SIAM J. COMPUT. © 1981 Society for Industrial and Applied Mathematics
Vol. 10, No. 1, February 1981 0097-5397/81/1001-0008 $01.00/0

RELATIVE TO A RANDOM ORACLE A,
P* #NP* # co-NP* WITH PROBABILITY 1*

CHARLES H. BENNETTY AnD JOHN GILL%

Abstract. Let A be a language chosen randomly by tossing a fair coin for each string x to determine
whether x belongs to A. With probability 1, each of the relatmzed classes LOGSPACE”, P, NP*, PP*, and
PSPACE” is properly contained in the next. Also, NP* # co-NP* with probability 1 By contrast w1th
probability 1 the class P* coincides with the class BPP* Of languages recognized by probabilistic oracle
machines with error probability uniformly bounded below 4. NP* is shown, w1th probability 1, to contain a
P“-immune set, i.e., a set having no infinite subset in P*. The relationship of | -immunity to p-sparseness
and NPA—completeness is briefly discussed: P“-immune sets in NP* can be sparse or moderately dense, but
not co-sparse. Relativization with respect to a random length-preserving permutation 7, instead of a random
oracle A, yields analogous results and in addition the proper containment, with probability 1, of P™ in
NP” Nco-NP”, which we have been unable to decide for a simple random oracle. Most of these results are
shown by straightforward counting arguments, applied to oracle-dependent languages designed not to be
recognizable without a large number of oracle calls. It is conjectured that all p“-invariant statements that are
true with probability 1 of subrecursive language classes uniformly relativized to a random oracle are also true
in the unrelativized case.

Key words. random oracle, relativized computation, probabilistic computation, computational
complexity, nondeterministic computation, polynomial immunity, polynomial isomorphism, polynomial
reducibility

1. Introduction. A paper by Baker, Gill and Solovay [BGS], whose notation and
definitions we adopt, has indicated the subtlety of the P = ?NP question by exhibiting
computable sets A and B such that P* = NP* but P? # NP® Here, P* denotes the class
of languages accepted by polynomial time bounded Turing machines able to query the
set X, and NP™ denotes the corresponding class for nondeterministic machines.

This paper deals not with particular oracle sets but rather with statements that
hold with probability 1 when the oracle is chosen randomly. The probability measure u
on the class of oracles is defined by putting each string into a random oracle with
probability 3, independent of all other strings. (Of course, such an oracle is noncom-
putable with probability 1). Random oracles provide easy examples of sets such as B of
[BGS], and also indicate a new sense in which P* # NP™ for “most” oracles X. This is a
counterpart for the nondenumerable class of all oracles of Mehlhorn’s result [Me] that
the subset of computable oracles X that satisfy P* = NP* is effectively meager.

Any property of oracles that is insensitive to finite changes in the oracle has
probability O or 1, by the zero-one law for tail events [Fe2]. We determine relationships
that hold with probability 1 for language classes relativized to a random oracle A.
Section 2 establishes the basic results P* # NP“ # co-NP* with probability 1, and the
related results LOGSPACE” # P* and PSPACE” # EXPTIME” with probability 1.
Section 3 relativizes the probabilistic language classes PP (languages recognizable in
polynomial time by weak Monte Carlo tests, whose error probability may approach that
of random guessing), and BPP (languages recognizable in polynomial time by strong
Monte Carlo tests, whose error probability can be made as small as desired by iterating
the test a fixed number of times). It is shown that with probability 1, the relativized class
PP* is properly contained in PSPACE" and properly contains NP* U co-NP“. By

* Received by the editors November 6, 1979, and in final form May 20, 1980. This research was
supported in part by the National Science Foundation, under grant MCS77-07555.

+ IBM Watson Research Center, Yorktown Heights NY 10598.

1 Electrical Engineering Department, Stanford University, Stanford CA 94305.

96

P4 # NP* WITH PROBABILITY 1 97

contrast, P* and BPP are shown to be equal with probability 1. Section 4 shows that
with probability 1, NP contains a P“-immune set, that is, a set having no infinite subset
in P”. Section 5 discusses the open question of whether, relative to a random oracle, P*
equals NP” N co-NP*, arguing that it will be hard to decide one way or the other. On
the other hand, by relativizing with respect to a random permutation = instead of a
random oracle, P” can be shown to be properly within NP” N co-NP”. Indeed,
NP” Nco-NP7 contains a P™-immune set with probability 1.

