follows that the query-width of Q1 is two. Note that this query
decomposition is not pure, because the label of the topmost vertex is {r(E, M),
P} and contains also the variable P.

Consider the following query Q4:

FIG. 9. A 2-width decomposition of Q1.
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ans 4 s�Y, Z, U� � g�X, Y� � t�Z, X� � s�Z, W, X� � t�Y, Z�.

The query Q4 is cyclic, since its hypergraph H(Q4) (Figure 10(a)) is cyclic. Thus,
qw(Q4) � 1 holds. Moreover, a 2-width decomposition of Q4 is shown in Figure
10(b), whence the query-width of Q4 is two. Note that the decomposition of
Figure 10(b) is not pure; a pure 2-width decomposition of Q4 is shown in Figure
11.

The notion of bounded query-width generalizes the notion of acyclicity
[Chekuri and Rajaraman 2000]. Indeed, acyclic queries are exactly the conjunc-
tive queries of query-width 1, because any join tree is a (pure) query decompo-
sition of width 1.

The next lemma shows that we can focus our attention on pure query
decompositions.

LEMMA 6.3. Let Q be a conjunctive query and �T, �� a c-width query decompo-
sition of Q. Then,

(1) there exists a pure c-width query decomposition �T, ��� of Q;
(2) �T, ��� is logspace-computable from �T, ��.

PROOF

(1) Let Q be a conjunctive query and �T, ��, with T � (N, E), a query
decomposition of Q of width c. If �T, �� is a pure query decomposition of Q,
then we are done. Otherwise, there exists a variable Z � var(Q) and a vertex p�
� N such that Z � �( p� ). We next show how � can be modified to eliminate one
occurrence of Z from the labels. By iterating this process, all occurrences of Z
can be eliminated, and the occurrences of other variables can be eliminated
similarly, obtaining a pure query decomposition. Since the variable Z belongs to
var(Q), it occurs in some atom C � atoms(Q). Moreover, by definition of query
decomposition, C � �( p̂) for some p̂ � N, and the set

� p � N �Z � �� p�� � � p � N �Z is an argument of some atom A � ��p��

induces a (connected) subtree of T. Since both sets above are nonempty, it
follows that there exists a pair of adjacent vertices p� and p� of T such that Z
occurs in some atom, say B, belonging to �( p�) and Z � �( p�). Define a new
labeling function �� for T as follows:

—��( p) � �( p) for any vertex p 
 p�;

FIG. 10. (a) Hypergraph H(Q4), and (b) a 2-width decomposition of Q4.
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—��( p�) � (�( p�) � {Z}) � {B}.

We claim that �T, ��� is a c-width query decomposition of Q. First we prove
that �T, ��� satisfies the three conditions of Definition 6.1. Condition 1 is
satisfied because, for each vertex p, the set of atoms in �( p) is a subset of ��( p).
Condition 2 is satisfied because the atom B, added to the label of p�, occurs in
the label of vertex p� which is adjacent to p�, and p� is (possibly transitively)
connected to all other vertices whose labels contain B. A similar argument shows
that the addition of B to the label of p� does not violate Condition 3. Indeed, the
variable Z occurs also in B (thus, nothing changes with respect to Z), and all
other variables of B (that might not appear in �( p�)) appear in the label of a
vertex adjacent to p�, namely, they are arguments of atom B � ��( p�). Finally,
observe that ��( p�) has the same cardinality as �( p�). Thus, �T, ��� is a c-width
query decomposition of Q. Consequently, by suitably iterating this process, we
eventually obtain a pure c-width query decomposition of Q.

(2) It is easy to see that the procedure described above can be modified to be
feasible on a logspace machine. Roughly, for each vertex p of T, we replace each
variable Z � �( p) by the atom Bp, z defined as follows. Let p� be the
lexicographically first vertex of T such that: (a) Z occurs in some atom A �
�( p�), and (b) for any vertex p� in the (unique) path from p to p� in T, �( p�)
does not contain any atom having Z as an argument. Then, Bp, z is the
lexicographically first atom of �( p�) containing Z. Since T is a tree, and the visit
of a tree is feasible in logspace [Cook and McKenzie 1987], it is easy to see that,
for any vertex p and variable Z � �( p), Bp, z is logspace-computable. Thus,
the overall construction of the pure query decomposition of Q is feasible in
logspace. e

For the sake of illustration, observe that the pure 2-width decomposition of Q4
shown in Figure 11 can be obtained from the 2-width decomposition in Figure
10(b) by applying the elimination step in the algorithm in the proof of Lemma
6.3 once, to the root and its right child.

Intuitively, a query having a small query-width, possibly bounded by some fixed
constant, can be answered efficiently. Let us define the bounded query-width
decomposition problem.

BCQk
qd. Given a database db, a Boolean conjunctive query Q, and a query

decomposition of Q of width bounded by a fixed constant k � 0, decide
whether Q evaluates to true on db.

THEOREM 6.4. BCQk
qd is LOGCFL-complete, for any k � 0.

FIG. 11. A pure 2-width decomposition of Q4.
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PROOF

Hardness. JTREE trivially reduces to BCQk
qd, because any join tree is a

1-width query decomposition. Thus, hardness of BCQk
qd for LOGCFL follows

from Theorem 4.8.

Membership. Let Q be a Boolean conjunctive query over a database db, and
QD a c-width query decomposition of Q, where c � k. Using QD, we compute
a pure c-width query decomposition �T, �� of Q. By virtue of Lemma 6.3, this
task is feasible in logspace. Without loss of generality, we assume that any atom
of Q is constant-free and does not contain any pair of duplicate variables (it is
easy to see that any instance of BCQk

qd can be logspace-transformed into an
equivalent instance (Q� , db, �T� , �� �) where Q� fulfills these properties).

We reduce (Q, db, �T, ��) to an instance (Q�, JT, db�) of JTREE such that
Q(db) � Q�(db�). For each vertex V of T, there is exactly one vertex V� in JT,
and one relation v� in db�. V� is an atom with a new predicate symbol, such that
the variables appearing as arguments in V� are exactly all variables appearing in
the atoms of �(V). The corresponding relation v� is the result of the natural join
of the relations corresponding to the atoms in �(V). There is an edge from V� to
R� in JT if and only if there is an edge between the corresponding vertices V and
R in T. The query Q� is the conjunction of all vertices (atoms) of JT.

From the properties of query decompositions, it follows that JT is a join tree of
Q. Moreover, it is easy to see that Q(db) � Q�(db�). Indeed, on the one hand,
Q�(db�) is true if and only if the join of all relations associated to the vertices of
JT is not empty. On the other hand, Q(db) is true if and only if the join of all
relations associated to the labels of the vertices of T is not empty. Further, from
the properties of the join operators, the join of the relations associated to the
vertices of JT is equal to the join of the relations associated to the vertices of T.
Thus, Q(db) � Q�(db�).

The hardest task involved in the transformation from (Q, db, �T, ��) into (Q�,
JT, db�) is the natural join evaluation, which is needed to generate the relations
of the instance database db�. In particular, for each vertex V of T we perform the
natural join of all relations associated to the atoms in �(V). However, since the
number ��(V) � of relations at node V is bounded by the constant k, this join is
logspace-computable by Proposition 2.10.

Thus, BCQk
qd is reducible to JTREE, via the composition of a (constant)

number of logspace transformations. From Proposition 2.8, it follows that BCQk
qd

is logspace-reducible to JTREE, and its LOGCFL membership stems from
Theorem 4.3 and Proposition 2.9. e

Thus, if a query decomposition of width k is given for a query Q, the
complexity of answering Q is the same as for the acyclic case.

The problem if it can be decided in polynomial time whether a given query has
query-width � k (for a fixed constant k) was left open in Chekuri and Rajaraman
[2000]. A negative answer to this question was very recently given in Gottlob et
al. [2000b], where it is shown that, even for k � 4, the problem is NP-complete.
However, in Gottlob et al. [2000b], a more general notion of decomposition,
called hypertree decomposition (and the corresponding notion of hypertree width),
is introduced. Using the results of the present paper, it is shown in Gottlob et al.
[2000b] that (a) for each k, the class of queries with query-width bounded by k is
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properly contained in the class of queries whose hypertree-width is bounded by
k; (b) unlike query-width, bounded hypertree-width is recognizable in LOGCFL;
and (c) evaluating Boolean queries of bounded hypertree-width is LOGCFL-
complete.

6.2. BOUNDED TREEWIDTH. The incidence graph [Chekuri and Rajaraman
2000] GQ � (V, F) of query Q has a vertex for each variable and for each atom
of Q. There is an edge between a variable Y and an atom A whenever Y occurs in
A.

Definition 6.5 [Chekuri and Rajaraman 2000; Robertson and Seymour 1986a].
A tree decomposition of a graph G � (V, F) is a pair �T, ��, where T � (N, E)
is a tree, and � is a labeling function associating to each vertex p � N a set of
vertices �( p) � V, such that the following conditions are satisfied:

(1) for each vertex b of G, there exists p � N such that b � �( p);
(2) for each edge {b, d} � F, there exists p � N such that {b, d} � �( p);
(3) for each vertex b of G, the set { p � N �b � �( p)} induces a (connected)

subtree of T.

The width of the tree decomposition is maxp�N��( p) � � 1. The treewidth of G
is the minimum width over all its tree decompositions. The treewidth tw(Q) of a
conjunctive query Q is the treewidth of its incidence graph.

From the following well-known fact, it follows that bounded treewidth is a
generalization of graph acyclicity.

PROPOSITION 6.6 [ROBERTSON AND SEYMOUR 1986B]. A graph is acyclic iff its
treewidth is 1.

Example 6.7. The incidence graph of query Q1 of Example 1.1 is shown in
Figure 12(a). The treewidth of Q1 is two, and a tree decomposition of width two
of the incidence graph of Q1 is shown in Figure 12(b).

LEMMA 6.8 [CHEKURI AND RAJARAMAN 2000]. Every tree decomposition of
width k of the incidence graph GQ of a query Q is also a query decomposition of
width k  1 of Q.