Most oracles used in recursive function theory and complexity theory contain
built-in structure intended to help or frustrate a specific class of computations. A
random oracle, on the other hand, is intuitively unbiased and unstructured; thus, it is .
plausible that theorems (for example, P # NP) that hold with probability one for
computations relativized to a random oracle should also be true in the absence of an
oracle. Section 6 formalizes this conjecture.

As a preview of the results to be demonstrated later, we now give heuristic
arguments showing why, relative to a typical random oracle, deterministic and
nondeterministic polynomial time are different (P* # NP*, Theorem 1), but deter-
ministic and probabilistic time are the same (P* = BPP*, Theorem 5). Given a fixed but
typical random oracle, consider the following question: do the first 2" bits of the oracle’s
characteristic sequence include any run of n consecutive zeros? Such a run will be
present for about half of all values of n, and if present, it could easily be detected
nondeterministically by guessing the address of its beginning. On the other hand, it is
fairly obvious, if not entirely straightforward to prove, that no deterministic algorithm
could expect to find out whether a run exists in less than exponential time. Thus, for
typical random oracles A, the language {0": the first 2" bits of A contain a run of n
consecutive zeros} is in NP*-P*. Similarly, the language {0": the first 2" bits of A
contain an even number of zeros} is in PSPACE*-NP* with probability 1.

Next consider a language, such as the set of composite numbers, that is prob-
abilistically recognizable in the sense of BPP. Such a language could be recognized
deterministically in the presence of a random oracle by: 1) iterating the original Monte
Carlo test a linearly increasing number of times as a function of input size, so that the
expected cumulative number of errors, summing over all inputs, remains finite; 2)
simulating this more accurate Monte Carlo algorithm deterministically by using bits
from the random oracle instead of coin tosses; 3) patching the errors by a finite table. A
slight refinement of this argument shows that even relativized languages of the class
BPP” can be recognized in deterministic polynomial time with the help of a random
oracle.

Throughout this paper, the natural number x will be identified with the xth binary
string in lexicographic order (0,1,2,3,---<>A,0,1,00 - - -). The binary length of x,
equal to the integral part of log, (x + 1), will be denoted |x|. Similarly, a set or language
A will be identified with its characteristic sequence, the infinite binary sequence whose
xth bit, A(x), is 1 iff x € A. Sets of sets (e.g., language classes or events in oracle space)
will be denoted by upper case Greek letters, with () denoting the (nondenumerable)
set of all languages. The probability measure on () is equivalent, via the identifica-
tion of languages with infinite binary sequences, to Lebesgue measure on the unit
interval.

Most of the separatlon results in this paper are proved by exhibiting an oracle-
dependent test language L which belongs to the one of two relativized language classes
(e.g., NP*) for all oracles A but belongs to another narrower class (e.g., P*) only for a
set of oracles of measure zero. Results of this sort can be proven more easily by
appealing to the following lemma, which depends on certain easily satisfied conditions

98 CHARLES H. BENNETT AND JOHN GILL

on the test language L“* and the (denumerable) relativized class M* =
{M M5, M3, - -} to which it is desired to prove that L* does not belong for most A.
For concreteness, M ,A may be thought of as the language accepted by the jth machine of
a given type (e.g., polynomial time bounded) when it is connected to oracle A. First the
conditions will be described; then the lemma will be stated and proved.

Condition 1. The test language L”, and each of the machine languages M f‘, must
depend on A via a total recursive operator from () to (). Each of these languages, in
other words, must be recognizable by a Turing machine that halts for all oracles and
inputs.

Condition 2. The family of machine languages should be finitely patchable with
respect to the oracle: for each machine M; and each finite bit string s there should exist
another machine M, such that Mz =M f*A for all oracles A. Here s*A denotes the
characteristic sequence obtained by substituting the finite string s for the first |s| bits of
A. Machine M, may be thought of as incorporating the bit string s in its finite control,
where it intercepts and answers all sufficiently small queries.

Condition 3. The family of machine languages should be finitely patchable with
respect to initial portions of any uniformly A-recursive language: For any number m,
any machine M;, and any A -recursive function ¢;* that is total and 0-1 valued for all A,
there should exist another machine M, such that for all oracles A and inputs x,

<pf‘(x) if x<m,

A —
Mi (x)= {M]A (x) otherwise.

In particular, when ¢ defines a test language L*, machine M gives the “‘correct”
answer L*(x) for inputs less than m and gives the same answer as machine M; would for
all other inputs.

Condition 4. The test language L (but not necessarily the machine languages M ;")
must depend on the oracle in such a way that each bit of the oracle affects only finitely
many bits of the language. (Condition 1, by K6nig’s lemma, implies that both L* and
M7 already satisfy the converse of condition 4, namely, that each bit of the language
depends on only finitely many bits of the oracle.) Together, conditions 1 and 4 require
that the membership of x in L* depend only on those addresses in A lying in a finite
window bounded by two monotone functions of x that tend to o in the limit of large x.
Oracle-dependent languages of this sort have been termed “oracle properties” by
Angluin [An] and Kozen and Machtey [KM].

Conditions 1 and 4 hold by definition for all the test languages used in this paper,
and conditions 1-3 can readily be seen to hold for the relevant families of oracle
machines, viz. logspace bounded deterministic [LL,Si], polynomial time bounded
nondeterministic [BGS], and polynomial time bounded probabilistic threshold
machines ([Gi], see also § 3).

LEMMA 1. Let L* be a test language and M* = {M %, M5 - - -} a family of machine
languages satisfying conditions 1-4 above. If there exists a positive constant & such that
each machine language differs from the test language for a class of oracles of measure > ¢,
then the class of oracles for which L* € M* has measure zero.

Proof. The idea of the proof is to show that as a machine is fed larger and larger
inputs, it keeps making fresh errors, due to bad luck at oracle addresses too large to have
caused any errors earlier.

It suffices to show, for each machine M, that the class C, =
{A:V¥x<mL*(x)=M }“ (x)}, of oracles for which it makes no error on the first m
inputs, approaches measure zero in the limit m - c0. To prove this it suffices to show

P4 = NPA WITH PROBABILITY 1 99

that for each m there exists a larger n such that u(C,)=(1—¢)u(C,). Because of
condition 1, membership of an oracle in the class C,, depends on only a finite portion of
the oracle characteristic sequence; hence C,, may be expressed as a finite disjoint union
of elementary cylinders Z,, where Z; is the class of oracles whose characteristic
sequences begin with the finite sequence s.

In view of this, the lemma would follow if one could show that ¢ is a lower bound
not only for the overall error probability, lim, .« 1 — « (C,), but also for the conditional
error probability within any cylinder, lim, .o 1 —u(Z; N C,)/u(Z;), even though the
cylinder Z; might consist entirely of oracles that cause no errors on small inputs.

To prove that this is indeed the case, note that the operation of M, in any cylinder
Z; may be simulated by another, finitely patched machme Mk, which accepts the
following oracle-dependent language if[L° A(x) # L*(x)] then L* " (x) else M;j A (x).
Here condition 4 guarantees that L*(x) and L* *(x) differ for only finitely many x, and
conditions 2 and 3 guarantee the existence of the patched machine. It is evident from
the definition that the original machine’s conditional error probability on cylinder Z; is
at least as great as the patched machine’s unconditional error probability which in turn
is at least &, by the premise of the lemma. 0

Remark. Kozen and Machtey [KM] derive a result analogous to Lemma 1 but for
meagerness rather than measure. Under conditions 1-4, they show that set {A: L%e
M*} is either equal to all of oracle space or else is a meager subset of oracle space.
Therefore, whenever Lemma 1 is used to prove a separation with probability 1 between
two relativized complexity classes, the same separation holds for all but a meager subset
of oracles. On the other hand, the possibility remains that two complexity classes may
be equal with probability 1 even though they differ for all but a meager subset of oracles.
This possibility is discussed further in connection with Theorem 5.

2. P*,NP*, and LOGSPACE" for random oracles A. The following definition
provides a function £4(x) that uses the oracle A to map binary strings randomly into
strings of the same length. .

DEFINITION. £4(x)=A(x1)A(x10)A(x100) - - - A(x10™""), where juxtaposition
indicates concatenation. In other words, £€4(x) is a |x|-bit string whose kth bit is 1 or O
according to whether x X 107" belongs to A.