FIG. 12. (a) Incidence graph GQ1
of the query Q1, and (b) a tree decomposition of width 2 of GQ1

.
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In fact, for a conjunctive query Q, Chekuri and Rajaraman [2000] proved the
following relationship between the treewidth of Q and the query-width of Q.

PROPOSITION 6.9 [CHEKURI AND RAJARAMAN 2000]. For any conjunctive query
Q, tw(Q)/a � qw(Q) � tw(Q)  1, where a is the maximum predicate arity in Q.

In analogy to BCQk
qd, we define the problem BCQk

td as follows:

BCQk
td. Given a database db, a Boolean conjunctive query Q, and a tree

decomposition of GQ of width � k, decide whether Q evaluates to true on db.

It is not surprising that BCQk
td has exactly the same complexity as BCQk

qd.

THEOREM 6.10. For each k � 0, BCQk
td is LOGCFL-complete.

PROOF. By Theorem 6.4 and Lemma 6.8, it immediately follows that BCQk
td is

in LOGCFL.
To see LOGCFL-hardness, reconsider the ABCQ instances �Q, db� con-

structed in the proof of Theorem 4.8. The incidence graph GQ of each such
instance �Q, db� is a tree and thus acyclic. This is illustrated in Figure 13, which
depicts the incidence graph of query Q4 whose corresponding hypergraph was
shown in Figure 8. Since GQ is acyclic, by Proposition 6.6, Q has treewidth 1.
Note that GQ is logspace constructible from Q. In fact, the list of vertices of GQ

is obtained by copying all atoms and all variables of Q to the output; the list of
edges of GQ is obtained by cycling over all atoms A of Q and outputting an edge
{A, X} for each variable X occurring in A. As discussed in Section 2.5, this can
be done in logspace. A simple width 1 tree decomposition �T, �� of Q can be
generated in logspace from the acyclic graph GQ as follows:

(1) For each vertex a of GQ create a vertex va of T and let �(va) :� {a}.
(2) For each edge {a, b} of GQ, create a vertex v{a,b}, let �(v{a,b}) :� {a, b},

and connect v{a,b} by an edge to va and vb in T.

Given that GQ is a tree, also T is a tree (T was obtained from GQ by renaming
vertices and by subdividing each edge with a new vertex). By construction, �T, ��
satisfies conditions (1) and (2) of Definition 6.5. Moreover, by construction of T,

FIG. 13. Incidence graph of query Q4.
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every vertex a of GQ appears in �T, �� just in the label �(va) of va and in the
labels of vertices v{a,b} that are connected to va. Hence, condition (3) of
Definition 6.5 (i.e., the connectedness condition) holds, too. Given that each
label of a vertex of T is a set of at most two elements, �T, �� is a width 1 tree
decomposition of GQ.

In summary, in the proof of Theorem 4.8, we have transformed (in logspace)
instances of the LOGCFL-complete uniform SAC1 circuit evaluation problem
into specific instances (Q, db) of the ABCQ problem. Here we have shown that
the latter can be in turn transformed in logspace into instances (Q, db, �T, ��)
of BCQ1

td. By Proposition 2.8, it follows that a LOGCFL-complete problem can
be transformed in logspace into the problem BCQ1

td. Hence BCQ1
td is LOGCFL-

hard. By the definition of BCQk
td, every instance of BCQ1

td is also an instance of
BCQk

td for k � 1. Therefore, for each k � 1, BCQk
td is LOGCFL-hard. e

Wanke [1994] has shown that, for a fixed constant k, checking whether a graph
has treewidth k is in LOGCFL. By proving some general complexity-theoretic
results and by using Wanke’s result, the following was shown in Gottlob et al.
[2000a]:

PROPOSITION 6.11 [GOTTLOB ET AL. 2000A]. For each constant k, there exists
an LLOGCFL transducer Tk that behaves as follows on input G. If G is a graph of
treewidth � k, then Tk outputs a tree-decomposition of width � k of G. Otherwise,
Tk halts with empty output.

From this result, it follows that Boolean conjunctive queries of constant
treewidth can be answered in LOGCFL even in case a tree-decomposition is not
given. Before stating this as a theorem, let us define the relevant decision
problem BCQk

tw precisely.

BCQk
tw. Given a database db and a Boolean conjunctive query Q with tw(Q) �

k, decide whether Q evaluates to true over db.

THEOREM 6.12. BCQk
tw is complete for LOGCFL, for any k � 0.

PROOF. Hardness follows from the fact that BCQk
td is already LOGCFL-hard.

We show membership. By Proposition 6.11, there exists an LLOGCFL transducer T
transforming each BCQk

tw instance Q into an instance �Q, �� of BCQk
td, where �

is a tree-decomposition of Q of width at most k. Thus, BCQk
tw is LLOGCFL-

reducible to BCQk
td, which is in LOGCFL, that is, BCQk

tw � LLOGCFL(LOGCFL).
From Lemma 2.4, it follows that BCQk

tw is in LOGCFL. e

6.3. BOUNDED DEGREE OF CYCLICITY. Closely related to the concepts of
treewidth and query-width is the notion of degree of cyclicity of hypergraphs
[Gyssens 1986; Gyssens et al. 1994; Gyssens and Paredaens 1984].

Let (V, E) be a hypergraph, let H � E, and let F � E � H. F is called
connected with respect to H if, for any two edges e, f � F, there exists a sequence
e1, . . . , en of edges in F such that (i) e1 � e; (ii) for i � 1, . . . , n � 1, ei �
ei1 is not contained in �h�H h; and (iii) en � f [Gyssens et al. 1994]. The
maximal connected subsets of E � H with respect to H are called the connected
components of E � H with respect to H . It is easy to see that the connected
components of E � H with respect to H form a partition of E � H. Moreover,
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a hypergraph is called reduced if none of its edges is properly contained in any
other.

Definition 6.13 [Gyssens et al. 1994; Gyssens and Paredaens 1984]. Let (V, E)
be a reduced and connected hypergraph and let H be either E or a proper subset
of E containing at least two edges. Let H1, . . . , Hm be the connected
components of E � H with respect to H. Then, H is called a hinge if, for i �
1, . . . , m, there exists an edge hi � H such that

� �
h�Hi

h� � � �
h�H

h� � hi .

A hinge is minimal if it does not contain any other hinge.

Example 6.14. Consider the following query Q5 taken from Gyssens et al.
[1994].

ans 4 s1�X0 , X1 , X3� ∧ s2�X1 , X2 , X3� ∧ s3�X1 , X4� ∧ s4�X3 , X6� ∧ s5�X4 , X5 , X6�

∧ s6�X4 , X7� ∧ s7�X5 , X8� ∧ s8�X6 , X9�.

The hypergraph H(Q5) is cyclic as shown in Figure 14. The minimal hinges of
H(Q5) are {s1, s2}, {s1, s3, s4, s5}, {s2, s3, s4, s5}, {s5, s6}, {s5, s7}, {s5, s8},
{s3, s6}, and {s4, s8}. (Since the query atoms have distinct predicate symbols,
the hyperedge corresponding to an atom is denoted by its predicate symbol.)

The hypergraph H(Q1) of the query Q1 of Example 1.1 has a unique minimal
hinge {r, w, m}.

Definition 6.15 [Gyssens et al. 1994]. Let (V, E) be a hypergraph. A hinge-tree
of (V, E) is a tree T such that

(1) the vertices of T are minimal hinges of (V, E);
(2) each edge in E is contained in at least one vertex of T;
(3) two adjacent vertices A and B of T share precisely one edge � of E;

moreover, � consists exactly of the elements shared by A and B (i.e., � �
(�h�A h) � (�h�B h));

(4) for each pair of vertices A and B of T, A � B is contained within each vertex
on the path connecting A and B in T.

The size (i.e., the cardinality) of the largest vertex of T is called the degree of
cyclicity of (V, E).

FIG. 14. (a) Hypergraph H(Q5), and (b) a hinge-tree decomposition of Q5.
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Observe that the notion of degree of cyclicity is well defined. Indeed, as shown
in Gyssens [1986], each hypergraph (V, E) has at least one hinge-tree, and the
size of the largest vertex in any hinge-tree of (V, E) is a fixed parameter of the
hypergraph (V, E), that is, it is independent of the particular hinge-tree chosen.
As bounded query-width, also the notion of bounded degree of cyclicity general-
izes acyclicity. Indeed, the acyclic hypergraphs are precisely the hypergraphs with
degree of cyclicity at most 2 [Gyssens 1986].

A hinge-tree of the hypergraph H(Q) of a conjunctive query Q is called a
hinge-tree decomposition of Q. The degree of cyclicity of Q, as well as a
hinge-tree decomposition of Q, can be computed in polynomial time [Gyssens
1986].

Example 6.16. The hypergraph H(Q1) of the query Q1 of Example 1.1 has
only one hinge-tree consisting of the single vertex {r, w, m}; the degree of
cyclicity of H(Q1) is three.

Figure 14(b) shows a hinge-tree T5 of the hypergraph H(Q5) of the query Q5
in Example 6.14. The degree of cyclicity of H(Q5) is four, because the largest
vertex {s2, s3, s4, s5} of T5 has cardinality four.

We next define the bounded hinge-tree decomposition problem. Without loss of
generality, in the sequel of the section, we assume that any conjunctive query Q
does not contain any pair of atoms A and B such that var( A) � var(B). This
assumption implies also that the hypergraph H(Q) of Q is reduced.

BCQk
hd. Given a database db, a Boolean conjunctive query Q, and a hinge-tree

decomposition of Q having degree of cyclicity no more than a fixed constant
k � 1, decide whether Q evaluates to true on db.

LEMMA 6.17. Let Q be a conjunctive query such that H(Q) has degree of
cyclicity c, and let HD be a hinge-tree decomposition of Q. Then,

(1) there exists a c-width query decomposition QD of Q;
(2) QD is logspace-computable from Q and HD .