Although it is easily computed by a machine with oracle A, the function £, is
ideally pseudorandom in that knowing its value for one argument tells nothing about its
value for other arguments. (The same is true of the characteristic function A(x), but in
several of the proofs below it is convenient to have a function whose values are about
the same size as its arguments.) The pseudorandomness of £, is used to define languages
depending on A that cannot be accepted without exponentially many queries of the
oracle. The number of inverse images under ¢4 approaches a Poisson distribution for
large n: for typical A the fraction of n-bit strings with exactly k inverse images under {4
approaches ¢ */k! In particular, about 1/e of n-bit strings have no inverse image and
1/e have exactly one inverse image.

THEOREM 1. If A is a random oracle, the P* < NP* # co-NP* with probability 1.

Proof. Since P* is closed under complementatlon, Theorem 1 would follow if, for
all but a class of oracles A of measure zero, one could eXhlblt a language in NP* whose
complement is not in NP, Let the test language RANGE" be defined as {x: 3, £4(y) =
x},i.e., the range of £4, and let CORANGE" be the complement of RANGE". Clearly,
RANGE"” belongs to NP“. However, CORANGE" is not in NP* because, intuitively,
no nondeterministic oracle machine can verify for typical x and A that x is not in
RANGE" without evaluating £4(y) for every y of length |x]|.

100 CHARLES H. BENNETT AND JOHN GILL

In order to show that with probability 1, no polynomial time bounded nondeter-
ministic oracle machine NP; with random oracle A accepts exactly CORANGE?", it
suffices by Lemma 1 to show that every such machine has an input on which it errs with
probability at least 3 when A is chosen randomly.

Let an arbitrary machine NP; be chosen and consider an input of the form x =0",
where n is sufficiently large that none of the machine’s nondeterministic computation
paths has time to examine more than one per cent of the 2" n-bit strings that are
potential inverse images of 0" under the ¢ function. Recalling the definition of the ¢
function, an n-bit string y will be said to be examined when the oracle is queried about
any string of the form y10, for some k <.

Let Co={A: 3y £4(y) =0"} be the class of oracles for which the input 0" is in
CORANGE" and therefore should be accepted. This class has measure between 0.36
and 0.37 for all n=5, approaching 1/e¢ =0.3678 - - - for large n. Let a, be the
conditional acceptance probability on C,, i.e., the fraction of oracles in C, for which
input 0" actually is accepted.

Consider now another class of oracles, disjoint from C, and consisting of oracles A
for which 0" has exactly one inverse image but is not its own inverse image. This class,
C;={A: £4(0")#0" and (3" y)£a(y) = 0"}, has measure exactly equal to that of Co
and consists entirely of oracles for which the input 0" does not belong to CORANGE"
and therefore should be rejected. Let «; be the conditional acceptance probability on
C,.

The overall error probability,

e =u{A: NP{(0") # CORANGE"*(0")},

is at least

(1-ag)u(Co)+a1u(C) =(1+a1—ao)/e,

since every rejection'in Co, and every acceptance in Cy, is an error. In order to show that
e> %, we exhibit a probabilistic transformation of oracles, A - A’, that maps C, onto C;
in a measure-preserving manner but changes each oracle so little that most accepting
computation paths under A continue to accept under A'. Therefore, a;=a(and
e=1/e.

The transformation A -» A’ is best described in words. To obtain A’ from A, choose
randomly (by coin tossing) an rn-bit string z not equal to 0"; then delete from A all
strings of the form z X 10’ for i < n. Recalling the definition of the £ function, this has the
effect of making £4/(z) =0" while preserving the equality &4(y) = €a/(y) for all other
arguments y. The transformation is therefore measure preserving between Cy and Cy, in
the sense that the expectation of any event in C; is equal to the expectation that a
randomly chosen point in C, will map into it under the transformation. (The prob-
abilistic transformation may be thought of more formally as a deterministic measure-
preserving mapping (A, z) > (A’, éa(z)) from CyxY onto C; XY, where Y is the
probability space of n-bit strings not equal to 0". Hence, for any event Ec C;, u(E) =
u{(A, z)eCoXY: A'eE}.)

To show that a1 =a,, choose a random oracle in Cy and a random rn-bit string
z #0" and generate the transformed oracle A’, a member of class C;. With probability
ao, there is at least one accepting path of NP;(0") under oracle A. Select the first
accepting path. With conditional probability at least 0.99, the set of strings examined on
this path does not include z, the one string with respect to which oracles A and A’ differ,
and so the path continues to accept under A’. Therefore the acceptance probability in
C, is at least 0.99 times that in Co and £ =0.36(1 —ao+0.99a,) >3.