PROOF. Let HD be a hinge-tree decomposition of the conjunctive query Q,
and let c be the cardinality of the largest hinge of HD . Define the query
decomposition QD � �T, �� as follows. For each vertex H of HD, there is
exactly one vertex pH in the tree T. There is an edge from pH� to pH� in T if and
only if there is an edge between the corresponding vertices H� and H� in HD.
The label of the vertex pH of QD corresponding to the vertex H of HD is

�� pH� � �A � atoms�Q��var�A� � H�.

It is easy to see that QD satisfies Conditions (1)–(3) of Definition 6.1. Indeed,
Condition (2) and Condition (4) of Definition 6.15 of hinge-tree entail Condition
(1) and Condition (3) of Definition 6.1, respectively. Condition (2) of Definition
6.1 follows from Condition (3) and Condition (4) of Definition 6.15 (recall that
Q does not contain any pair of atoms A and B such that var( A) � var(B), by
assumption). Since the cardinality of the label �( pH) of a vertex pH of QD is
equal to the cardinality of the corresponding hinge H of HD, we have that QD is
a c-width query decomposition of Q. Moreover, QD is evidently logspace-
computable from Q and HD. e
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Note that, by virtue of Lemma 6.17, the query-width of a conjunctive query Q
is less than or equal to the degree of cyclicity of H(Q). In fact, for both queries
considered in Example 6.16, the degree of cyclicity is strictly greater than the
query-width.

THEOREM 6.18. For each k � 1, BCQk
hd is LOGCFL-complete.

PROOF. Membership follows from Lemma 6.17 and Theorem 6.4.
We next reduce JTREE to BCQk

hd, with k � 2. Let (Q, JT, db) be an instance
of JTREE. Without loss of generality, we assume that �atoms(Q) � � 2. We
compute a hinge-tree decomposition T � (V, E) of the hypergraph H(Q) as
follows:

—Initially, for each vertex A of JT, V contains a vertex vA � {var( A)};
moreover, for each pair of adjacent vertices A, A� of JT, the corresponding
vertices vA, vA� � V are adjacent in T, that is, {vA, vA�} � E.

—Then, T is rooted at any arbitrary vertex r. For each nonroot vertex v � V, v
is replaced by v � parent(v), where parent(v) denotes the parent of v in (the
rooted tree) T.

—Finally, let c1, . . . , cn (n � 1) be the children of the root r, and let l1, . . . ,
lm (m � 0) be the children of c1 in T. The root r is replaced by c1, and the
children of c1 become c2, . . . , cn, l1, . . . , lm.

Each of the three steps above can be performed by a logspace machine, and thus
the entire construction is in logspace, by Proposition 2.8. Moreover, it is easy to
see that the resulting tree T is a hinge-tree decomposition of H(Q), and that
each vertex of T has cardinality 2. (In fact, the degree of cyclicity of H(Q) is 2, as
it is an acyclic hypergraph with more than one hyperedge.) Thus, JTREE is
logspace-reducible to BCQ2

hd. From Theorem 4.8, it follows that BCQ2
hd is

LOGCFL-hard. e

7. Parallel Database Algorithms

Database applications involving huge amounts of data and complex queries that
may contain large numbers of join operations between relations strongly moti-
vate research on parallel algorithms for query evaluation.8

Theorem 4.3, demonstrating membership of ABCQ in LOGCFL, implicitly
proves that the evaluation of acyclic queries can be profitably parallelized, that
is, an exponential speed-up can be achieved on a parallel machine (with a
polynomial number of processors). Indeed, by the result of Ruzzo [1980],
LOGCFL is included in AC1—the set of languages recognizable in logarithmic
time on a CRCW parallel machine using a polynomial number of processors.
Thus, our LOGCFL algorithm of Theorem 4.3, coupled with Ruzzo’s parallel
simulation of LOGCFL, yields an AC1 method to solve ABCQ (and JTREE).
However, this method would prove unsuitable in database contexts, where
relational operations such as selection, projection, and join are used as atomic
operations.

8 See, for example, DeWitt and Gray [1992], Hasan et al. [1996], Hong and Stonebreaker [1993],
Lakshmi and Yu [1990], and Wilschut et al. [1995].
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In this section, we present two parallel database algorithms directly designed
for a parallel database machine model, where join is considered a machine
primitive. Our algorithms exploit inter-operation parallelism, that is, processing
different primitive operations in parallel, minimizing the length of the sequence
of parallel joins (while keeping the size of intermediate relations small). Note
that the exploitation of inter-operation parallelism has been recognized as a
relevant feature for parallel databases, and its importance has been confirmed
also by concrete experiments [Wilschut et al. 1995]. Intra-operation parallelism,
that is, the parallel execution of a single primitive operation (e.g., join), is
orthogonal and can be added easily to our model by parallelizing single join
executions.

In the following, we first provide a parallel algorithm for deciding JTREE.
Then, we show how to extend such an algorithm to compute the answer to a
non-Boolean conjunctive acyclic query. The latter algorithm works particularly
well for bounded-projection queries, that is, conjunctive queries where the arity of
the output atom ans is bounded by some fixed constant k.

The complexity of the proposed algorithms is analyzed on a parallel database
machine model well-suited for the evaluation of inter-query parallelism. We
consider a shared-memory parallel EREW (exclusive read exclusive write)
DB-machine, where relational algebra operations are machine primitives. In one
parallel step of the DB-machine, each machine’s processor can perform a
constant number of relational algebra operations on the database relations at
hand. Transformations of query atoms, join trees, and schemas are considered
cost-free provided that they are feasible in polynomial time.9 The latter assump-
tion is made to focus on database operations (polynomial time schema transfor-
mations are considered negligible compared to database operations).

The efficiency of a computation of the DB-machine will be measured accord-
ing to the following cost parameters:

(a) the number of parallel steps;
(b) the number of relational processors employed in each step, that is, proces-

sors able to perform operations of relational algebra and related operations
such as relational assignment statements (e.g., r :� s, where r and s are
relation variables);

(c) the size of the working database.

On the parallel database machine, the algorithms we provide here run in
logarithmic time, employ a linear number of relational processors, and keep
small the size of the working database during the entire computation (in
particular, the DB-SHUNT algorithm runs always in polynomial space, while the
ACQ algorithm guarantees polynomial space consumption if the number of
output attributes is bounded by a constant).

Note that besides the acyclic query Q and the database instance db, our
algorithms take as an additional input a join tree for Q. This is motivated by the
following main reasons.

9 Note that all nondatabase transformations performed in the algorithms proposed in this section are
actually in logspace.
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—The structure of the join-tree is exploited by the tree-contraction mechanisms
of our algorithms.

—A join tree of an acyclic query can be computed very efficiently (see Theorem
3.6), and its computational cost is negligible in a database context (it is
independent of the database size).

—The algorithms can be generalized easily to solve also cyclic conjunctive
queries having a bounded query-width, once a suitable decomposition of the
query is provided. (We briefly discuss this issue at the end of Section 7.2.)

—Suitable optimization techniques, taking into account different critical factors
(like, e.g., the overall cost of computing joins), can be utilized to select the
most appropriate join tree.

At the end of the section, we will compare our algorithms to other parallel
algorithms (in the constraint-satisfaction area) that solve similar problems.

7.1. NF QUERY INSTANCES. Recall that a conjunctive query Q on a database
schema DS � {R1, . . . , Rm} consists of a rule of the form

Q: ans�u� 4 r1�u1� ∧ · · · ∧ rn�un�,

where n � 0, r1, . . . , rn are relation names (not necessarily distinct) of DS; ans
is a relation name not in DS; and u, u1, . . . , un are lists of terms (i.e., variables
or constants) of appropriate length. Throughout this section, we assume without
loss of generality that u is a list of distinct variables and Q is a connected query,
that is, its hypergraph H(Q) is connected.

The algorithms proposed in this section take a triple (Q, JT, db) as the input,
where JT is a join tree for the (acyclic) query Q on the database db. (We will
omit the explicit specification of the database schema DS, which will be
implicitly understood.) We next define a normal form for these (acyclic) query
instances, and we show that it can be achieved efficiently.

Let � � (Q, JT, db) be an acyclic query instance (i.e., JT is a join-tree of an
acyclic conjunctive query Q on db). We say that � is in normal form (NF) if the
following conditions are satisfied:

(a) the join tree JT of Q is strictly binary, that is, every non-leaf vertex has
exactly two children;

(b) every atom occurring in Q is constant-free and does not contain any pair of
variables with the same name;

(c) any pair of atoms in Q has distinct predicates.

LEMMA 7.1. For every acyclic query instance � � (Q, JT, db), there exists an
instance �� � (Q�, JT�, db�) in normal form such that

(1) � and �� are equivalent, and
(2) �� is logspace-computable from �.

PROOF. Let � � (Q, JT, db) be an acyclic query instance. Possible constants
or duplicate variables appearing in the same atom P � p(u) of Q are eliminated
by performing suitable selections and projections on the corresponding relation
p; the resulting relation takes a new name (and the predicate of P also), if
another atom with predicate p appears in the query.
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The main point in computing an equivalent NF version �� of � is the
“binarization” of JT (property (a)). To this end, we replace each vertex P having
k � 2 children {S1, . . . , Sk} in JT by k � 1 copies {P1, . . . , Pk�1} of P (see
Figure 15); the left child and the right child of Pi are Si and Pi1, respectively
(for any 1 � i � k � 1); the left child and the right child of Pk�1 are Sk�1 and
Sk, respectively. If a vertex P has a single child in JT, then a copy of P is added
as its second child, thus obtaining a strictly binary tree. The body of the query Q�
is the conjunction of the vertices of JT� (i.e., ATOMS(Q�) coincides with the set
of vertices of JT�). Condition (c) is enforced by trivial atom renaming (in both
Q� and JT�) and relation duplication.