P4 % NP* WITH PROBABILITY 1 101

Lemma 1 then allows us to conclude that, with probability 1, CORANGE?" is
not Ain NP“. Since RANGE"” is in NP“, we have, with probability 1, P* # NP* # co-
NP®. O

LOGSPACE" can be defined in various ways, depending on how the query tape is
handled. We follow the conventions of Ladner and Lynch [LL]: The query tape is not
charged against the space bound, but to keep it from being used as a work tape, the
query tape is one-way and write-only and is erased automatically following each query.
(Simon [Si] treats the query tape as one of the work tapes, a two-way read/write tape
that is charged against the space bound. The Ladner-Lynch definition is less restrictive
and perhaps more natural, since for a random oracle A LOGSPACE” holds with
probability 1 for [LL] but not for [Si]. Theorem 2 holds for both definitions of
LOGSPACE")

THEOREM 2. If A is a random oracle, then LOGSPACE" # P* with probability 1.

Proof. The language used to prove Theorem 2 is BIGQUERY* = {x: £4(x) € A},
which is obviously in P* for every oracle A. Every oracle machine that recognizes this
language must compute and store some representation of £4(x) on its work tape, which
costs at least |x| bits. Queries of the form “x x 10°e A?” can be asked within the log
space bound by simply transferring x from the input tape to the query tape, followed by
the appropriate number of zeros. Such queries suffice to determine individual bits of the
string £€4(x). However, these bits cannot be accumulated on the query tape, since it is
meanwhile being used for other queries, nor can they be stored on the work tape
without violating the space bound. Not knowing £4(x), a logspace bounded machine
must therefore, for every sufficiently large x, err with probability nearly 3 in deciding
whether £4(x) belongs to A.

More formally, let M be a logspace bounded deterministic oracle machine. A
string y of length n is queriable by M if there is an oracle X for which y is queried by M~
oninput 0", Initially, and just after each oracle query, the query tape is blank. Since M is
logspace bounded, the total number of distinct machine states (instantaneous descrip-
tions) with a blank query tape is at most cn* for constants ¢ and k depending on M but
independent of n. When M is started in any one of these states, the computation
proceeds deterministically, and independently of the oracle, until the next query (or
until halting if no further queries were made). Therefore at most cn® n-bit strings are
queriable.

On the other hand, as the oracle A is varied, £€4(0") takes on any of 2" distinct
values, all equally likely. Let C={A: M“*(0") queries £4(0")} be the class of oracles for
which £4(0") is-actually queried. Cis a subclass of {A: £4(0") is queriable}, and so C has
measure at most cn*/2", which approaches 0 for large n. Therefore C, the class of
oracles for which M*(0") does not query £4(0"), has measure 1 in the limit.

If M* does not query £4(0"), then it is obviously in a poor position to decide
whether 0" is in BIGQUERY®, that is, whether £4(0") is in A. Consider the measure-
preserving transformation of oracles that removes from A if it is present, or adds to A if
it is absent, the string £4(0"). This transformation maps C onto itself, and for every
oracle in C changes the truth of 0" e BIGQUERY" without changing the machine’s
answer M*(0"). Therefore, for each machine M, the class of oracles on which M*(0")
errs in determining whether 0" belongs to BIGQUERY* has measure nearly 5 for large
n. By Lemma 1, with probability 1 BIGQUERY* is not in LOGSPACE”. O

COROLLARY. If A is a random oracle, then PSPACE" # EXPTIME" with
probability 1.

Proof. As above, using VERYBIGQUERY" ={x: £4(0*)€ A} as the test
language. With probability 1, this test language is in EXPTIME® but not in PSPACE”.

102 CHARLES H. BENNETT AND JOHN GILL

3. Probabilistic polynomial time languages. This section investigates the rela-
tivized classes of languages computable in polynomial time by probabilistic oracle
machines [Gi]. Probabilistic machines are equipped with a coin toss mechanism that
enables them to make fresh random choices during a computation. This randomness
should be distinguished from the randomness of the oracle A, which is fixed before the
computations begin. (However, some of the theorems below are proved by using the
random oracle to simulate coin tosses, or vice versa.)