It is easy to see that the entire process can be performed by a logspace
machine. e

7.2. SOLVING JTREE IN PARALLEL. In this section, we propose a parallel
algorithm for deciding JTREE. An instance of JTREE is an acyclic query
instance � � (Q, JT, db) where the query Q is Boolean (it has no head atom).
Given an instance � � (Q, JT, db) of JTREE, our algorithm first computes (in
logspace) its equivalent NF version �� � (Q�, JT�, db�). The instance �� is then
transformed into a new data structure, called e-join tree (extended join tree), which
is well suited for parallel execution. A vertex p of an e-join tree T is a pair
�RelT( p), SchT( p)�, where SchT( p) is a relation schema, and RelT( p) is a
relation instance over SchT( p); the attributes of SchT( p) are named and
partitioned in two distinguished sets RT( p) and IT( p). The e-join tree ET(��)
of �� has exactly the same tree shape as JT� (i.e., it is isomorphic to JT� under a
renaming of the vertices). For each vertex (atom) P � r(u) of JT�, the schema
and the relation of the corresponding vertex p in ET(��) are defined as follows:

Schema: IET(��)( p) is empty, and RET(��)( p) is the set of all attributes of the schema of
r; each attribute of p keeps the name of the corresponding variable of r(u).10

Relation: RelET(��)( p) contains precisely the tuples of relation r of db� (i.e.,
RelET(��)( p) � r).

Thus, compared to its corresponding vertex r(u) of the join tree JT�, a vertex p
of ET(��) additionally stores the relation instance r associated with r(u).

LEMMA 7.2. Let � � (Q, JT, db) be an instance of JTREE in normal form, and
ET(�) be the corresponding e-join tree. Then, Q is true on db if and only if the
natural join of all relations stored in the vertices of ET(�) is not empty.

The proof of this lemma is straightforward, and thus omitted.

10 Note that, since �� is in normal form, the list u of terms of r(u) consists solely of distinct variables.

FIG. 15. “Binarization” of a k-ary vertex.
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Our parallel method for evaluating JTREE is based on a tree contraction
technique that closely resembles the method of Karp and Ramachandran [1990]
for the expression evaluation problem. The algorithm transforms an e-join tree in
stages in such a way that an n-vertices tree T is contracted into a 3-vertices one
in  log n � 1 stages. At each stage, a local operation, called shunt, is applied in
parallel to half of the leaves of T.

The main novelty of our method is the shunt operation, first defined here for
databases, that guarantees the correctness of the query result, while keeping the
size of intermediate relations small (quadratic).

Let l be a leaf of an e-join tree T, p the parent of l, s the other child of p, and
q the parent of p (see Figure 16). The shunt operation applied to l results in a
new contracted tree T� in which l and p are deleted, s is transformed (as
specified below) and takes the place of vertex p (i.e., it becomes child of q). The
transformed version of s in T� is defined as follows.

RT��s� � RT�s�.

IT��s� � �RT�q� � SchT�p�� 	 RT�s�.

RelT��s� � 	
SchT��s�

�RelT�l � ��RelT�p� ”“ RelT�s��.

where ”“ and 	� denote the natural join operator and the semi-join operator
[Ullman 1989], respectively.

Intuitively, as p is deleted, the join attributes of (the schemas of) p and q (i.e.,
SchT( p) � RT(q), since SchT( p) � IT(q) � � by construction, as proved in
Corollary 7.6) must be kept in the new e-join tree, in order to guarantee the
soundness of the result. To this end, the attributes of SchT( p) � RT(q) missing
in s are added to the schema of s (in IT�(s)). Thus, after the shunt, IT�(s) stores
the “witnesses” of the p-tuples joining to both s and l, that are relevant for the
join to q.

Our tree contraction algorithm for JTREE, named DB-SHUNT, is shown in
Figure 17. After the normalization of the input instance � and the computation
of the e-join tree T, the leaves of T are numbered from left to right, and the
while loop performs the tree contraction. At each iteration, the shunt operation
is applied to the odd-numbered leaves of T in a parallel fashion; to avoid
concurrent changes on the same vertex, left and right leaves are processed in two
distinct steps ((4a) and (4b), respectively). Observe that the shunt operation is
applied only to leaves of depth (distance from the root) greater than one. If a

FIG. 16. Shunt operation applied to leaf l.
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leaf becomes a child of the root, then it is “frozen” until the end of the while
loop (and its numbering is irrelevant from that point onward). The while loop
terminates when T is contracted to three vertices (i.e., it gets depth one). The
join of the relations stored in these three vertices is eventually computed to
check whether the query is true or not (Q is true if and only if the result of this
join is not empty).

Example 7.3. Consider the following query Q6 over the database shown in
Figure 18:

Q6 : ans 4 p1�X, Y� ∧ p2�X, Z, V� ∧ p3�X, Z� ∧ p4�Z, S� ∧ p5�Y, T, X�

∧ p6�X, Y, L� ∧ p7�T, W� ∧ p8�T, R� ∧ p9�W, O�.

Figure 19 shows the e-join tree T0, resulting after steps (1)–(3) of DB-SHUNT.
This figure shows also the relation schemas of the vertices of T0. For each pi

(1 � i � 9), the upper part of the circle labeled by pi contains the attributes in
IT0

( pi), while its lower part contains the attributes in RT0
( pi). The relation

instance RelT0
( pi) associated with a vertex pi of T0 is the input relation for pi

shown in Figure 18.
Step (4a) applies the shunt operation in parallel to vertices p3 and p6 (which

are the leaves numbered 1 and 3, respectively). This step contracts T0 into the
e-join tree T1

a depicted in Figure 20(a). Note that vertices p2, p3, p5, and p6 are
eliminated, p4 and p7 are changed, while all other vertices remain untouched.
Figure 21 shows the relations of vertices p4 and p7 resulting from the execution
of this step. Step (4b) performs a shunt operation on vertex p9, which eliminates
p7 and p9, yielding the e-join tree T1

b shown in Figure 20(b) and modifying the
relation of p8 as in Figure 22. Since T1

b has depth 1, the while loop exits. Step (5)
performs the join of the relations of p1, p4 and p8. Figure 23 shows the result of
this join. Since this result is non-empty, DB-SHUNT outputs “true.”

Before proving the correctness of DB-SHUNT, we state some structural
properties of the e-join trees.

FIG. 17. A parallel tree contraction algorithm for JTREE.
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LEMMA 7.4. Let T be the e-join tree computed at a given step of DB-SHUNT,
and q and q� be two vertices of T, such that q� is the parent of q. Then,

IT�q� � RT�q�� .

PROOF. We proceed by induction on the execution steps of DB-SHUNT.

Basis (Initialization of T). T is initialized by instruction (2) of DB-SHUNT,
where it is set to ET(��). At this step, IT(q) � RT(q�) trivially holds, because
IT(q) � � in ET(��).

Induction step. Let q� be the parent of q at the previous step of the algorithm.
If q� � q�, then neither q nor q� have been involved in any shunt operation at
the last step. Hence, they are unaltered and the statement holds by the induction
hypothesis. (Note that a vertex q changes its parent only if q is the sibling of a
leaf l on which a shunt is applied.) If q� 
 q�, then a shunt has been applied on

FIG. 18. Input database for query Q6 in Example 7.3.

FIG. 19. Initial e-join tree T0 for query Q6 in Example 7.3.
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the sibling of q at the last step; while q� has been left untouched. Therefore,
from the definition of shunt, it easily follows that IT(q) � RT(q�). e

Importantly, e-join trees have the following property, which is closely related
to Condition 2 of the definition of an ordinary join tree (see Section 2.3).

THEOREM 7.5. Let T be the e-join tree computed at a given step of DB-SHUNT,
and q1 and q2 be two vertices of T. For every vertex q on the (unique) path from q1
to q2 in T, the following properties hold.

(a) If X � RT(q1) � RT(q2), then X � RT(q).
(b) If X � SchT(q1) � SchT(q2), then X � SchT(q).

PROOF

(a) At the initial step, T � ET(��) satisfies property (a) because T is directly
obtained from the join tree JT� of the JTREE instance ��. To show that the
property is kept during the while iterations, we assume that an e-join tree T
satisfies property (a), and demonstrate that (a) holds on the e-join tree T�
obtained by the execution of step (4)(a) or step (4)(b) on T. Let X � RT�(q1) �

FIG. 20. (a) e-join tree T1
a, and (b) e-join tree T1

b in Example 7.3.

FIG. 21. Relations RelT1
a( p4) and RelT1

a( p7) in Example 7.3.

FIG. 22. Relation RelT1
b( p8) in Example 7.3.

FIG. 23. Join for Step (5) in Example 7.3.
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RT�(q2) be a common attribute of two vertices q1 and q2 of T�; moreover, let �
and �� be the path connecting q1 to q2 in T and T�, respectively, and q � ��.
Since the shunt operations neither add new vertices nor alter their relative order
(if p is an ancestor of p� in T�, then the same holds in T), each vertex occurring
in �� occurs in � as well. Thus, q � �. By hypothesis, we know that X � RT(q)
(because property (a) holds in T). Consequently, X � RT�(q), as RT( p) �
RT�( p) for each vertex p of T�.

(b) Let q1 and q2 be two vertices of T and X � SchT(q1) � SchT(q2).
Moreover, let q be a vertex on the path � from q1 to q2 in T. If X � RT(q1) �
RT(q2), then X � RT(q) by property (a), and (b) holds because SchT(q) �
RT(q). If X � IT(q1) � RT(q2), then, from Lemma 7.4, X � RT(q) where q is
the parent of q1 in T. Hence, from property (a) on the path from q to q2, we
derive that X � RT(q) � SchT(q). Similar proof arguments apply to the cases
X � RT(q1) � IT(q2) and X � IT(q1) � IT(q2). e

COROLLARY 7.6. Let T be the e-join tree computed at a given step of DB-
SHUNT, and s, p, and q be three vertices of T such that q is the parent of p and p is
an ancestor of s in T. Then, the following properties hold.

(a) RT(q) � SchT(s) � RT( p).
(b) IT(q) � SchT( p) � IT(q) � SchT(s) � �.

PROOF

(a) From the definition of SchT, by distributivity, we have that

RT�q� � SchT�s� � �RT�q� � RT�s�� � �RT�q� � IT�s��.