The language accepted by a probabilistic machine M with oracle A is defined as the
set of inputs for which the machine halts in an accepting state with probability greater
than 3, and the characteristic function M* (x) takes on the value 1 or 0 according to this
majority result (if the acceptance probability is exactly 3, M*(x)=0). The error
probability of M on input x is defined as the fraction of coin toss sequences leading to
nonacceptance if M Ax)=1, or to acceptance if M Ax)=0. A probabilistic oracle
machine M is polynomial time bounded if there exists a polynomial p such that, for all
oracles A and inputs x, all computation paths halt within p(|x|) steps.

Several classes of probabilistic polynomial time languages can be defined, depend-
ing on the allowed error probability.

DEFINITION. Let A be any oracle set.

1) PP* is the class of languages accepted by polynomial time bounded prob-
abilistic oracle machines with oracle A. Simon [Si] has shown that the same class results
if the definition, is strengthened to include only languages recognizable by machines
with error probability less than 3 on all inputs nonmembers as well as members.

2) BPP” is the class of languages accepted by polynomial time bounded prob-
abilistic oracle machines with error probability uniformly bounded below 3. A language
L is in BPP* iff there is a polynomial time bounded probabilistic oracle machine M and
a constant £ <3 such that L = M and the error probability of M* is less than ¢ for all
inputs, members as well as nonmembers.

The difference between BPP and PP is that for languages in BPP the error
probability can be made uniformly as small as desired by repeating the probabilistic
computation a uniform number of times, whereas this is not generally possible for a
language in PP. In particular, if a language L is recognizable with error probability
uniformly below ¢ < 3, then performing the computation m times and taking the
majority decision (m odd) suffices to reduce the error probability uniformly below

m D2 gy .

K=o (k)e (1=e)

which approaches zero exponentially with increasing m (this follows from the fact that
for large m, the binomial distribution approximates a normal distribution of standard
deviation Vme (1—¢) and mean (1 —¢)m; and the fact that the area under the tail of
the normal curve, from —0 to a point x standard deviations below the mean, is bounded
above by constxexp (—x?/2) [Fe]). Thus, BPP* may be defined without loss of
generality as the set of languages accepted by polynomial time bounded probabilistic
oracle machines M“ with error probability uniformly below, say, 3.

A well-known subclass of BPP is the class called R [AM], [Ra] or VPP [Gi],
consisting of languages, such as the composite numbers, that are probabilistically
recognizable in polynomial time by one-sided Monte Carlo tests that never accept a
nonmember of the language. BPP includes such languages and their complements, as
well as languages (no natural examples are known) for which only two-sided Monte
Carlo tests exist.

P~ % NP* WITH PROBABILITY 1 103

Another subclass of BPP, known as ZPP[Gi], may be defined as RN co-R, or
equivalently as the class of languages recognizable by probabilistic machines with zero
error probability and polynomial bounded average run time.

It is easily shown [Gi] that P < ZPP < BPP < PP = PSPACE and, perhaps more
surprisingly, that NP = PP. From the definitions, it is obvious that PP, BPP, and ZPP
are closed under complementation. All these relations continue to hold when the
classes are relativized to an arbitrary oracle. In this section, we show that, relative to a
random oracle A, the classes (NP* U co-NP*) < PP* < PSPACE” are distinct with
probability 1, whereas BPP“ = P* with probability 1.

THEOREM 3. If A is a random oracle, then PP* < PSPACE” with probability 1.

Proof. Let ODD” = {x: an odd number of strings of length |x| are in A}. ODD* is
computable in linear space with oracle A, and so ODD* is in PSPACE®. On the other
hand, it is intuitively clear that a probabilistic algorithm to decide whether x is in ODD*
without querying all strings of length |x| must, for typical x and A, have an error
probability of exactly 3.

For any polynomial time bounded probabilistic oracle machine M, let £(x, A) be
the error probability of M with oracle A and input x. The computation path of M* on
input x is determined by the random Bernoulli sequence B of coin tosses. Therefore,
the error probability can be written as £(x, A) = u{B: M*Z(x) # ODD"(x)}, where
M*®(x) is the output of M“(x) with coin toss sequence B and u is Lebesgue measure
on the set of infinite coin toss sequences.

Choose an input x so large that no computation path of M“(x) has time to query all
strings of length |x|. Let C* ={A: ¢(x, A)<3}and C” ={A: e(x, A)>3}. We shall show
that u(C*) = u(C).

We define a measure-preserving transformation (A, B)- (A’, B), in the product
space Q4 X Qp of oracles A with Bernoulli sequences B, which maps C* x Qg onto
C™ xQp and vice-versa. The transformation consists of adding to A if it is absent, or
removing from A if it is present, the first string of length |x| not queried in the
computation path M “B(x). The transformation thus always changes the value of
ODD” (x) while never changing the machine’s answer M AB (x). Hence, itmaps C” X Qg
onto C* x Qg and vice versa. Therefore, u(C") = u(C7).

Since C” = C", we conclude that w(CH= 3. For all oracles not in C*, the machine
M* does not correctly decide whether x is in ODD*. Therefore, by Lemma 1, with
probability 1, ODD* is not in PP*. O

THEOREM 4. If A is a random oracle, then NP U co-NP* < PP* with probability
1.

Proof. By Theorem 1, RANGE" is in NP“-co-NP* and CORANGE" is in
co-NP“-NP* with probability 1. Therefore, with probability 1, the combined language
RANGE” join CORANGE" ={0x: x e RANGE“}U{1x: x e CORANGE"} is in
neithef{ NP nor co-NP* but is in PP* because both NP* and co-NP* are subclasses
of PP”. 0O

Remark. This same example establishes that with probability 1 NP* U co-NP* is
properly contained in the class A}* of languages recognizable in polynomial time
relative to an oracle in NP*. A>* is a member of the relativized Meyer-Stockmeyer
P-hierarchy [MS], [BGS] and [BS], a polynomially time bounded analogue of the
Kleene arithmetical hierarchy [Ro]. Like PP#, it includes NP* and is closed under
complementation. Whether relativization by a random oracle separates classes higher
thag A%* in the hierarchy is currently unknown, as is the relationship between A3** and
PP”.

104 CHARLES H. BENNETT AND JOHN GILL

THEOREM 5. If A is a random oracle, then P* = ZPP* = R” = BPP* with prob-
ability 1.

Proof. 1t is sufficient to show that for every 8 >0, the class of oracles A for which
P* # BPP* has measure less than 8. As noted earlier, BPP* may be defined without
loss of generality as the class of languages recognizable by probabilistic polynomial time
bounded oracle machines M{* with error probability uniformly bounded below ; for all
inputs.

For any polynomial time bounded probabilistic oracle machine M; we can
effectively construct another, My, that recognizes the same language as does M; but
with smaller error probability; in fact, there is a recursive function f such that if the error
probability &;(x, A) of M £ on input x is less than %, then &4;)(x, A) decreases exponen-
tially with i and |x|, being bounded above by & - 27*?**? The machine Mj,;, takes the
majority vote of ¢(i +2|x|+2) independent computations of M (x); the constant ¢
depends on §, but not on i, x or A.

Next, we construct a deterministic polynomial time bounded oracle machine M,
that operates as follows. With input x, it first computes psy(|x|), a polynomial upper
bound on the length of queries that can be made by My;). Such a bound always exists
because of the polynomial time bound on Mj;,. Then, M4;, simulates the probabilistic
oracle machine computation M7(;, (x). Each time the simulated computation M o (x)
requires a coin toss, M ‘2(,-) (x) obtains a bit by querying the oracle A about the least
string of length greater than ps(|x|) that has not yet been queried.

Let E;, be the class of oracles A for which M:* (x) has error probability less than 1
but M4 (x) does not agree with the majority answer of M (x). Since the queries
made by M ?m (x) in simulating coin tosses are larger than any queries actually made by
any simulated probabilistic computation M }‘},-) (x), the measure of E;, does not exceed
the error probability of M f},») (x). That is,

w(Ey) =max {eo(x, A): e:(x, A) <j}< 8- 27212,

Taking the union over i/ and x, we obtain

(The convergence of this sum does not require that the events E; be independent,
merely that they individually be of small measure; in general the E;, will be strongly
correlated, because the construction allows the same oracle bit to simulate a coin toss
for many different machines and inputs.) To conclude the proof, we observe that
P* = BPP” for every oracle A notin U,, E;, since for every such oracle, if language L is
accepted by M;* with error probability uniformly less than , then L is recognized by the
deterministic oracle machine M,;. 0

Remark. For each & in the above proof, the set of oracles Ns = E, is a
nowhere-dense set in the sense of Mehlhorn [Me], and the union over 8 of these sets is a
meager set of measure 1 on which P*BPP*. This raises the interesting possibility that
the set of all oracles for which P* = BPP* may be sparse in one sense (Baire category
theory), but co-sparse in another, more intuitive sense (measure).