Let s� be the parent of s in T. From Lemma 7.4, IT(s) � RT(s�). Moreover, by
virtue of Theorem 7.5(a), we have both RT(q) � RT(s) � RT( p) and RT(q) �
RT(s�) � RT( p). Therefore,

RT�q� � SchT�s�

� �RT�q� � RT�s�� � �RT�q� � IT�s�� � RT�p� � �RT�q� � RT�s��� � RT�p�.

(b) If q is the root of T, then Item (b) trivially holds, because IT(q) � � (IT(q)
is initialized to the empty set and it is never modified during the execution of the
algorithm). Otherwise, we denote the parent of q in T by q�. By definition of
SchT( p), we have that

IT�q� � SchT�p� � IT�q� � �RT�p� � IT�p��

� �IT�q� � RT�p�� � �IT�q� � IT�p��.

From Lemma 7.4, we have IT( p) � RT(q). Therefore, IT(q) � IT( p) is
contained in IT(q) � RT(q), which is empty by definition of Shunt. Thus,

�IT�q� � RT�p�� � �IT�q� � IT�p�� � �IT�q� � RT�p�� � �IT�q� � RT�q��

� IT�q� � RT�p�.

By Lemma 7.4, IT(q) � RT(q�). Consequently,
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IT�q� � RT�p� � IT�q� � IT�q� � RT�p� � IT�q� � RT�q�� � RT�p�.

By Theorem 7.5(a), RT(q�) � RT( p) � RT(q). Hence,

IT�q� � RT�q�� � RT�p� � IT�q� � RT�q�.

As noted above, IT(q) � RT(q) is empty. Thus,

IT�q� � SchT�p� � �.

We prove now that also SchT(q) � SchT(s) is empty. By Theorem 7.5(b),
SchT(q) � SchT(s) � SchT( p). Therefore,

IT�q� � SchT�s� � IT�q� � SchT�q� � SchT�s� � IT�q� � SchT�p� � �. e

We are now in the position to prove the correctness of DB-SHUNT.

THEOREM 7.7. The Algorithm DB-SHUNT is correct.

PROOF. Given a vertex p of an e-join tree T, we denote by val( p, T) the
projection on SchT( p) of the join of all relations stored in the vertices of Tp—the
subtree of T rooted at p; moreover, val(T) denotes val(�, T), where � is the
root vertex of T.

Let (Q, JT, db) be the input to DB-SHUNT, and let T be the e-join tree
computed after step (1) and step (2) of the algorithm. By Lemma 7.1 and Lemma
7.2, it immediately follows that val(T) 
 � if and only if Q evaluates to true on
db. Thus, to prove the correctness of the DB-SHUNT algorithm, it is sufficient to
show that val(T) does not change during the while loop of the algorithm. (Note
that the root vertex of T remains unaltered during the computation; thus, the
schema of the relation val(T) is always the same.)

Let q be a vertex of T. If q is a nonleaf vertex, whose left child and right child
are p1 and p2, respectively, we define

l-in�q, T� � 	
RT�q�

val�p1 , T� and r-in�q, T� � 	
RT�q�

val�p2 , T�.

If q is a leaf vertex, then l-in(q, T) � U �RT(q) � � r-in(q, T), where U is the
universe of the database, and �RT(q) � is the arity of the schema RT(q).

Then, val(q, T) can be redefined in terms of l-in and r-in.

val�q, T� � l-in�q, T� ”“ RelT�q� ”“ r-in�q, T�. (1)

Indeed, from Corollary 7.6, RT(q) contains every attribute X of SchT(q) which
belongs to (the schema of) any other vertex in the subtree Tq. Consequently, the
projection on RT(q), appearing in the definition of l-in(q, T) and r-in(q, T),
does not cause any loss of information as far as the join to RelT(q) is concerned.

The following invariance property of l-in and r-in, whose formal proof is given
in Appendix B, will allow us to prove the theorem immediately.

CLAIM A. Let T� be the e-join tree resulting from the execution of either step
(4)(a) or step (4)(b) on an e-join tree T, and q be a vertex of T�. Then,

l-in�q, T�� � l-in�q, T� and r-in�q, T�� � r-in�q, T� .
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Observing that neither the schema nor the relation of the root vertex of T
change during the computation, the statement of the theorem follows immedi-
ately from Claim A and Eq. (1). e

We next evaluate the complexity of the DB-SHUNT algorithm with respect to
the parallel database model introduced above.

We first need to determine the size of the initial e-join tree. In the following,
for any data structure S, �S� denotes the size of S in terms of storage volume
(i.e., the number of bits needed for its encoding).

LEMMA 7.8. Given an instance � � (Q, JT, db) of JTREE, let �� � (Q�, JT�,
db�) be its NF version, and T � ET(��) be the e-join tree of ��. Then, the following
holds.

(1) —� JT�� � O(� JT�);
—�Q�� � O(�Q�);
—�db�� � O(�db� � �Q�);
—for each relation r in db�, �r� � d.

(2) —�T� � O(�db� � �Q�) � O(���2);
—for each relation r stored in T , �r� � d.

where d is the maximum size of the relations in db.

PROOF

(1) The “binarization” (see proof of Lemma 7.1) of JT may at most double the
number of vertices of the join tree. Thus, also the numbers of atoms in Q may be
doubled (at most). No further new atoms and vertices are needed; thus, � JT�� �
O(� JT�), and �Q�� � O(�Q�).

Relation duplication occurs if and only if two atoms with the same predicate
occur in the query. Thus, �db�� � O(�db� � �Q�). Each new relation in db� is
obtained by a select-project operation on a relation r of db, so that its size cannot
exceed �r�.

(2) The vertices of the e-join tree T of �� are exactly the relations in db� (with
negligible additional schema information). e

THEOREM 7.9. Let (Q, JT, db) be an instance of JTREE. By applying the
DB-SHUNT algorithm, (Q, JT, db) can be solved on a parallel DB-machine

(a) by a sequence of parallel steps of length O(log n);
(b) by using O(n) relational processors;
(c) involving O(n) joins in total;
(d) with O(n) intermediate relations, having size O(d2),

where n is the number of atoms in Q , and d is the size of the largest relation in db.

PROOF. First, observe that the number n� of vertices in the initial e-join tree
T � ET(��) is equal to the number of query atoms in the NF version �� of �,
which is O(n) by Lemma 7.8.

Instructions (1)–(3) of DB-SHUNT can be executed in O(log n) parallel steps
of the DB-machine by using O(n) relational processors. The most expensive
database operation involved in these instructions is relation-duplication (that can
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be needed in instruction (2); it is feasible in the specified bounds as follows. In
the worst case, we have to make n copies of the same relation. To this end, one
relational processor first makes one copy, the two available relations are then
given to two processors obtaining four copies, and so on. After (log n) � 1 steps,
we have 2log n � n copies by having used n/ 2 processors.

The while cycle (instruction (4)) is executed log((n�  1)/ 2) times, that is,
O(log n) times (recall that n� is the number of vertices in the initial e-join tree
T � ET(��)). Indeed, the number of leaves of T is (n�  1)/ 2, half of the
leaves are deleted after each iteration, and no new leaves are created. Each
single shunt operation involved in instruction (4)(a) or instruction (4)(b) of the
while loop can be executed in one step by one processor of the DB-machine (as
it involves a constant number of database operations). The processor in charge of
the shunt on leaf l works on l, on the sibling of l and on the parent of l, and
takes, as additional input, a copy of the schema of the grandparent of l. Thus, the
execution of (one of) instructions (4)(a) and (4)(b) of DB-SHUNT can be fully
parallelized on the DB-machine (no concurrency arises), and performed in one
(parallel) step. Consequently, one complete while iteration requires two steps, to
execute instruction (4)(a) and instruction (4)(b) in the specified order, and at
most (n�  1)/4 � O(n) relational processors of the DB-machine. One final
step of the DB-machine performs instruction (5). Hence, the entire execution of
DB-SHUNT requires O(log n) (parallel) steps of the DB-machine, where each
step employs O(n) relational processors.

The number of joins involved in the complete execution of the while loop is
exactly n� � 3, because each shunt operation performs two joins and eliminates
two vertices from the e-join tree (note that exactly (n� � 3)/ 2 shunt operations
are executed as, after the while loop, the tree contains exactly three vertices).
Thus, the total number of joins is O(n).

Concerning part (d) of the theorem, it is clear that the number of intermediate
relations is at most n� � O(n) (the number decreases during the while
execution).

To prove the size bound O(d2), we prove that, at each step of the while, for
any vertex s of the current e-join tree T, the following two conditions hold.

�g1� � 	
RT�s�

RelT�s�� � d; and �g2� � 	
IT�s�

RelT�s�� � d.

These conditions clearly entail �RelT(s)� � d2, since

RelT�s� � 	
RT�s�

RelT�s� � 	
IT�s�

RelT�s�,

where 	 denotes Cartesian product.

(g1). At the initial step, T is initially equal to ET(��), and ��RT(s) RelT(s)� � d by
Lemma 7.8.

During the computation, condition ( g1) holds, because RT(s) remains always the same
and the number of its tuples (which are kept in �RT(s) RelT(s)) is monotonically
decreasing (because of possible joins to other relations).

(g2). If s is the root of T , then property g2 trivially holds, as the root never changes
during the while loop (no shunt can be applied to the root or to its children). Suppose now
that s is not the root.
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CLAIM. Let q be the parent of s in T. Then,

� 	
RT(q)

RelT�s�� � d. (2)

PROOF OF CLAIM. (Recall that projection attributes that are not part of the
schema of the relation to be projected are irrelevant. Thus, �RT(q) RelT(s) �
�RT(q)�SchT(s) RelT(s).)

We proceed by induction on the execution steps.
The basis is trivial.

Induction step. Let T be the e-join tree obtained by the execution of step
(4)(a) or step (4)(b) on e-join tree T� which satisfies property (2). If q is the
parent of s already in T�, then property (2) holds by the induction hypothesis (as
s has been left untouched by the last execution step). Otherwise, let p and l be
the parent of s and the sibling of s in T�, respectively. s takes the place of p in T
because of a shunt operation applied on l (like in Figure 16). By definition of
shunt,

RelT�s� � 	
SchT�s�

RelT��l � ��RelT��p� ”“ RelT��s�.

Thus,

� 	
RT�q�

RelT�s�� � � 	
RT�q�

RelT��p� ”“ RelT��s��.

On the other hand, by Corollary 7.6, SchT�(s) � RT�(q) � RT�( p). Hence,
SchT�(s) � RT(q) � RT�( p), as RT(q) � RT�(q). It follows that SchT�(s) �
RT(q) � SchT�( p), as RT�( p) � SchT�( p). Thus, we obtain the following chain
of equations and inequations:

� 	
RT�q�

RelT��p� ”“ RelT��s�� � � 	
RT�q�

�RelT��p� ”“ 	
RT�q� � SchT��s�

RelT��s��� (3)

� 	
RT�q�

�RelT��p� ”“ 	
RT�q� � SchT��s�

RelT��s��� � � 	
RT�q�

�RelT��p� �� 	
RT�q� � SchT��s�

RelT��s���

(4)

� 	
RT�q�

�RelT��p� �� 	
RT�q� � SchT��s�

RelT��s��� � � 	
RT�q�

RelT��p�� (5)

� 	
RT�q�

RelT��p� ”“ RelT��s�� � � 	
RT�q�

RelT��p��. (6)

In particular, Inequations (3) and (5) follow from basic relational algebra laws.
Equation (4) holds because the schema of the right term of the join is a subset of
the schema of the left term of the join (above we pointed out that SchT�(s) �
RT(q) � SchT�( p)). Inequation (6) is obtained by the Inequations (3) and (5)
and by Eq. (4) by transitivity.
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Finally, from the induction hypothesis, we have

� 	
RT�q�

RelT��p�� � d.

By Lemma 7.4, IT(s) � RT(q). Thus, property g2 follows immediately from
the claim above. In turn, g1 and g2 imply item (d) of the theorem. e

Let us discuss how the DB-SHUNT algorithm can be adapted to solve Boolean
queries of bounded treewidth, bounded degree of cyclicity, or bounded query-
width, once a suitable decomposition of the query is provided. First note that it is
sufficient to consider bounded query-width. Indeed, as mentioned in Section 6,
query-width generalizes the concept of treewidth, and, moreover, by Lemma
6.17, for each hinge-tree decomposition HD of a Boolean query Q having degree
of cyclicity c, a query decomposition of width c of Q can be computed in
logspace, and thus in a highly parallel fashion, from HD.

Let Q be a Boolean conjunctive query over a database db, and �T, �� be a
query decomposition of Q of width at most k, for some constant k. As shown in
the proof of Theorem 6.4, we can compute in logspace an instance (Q�, JT, db�)
of JTREE equivalent to (Q, db, �T, ��). In terms of parallel database opera-
tions, this computation is very simple. In fact, for each vertex v of the query-
decomposition tree T, it is sufficient to perform the natural join of the (at most
k) relations corresponding to the atoms in �(v). In our parallel database
machine model, computing this natural join corresponds to a sequence of at most
k � 1 single joins and thus requires at most k � 1 sequential steps. This can be
done in parallel for each vertex of T. After this preprocessing phase, the
DB-SHUNT algorithm is used to evaluate the instance (Q�, JT, db�). Thus, in
terms of parallel steps, the total cost of evaluating the original instance (Q, db,
�T, ��) is O(k � 1  log n) � O(log n).

7.3. A PARALLEL ALGORITHM FOR NON-BOOLEAN ACQS. In this section, we
present a parallel algorithm ACQ that extends DB-SHUNT to the case of
non-Boolean queries. Answering acyclic conjunctive queries requires exponential
time in the worst case, since Q(db) may contain an exponential number of tuples.
The problem is tractable for bounded-projection queries, that is, conjunctive
queries whose head atoms have arity bounded by some fixed constant. For
bounded-projection queries, the size of the output relation corresponding to the
atom ans is polynomial in the size of the input database instance db. Even though
the algorithm ACQ presented in this section is correct for general acyclic
conjunctive queries, it is guaranteed to use polynomial workspace only in case of
bounded-projection queries.

The ACQ algorithm takes a triple (Q, JT, db) as the input, where JT is a join
tree for the (non-Boolean) acyclic conjunctive query Q on db. We denote by
Out(Q) the set of projection attributes of Q (i.e., the attributes corresponding to
the variables occurring in the head of Q). The output of the algorithm is a
relation ans over attributes Out(Q), representing the answer of Q on db.

The method is very similar to the algorithm for JTREE of Section 7.2. The
main difference is that projection attributes are never deleted, but they are
preserved during all the computation. To this end, the relation schema SchT( p)
of a vertex p of an e-join tree T, is now partitioned in three (instead of two)
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distinguished sets of attributes: RT( p), IT( p), and OT( p). The set OT( p) will
contain projection attributes (occurring in the schema of the output relation
ans).

The e-join tree T � ET(�) is initialized as for JTREE. Indeed, for each
vertex p of T, OT( p) is set to �. The shunt operation is redefined as follows.

Let l be a leaf of an e-join tree T, p the parent of l, s the other child of p, and
q the parent of p. The shunt operation applied to l results in a new contracted
e-join tree T� in which l and p are deleted, and s is transformed (as specified
below) and takes the place of vertex p (i.e., it becomes child of q). The schema
and the relation of the transformed version of s in T� are specified below.

RT��s� � RT�s�.

IT��s� � �RT�q� � SchT�p�� 	 RT�s�.

OT��s� � ��SchT�l � � SchT�p� � SchT�s�� � Out�Q�� 	 �RT��s� � IT��s��.

RelT��s� � 	
SchT��s�

�RelT�l � ”“ RelT�p� ”“ RelT�s��.

where Out(Q) is the set of attributes of the output relation ans.
Thus, each projection attribute occurring in a deleted vertex ( p or l ) is kept in

RelT�(s) (if it does not belong to RT�(s) � IT�(s), then it is added to OT�(s)).
Figure 24 shows a parallel algorithm for the computation of acyclic conjunctive

queries.
The Algorithm ACQ works essentially in the same time and space bounds of

DB-SHUNT, specified in Theorem 7.9. The only difference is an increase of the
size of the intermediate relations which is in Theorem 7.9. The only difference is
an increase of the size of the intermediate relations which is O(d2k) for ACQ,
where k is the number of projection attributes (i.e., the cardinality of Out(Q))
and d is the size of the largest input relation. Thus, the working space of ACQ

FIG. 24. A parallel algorithm for ACQ.
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remains polynomial for bounded-projection queries. Correctness and complexity
of ACQ stem from slight modifications of the proofs of Theorem 7.7 and
Theorem 7.9, respectively.

As noted before, for queries whose number of projection attributes is not
bounded by a constant, the output relation can be exponentially larger than the
input; thus, the best algorithm will require workspace polynomial in the com-
bined size of the input instance and of the output relation, as for Yannakakis’s
sequential algorithm [Yannakakis 1981]. We developed such an “output polyno-
mial” parallel algorithm, together with a (parallel) method for fully reducing a
database by a parallel semijoin program. These algorithms are quite sophisti-
cated, and for space reasons we cannot describe them here. The interested
reader is referred to Gottlob et al. [2000].

7.4. RELATED PARALLEL ALGORITHMS. As pointed out in Section 5, Con-
straint Satisfaction (CS) is very similar to conjunctive query evaluation, and
therefore parallel algorithms proposed in the literature for solving CS can be
used to solve JTREE.

Kasif and Delcher [1994] presented an NC2 parallel algorithm for acyclic
constraint networks having only binary constraints. In the database context, this
problem corresponds to evaluating an acyclic conjunctive query Q over a
database where all relations are binary (consequently, the hypergraph H(Q) of Q
is a tree in this case). A comparison of DB-SHUNT to Kasif and Delcher’s
algorithm yields the following:

—DB-SHUNT applies to general instances of JTREE while the algorithm by
Kasif and Delcher applies only to the restricted case where all database
relations are binary.

—Kasif and Delcher’s algorithm is not formulated in database terms, and it is not
completely obvious how to implement their algorithm on a parallel database
machine. (They use Boolean matrix multiplication as primitive.)

—Both approaches have essentially the same parallel complexity (in the PRAM
model), when restricted to those instances for which Kasif and Delcher’s
method is defined, that is, for databases whose relations have arity two. Our
method, however, maintains the same complexity even in the unbounded arity
case.

A parallel algorithm for more general acyclic networks, admitting also nonbi-
nary constraints, is due to Zhang and Mackworth [1993]. This algorithm is called
PTAC.

The main facts we observed while comparing DB-SHUNT to PTAC are the
following:

—The algorithm is formulated in a database context, that is, in a setting similar
to the one adopted here.

—PTAC is formulated for join-trees where the relations have bounded arities.
—In Zhang and Mackworth [1993], it is implicitly assumed that the size of the

database universe is bounded by a constant. In fact it is stated in Zhang and
Mackworth [1993], that “the number of tuples in a relation schema of size
O(log n) is bounded by poly(n).” Moreover, it is assumed in Zhang and
Mackworth [1993] that joins and semi-joins can be performed in constant time.

490 G. GOTTLOB ET AL.



From these assumptions, it is clear that the authors of Zhang and Mackworth
[1993] implicitly assume a bounded universe.

—DB-SHUNT requires neither bounded relation arity nor a fixed database
universe.

—By applying arguments similar to those in the proof of Theorem 7.9, we can
show that PTAC also works in the case of unbounded arities and unbounded
universe (even though this was not proved in Zhang and Mackworth [1993]).
However, if applied to databases with unbounded universes and relations of
unbounded arities, PTAC requires intermediate relations of size O(d3), where
d is, as in Theorem 7.9, the size of the largest relation in the input database.
Recall that DB-SHUNT requires intermediate relations of size O(d2) only.

—DB-SHUNT requires fewer parallel steps to terminate. The difference, how-
ever, consists only of a constant factor. Asymptotically, the algorithms use the
same number of parallel steps.

8. Conclusion and Further Research

In this paper, we have determined the precise complexity of an important
database problem, the evaluation of acyclic Boolean conjunctive queries
(ABCQ). We have shown that this problem is complete for LOGCFL, a very low
complexity class consisting of highly parallelizable problems. We have thus
pinpointed the parallel complexity of this problem, locating it between the
parallel complexity classes NC1 and AC1. A practical consequence is that one can
design AC1 and NC2 algorithms for ABCQ and for all equivalent problems, but
most likely no NC1 algorithm.

On the theoretical side, we believe that our results provide new insights
concerning the complexity-class LOGCFL. While the previously known complete
problems for LOGCFL apparently bear two sources of nondeterminism, namely,
the choice of a suitable tree shape and the choice of a locally consistent fill-in for
a given tree structure (for details, see Section 1.2), all new problems shown
LOGCFL-complete in the present paper bear only the second source of nonde-
terminism. This leads to a new intuitive characterization of LOGCFL as the class
capturing the complexity of filling a given tree (or acyclic data structure) with
“locally consistent” data items.

We have shown that the ABCQ problem is equivalent to a number of
important database and AI problems. Consequently, we have established
LOGCFL-completeness results for all these problems. In particular, we have
pinpointed the complexity of acyclic constraint satisfaction, a problem which has
received much interest in the literature.

We have generalized our results to problems whose associated hypergraphs are
of bounded width. More specifically, we have considered three different general-
izations of acyclicity that have recently been studied by various authors: bounded
treewidth, bounded query-width, and bounded degree of cyclicity. We have
proven that the main decision problems considered in our paper remain
LOGCFL-complete under these generalizations. For a comparison of these and
further generalizations of acyclicity described in the literature, see Gottlob et al.
[2000c].

Finally, we presented parallel database algorithms for evaluating acyclic
conjunctive queries. These algorithms exploit a high degree of inter-operation

491The Complexity of Acyclic Conjunctive Queries



parallelism on parallel databases machines (where it is assumed that intra-
operation parallelism is taken care of automatically). This is—to our best
knowledge—the first time that the parallelism inherent in acyclic queries is
exploited in the context of database query optimization. We believe that our
model of parallel databases is rather realistic and that our algorithms can be
easily adapted to fit existing parallel database management systems.

The parallel algorithms presented here have been refined and extended in a
recent paper [Gottlob et al. 2000]. In particular, in Gottlob et al. [2000], we show
that the algorithm ACQ presented here can be improved to work with “output-
polynomial” storage-size, that is, requires storage-sized polynomial in the com-
bined size of the input instance and of the output. This is reminiscent of
Yannakakis’s well-known sequential algorithm that computes the answer to a
conjunctive query in output-polynomial time [Yannakakis 1981]. In Gottlob et al.
[2000], we also show how to fully reduce a set of relations by a parallel semijoin
program.

In the future, we plan to develop parallel algorithms for nondatabase problems
such as the acyclic clause subsumption problem. As said, clause subsumption is
an essential feature of theorem provers and parallelizing this problem could be
of great benefit. Also, constraint satisfaction algorithms for CSPs of bounded
width, that run on existing parallel hardware, are a tempting research issue.

Appendixes

A. Proof of Claim A of Theorem 4.3

CLAIM A. Q evaluates to true over db if and only if there exist n local
substitutions �1, . . . , �n, for the atoms A1, . . . , An, respectively, such that, (i) for
1 � i � n, Ai�i � db, and (ii) for 1 � i � n, �i agrees with ��(i).

PROOF

Only if Direction. Assume Q evaluates to true. Then there exists a (global)
substitution �: var(Q) 3 U such that, for 1 � i � n, Ai� � db. For 1 � i � n,
let � i be the restriction of � to the domain var( Ai). Clearly all � i, � j, 1 � i, j �
n, mutually agree.

If Direction. Assume local substitutions �1, . . . , �n with the described
properties exist. Assume that X � var(Q) is a variable such that X � dom(� i) �
dom(� j) for some indices 1 � i, j � n. By Property (2) of the definition of a join
forest, each atom on the unique path � from Ai to Aj contains X. Since this path
� is a chain of nodes where any two consecutive nodes are in a parent-child
relationship in T, it follows that, for any consecutive nodes Ar and As on
�, � r(X) � �s(X). Hence, � i(X) � � j(X). Let � � �1 � �2 � . . . � �n.
Clearly, � is a well-defined substitution, and, for all Ai � atoms(Q), Ai� �
Ai� i � db. e

B. Proof of Claim A of Theorem 7.7

CLAIM A. Let T� be the e-join tree resulting from the execution of either step
(4a) or step (4b) on an e-join tree T, and q be a vertex of T�. Then,

l-in�q, T�� � l-in�q, T� and r-in�q, T�� � r-in�q, T�.

492 G. GOTTLOB ET AL.



PROOF. First, observe that q does exist also in T, as no new vertex is created
by step (4a) or step (4b). We proceed by induction on the depth of T�q, that is, on
the depth of the subtree of T� rooted at q.

Basis (depth(T�q) � 0). q is a leaf vertex of T�. As a consequence, q is also a
leaf of T (it is not subject to any shunt operation in the last step). Thus, by
definition of l-in and r-in, we have that l-in(q, T�) � U �RT(q) � � l-in(q, T) and
r-in(q, T�) � U �RT(q) � � r-in(q, T).

Induction (depth(T�q) � d � 0). We demonstrate the invariance of l-in under
the execution of step (4a); the proof of the other cases is similar and can be
easily derived from this one.

Let T� be the e-join tree resulting from the application of step (4a) to the
e-join tree T, and q be a vertex of T�, we have to prove that

l-in�q, T�� � l-in�q, T� . (7)

Let p be the left child of q in T. If p is the left child of q in T� as well, then by
the induction hypothesis, we have l-in( p, T�) � l-in( p, T) and r-in( p, T�) �
r-in( p, T). Moreover, RelT( p) � RelT�( p), as the relation of a vertex that has
kept the same parent cannot have been changed by the shunt operation.
Consequently, we have also val( p, T�) � val( p, T). Hence,

l-in�q, T�� � 	
RT��q�

val�p, T�� � 	
RT�q�

val�p, T� � l-in�q, T�.

(Note that the R part of the schema of a vertex never changes during the
computation, that is, for each vertex q of T�, RT�(q) � RT(q) holds.)

Suppose now that p is not the left child of q in T�. Thus, p has been deleted in
step (4a) by a shunt operation applied on its left child, say l. Consequently, the
sibling of l in T, say s, has become the left child of q in T� and we are in the
situation described in Figure 16.

By definition of l-in, for the left term of Eq. (7), we obtain

l-in�q, T�� � 	
RT��q�

val�s, T�� � 	
RT��q�

�RelT��s� ”“ l-in�s, T�� ”“ r-in�s, T���.

By the induction hypothesis, the rightmost term above yields

	
RT��q�

�RelT��s� ”“ l-in�s, T� ”“ r-in�s, T��. (8)

Since RelT�(s) is obtained by applying a shunt operation on the sibling l of s in T,
by definition of shunt, (8) is equal to

	
RT��q�

�� 	
SchT��s�

�RelT�l � �� RelT�p� ”“ RelT�s��� ”“ l-in�s, T� ”“ r-in�s, T��.

Since all attributes occurring in l-in(s, T) and r-in(s, T) belong to RT(s) �
RT�(s) (and, therefore, to SchT�(s)), l-in(s, T) and r-in(s, T) can be moved
inside �SchT�(s). Thus, the above term can be rewritten as
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RT��q�

	
SchT��s�

�RelT�l � �� RelT�p� ”“ RelT�s� ”“ l-in�s, T� ”“ r-in�s, T��,

which is in turn equal to

	
RT��q�

	
SchT��s�

�RelT�l � �� RelT�p� ”“ val�s, T��. (9)

Since the composition of two projections is equal to one projection on the
intersection of the two projection-attribute sets, the composed projection above
is equal to one projection on the set of attributes A � RT�(q) � SchT�(s) �
RT�(q) � (RT�(s) � IT�(s)). By definition of shunt, IT�(s) � (RT(q) �
SchT( p)) � RT(s); moreover, for any vertex x of T�, RT�( x) � RT( x). It follows
that

A � RT�q� � �RT�s� � ��RT�q� � SchT�p�� 	 RT�s���.

By simple set-algebraic transformations, we get

A � RT�q� � �RT�s� � �RT�q�ths� � SchT�p��).

A � �RT�q� � RT�s�� � �RT�q� � SchT�p��.

Since q is the parent of p, which is in turn the parent of s in T, by Corollary 7.6,
RT(q) � RT(s) � RT( p) � SchT( p). Therefore, we have that

A � RT�q� � SchT�p�.

Thus, by projection properties, term (9) equals

	
RT�q�

	
SchT� p�

�RelT�l � �� RelT�p� ”“ val�s, T��.

Since RelT(l ) 	� RelT( p) ”“ val(s, T) is equal to the join of all vertices in Tp

(the subtree of T rooted at p), from definition of val, the expression above is
equal to

	
RT�q�

val�p, T� � l-in�q, T�.

which closes the chain of equalities and the proof of the claim. e
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BÉDARD, F., LEMIEUX, F., AND MCKENZIE, P. 1993. Extensions to Barrington’s M-programs.
Theoret. Comput. Sci. 107, 31– 61.

BEERI, C., FAGIN, R., MAIER, D., MENDELZON, A., ULLMAN, J. D., AND YANNAKAKIS, M. 1981.
Properties of acyclic database schemes. In Proceedings of the 13th Annual ACM Symposium on
Theory of Computing (STOC ’81) (Milwaukee, Wis., May 11–13). ACM, New York, pp. 355–362.

BEERI, C., FAGIN, R., MAIER, D., AND YANNAKAKIS, M. 1983. On the desiderability of acyclic
database schemes. J. ACM 30, 3 (July), 479 –513.

BERGE, C. 1976. Graphs and Hypergraphs. North-Holland, Amsterdam, The Netherlands.
BERNSTEIN, P. A., AND CHIU, D. W. 1981. Using semi-joins to solve relational queries. J. ACM 28,

1 25– 40.
BERNSTEIN, P. A., AND GOODMAN, N. 1981. The power of natural semijoins. SIAM J. Comput. 10,

4, 751–771.
BORODIN, A., COOK, S. A., DYMOND, P. W., RUZZO, W. L., AND TOMPA, M. 1989. Two applications

of inductive counting for complementation problems. SIAM J. Comput. 18, 559 –578.
CHANDRA, A. K., AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in

relational databases. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing
(STOC ’77) ACM, New York, pp. 77–90.

CHANG, C. L., AND LEE, R. C. T. 1973. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York.

CHEKURI, CH., AND RAJARAMAN, A. 2000. Conjunctive query containment revisited. Theoret.
Comput. Sci. 239, 2, 211–229.

CHASE, K. 1981. Join graphs and acyclic data base schemas. In Proceedings of the International
Conference on Very Large Databases (VLDB ’81) (Cannes, France). pp. 95–100.

COOK, S. A. 1971. Characterizations of pushdown machines in terms of time-bounded computers.
J. ACM 18, 1, 4 –18.

COOK, S. A. 1985. A taxonomy of problems with fast parallel algorithms. Inf. Contr. 64, 2–22.
COOK, S. A., AND MCKENZIE, P. 1987. Problems complete for deterministic logarithmic space. J.

Algorithms 8, 385–394.
DAHLHAUS, E. 1990. Chordale Graphen im besonderen Hinblick auf parallele Algorithmen.

Habilitationsschrift, Universität Bonn, Bonn, Germany. Unpublished.
DAHLHAUS, E., AND KARPINSKI, M. 1996. The matching problem for strongly chordal graphs is in

NC. Tech. Report 855-CS. Institut für Informatik, Universität Bonn, Bonn, Germany.
D’ATRI, A., AND MOSCARINI, M. 1986. Recognition algorithms and design methodologies for

acyclic database schemes. In Advances in Computing Research, vol. 3, P. Kanellakis, ed. JAI press,
London, England, pp. 43– 68.

DECHTER, R., AND PEARL, J. 1989. Tree clustering for constraint networks. Artif. Int. 38, 353–366.
DEWITT, D. J., AND GRAY, J. 1992. Parallel database systems: The future of high-performance

database systems. Communic. ACM 35, 6 (June), 85–98.
DWORK, C., KANELLAKIS, P. C., AND MITCHELL, J. C. 1984. On the sequential nature of unification.

J. Logic Prog. 1, 1, 35–50.
FAGIN, R. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM 30,

3, 514 –550.
FAGIN, R., MENDELZON, A. O., AND ULLMAN, J. D. 1982. A simplified universal relation assump-

tion and its properties. ACM Trans. Datab. Syst. 7, 3 (Sept.), 343–360.
GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability. A Guide to the Theory of

NP-Completeness. Freeman and Co., New York.
GOODMAN, N., AND SHMUELI, O. 1982. Tree queries: A simple class of relational queries. ACM

Trans. Datab. Syst. 7, 4 (Dec.), 653– 677.
GOODMAN, N., AND SHMUELI, O. 1983. Syntactic characterization of tree database schemas. J.

ACM 30, 4, 767–786.
GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000. Advanced parallel algorithms for processing

acyclic conjunctive queries, rules, and constraints. In Proceedings of the 2000 Conference on Software
Engineering and Knowledge Engineering (SEKE ’00) (Chicago, Ill., July). pp. 167–176. Full version:

495The Complexity of Acyclic Conjunctive Queries



Technical Report DBAI-TR-98/18 (available on the web at http://www.dbai.tuwien.ac.at/staff/
gottlob/parallel.ps, or by e-mail from the authors).

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000a. Computing LOGCFL certificates. Theoret.
Comput. Sci., to appear.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000b. Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., to appear.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2000c. A comparison of structural CSP decomposi-
tion methods. Artif. Int. 124, 2, 243–282.

GRAHAM, M. H. 1979. On the universal relation. Tech. Report, Univ. Toronto, Toronto, Ont.,
Canada.

GREENLAW, R., HOOVER, H. J., AND RUZZO, W. L. 1995. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Cambridge, United Kingdom.

GREIBACH, S. H. 1973. The hardest context-free language. SIAM J. Comput. 2, 4, 304 –310.
GYSSENS, M. 1986. On the complexity of join dependencies. ACM Trans. Datab. Syst. 11, 1 (Mar.),

81–108.
GYSSENS, M., JEAVONS, P. G., AND COHEN, D. A. 1994. Decomposing constraint satisfaction

problems using database techniques. Artif. Int. 66, 57– 89.
GYSSENS, M., AND PAREDAENS, J. 1984. A decomposition methodology for cyclic databases. In

Advances in Database Theory, vol. 2. Plenum Press, New York, pp. 85–122.
HASAN, W., FLORESCU, D., AND VALDURIEZ, P. 1996. Open issues in parallel query optimization.

SIGMOD Record 25, 3, 28 –33.
HONG, W., AND STONEBRAKER, M. 1993. Optimization of parallel query execution plans in XPRS.

Dist. Parall. Datab. 1, 1, 9 –32.
HOPCROFT, J. E., AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Mass.
HULL, R. 1983. Acyclic join dependency and data base projections. J. Comput. Syst. Sci. 27, 3,

331–349.
JEAVONS, P., COHEN, D., AND GYSSENS, M. 1997. Closure properties of constraints. J. ACM 44, 4

(July), 527–548.
JOHNSON, D. S. 1990. A catalog of complexity classes. In Handbook of Theoretical Computer

Science, vol. A, chap. 2. J. van Leeuwen, Ed. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, and The MIT Press, Cambridge, Mass.

JONES, N. D. 1997. Computability and Complexity: From a Programming Perspective. Foundations of
Computing Series. The MIT Press, Cambridge, Mass.

KARP, R. M., AND RAMACHANDRAN, V. 1990. Parallel algorithms for shared-memory machines. In
Handbook of Theoretical Computer Science, vol. A, chap. 17. J. van Leeuwen, Ed. Elsevier Science
Publishers B.V., Amsterdam, The Netherlands, and The MIT Press, Cambridge, Mass.

KASIF, S., AND DELCHER, A. L. 1994. Local consistency in parallel constraint satisfaction networks.
Artif. Int. 69, 307–327.

KLEIN, P. N. 1996. Efficient parallel algorithms for chordal graphs. SIAM J. Comput. 25, 4,
797– 827.

KOLAITIS, P. G., AND VARDI, M. Y. 2000. Conjunctive-query containment and constraint satisfac-
tion. J. Comput. Syst. Sci. 61, 302–332.

KRUSKAL, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. AMS 7, 48 –50.

LADNER, R., AND LYNCH, N. 1976. Relativization of questions about log-space reducibility. Math.
Syst. Theory 10, 19 –32.

LAKSHMI, M. S., AND YU, P. S. 1990. Effectiveness of parallel joins. IEEE Trans. Knowl. Data Eng.
2, 4, 410 – 424.

LEVY, A. Y., MENDELZON, A. O., SAGIV, Y., AND SRIVASTAVA, D. 1995. Answering queries using
views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS ’95) (San Jose, Calif., May 22–25) ACM, New York, pp. 95–104.

LEWIS, H. R., AND PAPADIMITRIOU, C. H. 1982. Symmetric Space-Bounded Computation. Theoret.
Comput. Sci. 19, 161–187.

MAIER, D. 1986. The Theory of Relational Databases. Computer Science Press, Rockville, Md.
MALVESTUTO, F. M. 1986. Modeling large bases of categorical data with acyclic schemes. In

Proceedings of the 1st International Conference on Database Theory (Rome, Italy).

496 G. GOTTLOB ET AL.



NAOR, J., NAOR, M., AND SCHAFFER, A. 1989. Fast parallel algorithms for chordal graphs. SIAM
J. Comput. 18, 2, 327–349.

NISAN, N., AND TA-SHMA, A. 1995. Symmetric logspace is closed under complement. Chi. J.
Theoret. Comput. Sci. 1.

PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley, Reading, Mass.
PAPADIMITRIOU, C. H., AND STEIGLITZ, K. 1982. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Englewood Cliffs, N.J.
PAPADIMITRIOU, C. H., AND YANNAKAKIS, M. 1997. On the complexity of database queries. In

Proceedings of 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’97) (Tucson, Az., May 12–14). ACM, New York, pp. 12–19.

PEARSON, J., AND JEAVONS, P. 1997. A survey of tractable constraint satisfaction problems. Tech.
Rep. CSD-TR-97-15. Royal-Holloway, Univer. London, London, England.

QIAN, X. 1996. Query folding. In Proceedings of the International Conference on Data Engineering
(ICDE ’96). (New Orleans, La., Feb. 26 –Mar. 1) pp. 48 –55.

RAJAMARAN, A., SAGIV, Y., AND ULLMAN, J. D. 1995. Answering queries using templates with
binding patterns. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’95) (San Jose, Calif., May 22–25). ACM, New York, pp.
105–112.

REIF, J. H. 1984. Symmetric complementation. J. ACM 31, 2 (Apr.), 401– 421.
ROBERTSON, N., AND SEYMOUR, P. D. 1986a. Graph Minors. II. Algorithmic aspects of tree width.

J. Algorithms 7, 309 –322.
ROBERTSON, N., AND SEYMOUR, P. D. 1986b. Graph Minors. V. Excluding a Planar Graph.

J. Combinat. Theory, Ser. B 41, 92–114.
RUZZO, W. L. 1980. Tree-size bounded alternation. J. Comput. Syst. Sci. 21, 218 –235.
RUZZO, W. L. 1981. On uniform circuit complexity. J. Comput. Syst. Sci. 22, 365–383.
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