COROLLARY. If L is a non-oracle-dependent language which belongs to P* with
probability 1 for random A, then L belongs to the unrelativized class BPP. Conversely,
every language in BPP is in P* with probability 1.

Proof. The first part follows from the ability of a probabilistic algorithm without
oracle to simulate, by coin tossing, the answers a random oracle would give to a

P~ % NP* WITH PROBABILITY 1 105

deterministic algorithm. The converse is a special case of the theorem just proved: BPP
is always a subclass of BPP“, which in turn is equal to P*, with probability one.

Remark. The second part of this corollary, that any language in BPP is in P* with
probability 1, generalizes to BPP Adleman’s result [Ad] that any language in R has
polynomial size circuits. A language L is in Riff every member of L is “‘witnessed’” by at
least half the strings of appropriate (polynomial p(n)) size and no nonmember is
witnessed by any. Adleman showed that under these conditions, there exists for each »
a specific set of =n witnesses sufficient to witness all members of L smaller than » bits.
A fixed table of np(n) bits is thus enough to simulate the approximately 2"np(n) bits
of witnesses that would be consulted if witnesses were generated probabilistically on
each input.

In the proof of Theorem 5, if the language L accepted by probabilistic machine M;
is oracle-independent, belonging to BPP rather than merely to BPP*, then the bound
pri(|x]) on the size of queries by M;; can be taken to be zero. This means that the
deterministic machine M,;, uses the same initial bits of the random oracle, A(1), A(2),
A(3), - - - over and over again, to simulate the (in general different) coin toss sequences
that the machines M; and M;;, would generate on different inputs. If the number of coin
tosses made by the original probabilistic machine M, is bounded by a polynomial g(#n) in
the input length, then the number made by the more accurate machine My is bounded
by a larger polynomial cnq(n), and the number of random oracle bits needed by the
deterministic machine to evaluate L(x) accurately for all inputs of length =n is also
bounded by cnq(n). Thus, a fixed table of cng(n) random bits suffices to compute,
without error, a finite set whose probabilistic computation, with errors, would use
approximately 2"q(n) coin toss bits.

4. P*-immunity. Classes such as P and NP refer to worst case performance.
However, for RANGE” and the other oracle-dependent languages discussed here,
most members are as difficult to recognize as the worst case. A particularly strong form
of this property is called P-immunity: a set is P-immune if it has no infinite subset that is
in P. For typical oracles A, RANGE" is not itself P*-immune, because, for example, it
contains the P*-recognizable infinite subset {x: £4(x)=x}. However, Theorem 6,
proved later in this section, gives a set in NP* that is P*-immune and P*-co-
immune (i.e., its complement P*-immune) with probability 1. It is of course not known
whether NP contains a P-immune set in the absence of an oracle, for that would imply
P # NP, nor is it known whether all oracles X that make P* # NP also imply that NP*
contains a P*-immune set.

Another interesting question is whether there is an oracle X for which a set can be
at once P*-immune and NP*-complete. (In order to define NP*-completeness, one
must of course specify a reducibility relation. In § 6 it will be argued that, in order tobe a
fully relativized concept, NP*-completeness ought to be defined in terms of a rela-
tivized reducibility such as P, X-Turing reducibility, in which U is reducible to V iff
U e PV rather than the more customary P-Turing reducibility.) When X is the
empty set, or a random oracle, immunity and completeness appear to be incompatible.
Standard NP-complete sets such as SAT = {f: the propositional formula f is satisfiable}
contain infinite easy subsets, and so are not P-immune. Moreover, Berman and
Hartmanis [BH] have shown that all known NP-complete sets are p-isomorphic, and
conjecture that all NP-complete sets are.

This conjecture would imply that no NP-complete set is P-immune, since p-
isomorphism preserves P-immunity. [Proof. Let sets U and V be p-isomorphic. Then,
by definition of p-isomorphism there is a 1:1 onto function f with both f and f~*

106 CHARLES H. BENNETT AND JOHN GILL

computable in polynomial time such that x € U iff f(x) € V. Let U be not P-immune,
and let E € P be an infinite easy subset of U. Then, f(E) is an infinite easy subset of V,
making V not P-immune. f(E) is infinite because f is 1:1, and f(E) € P because E € P
and ' is computable in polynomial time. This argument also applies in a relativized
form: for any A, if U and V are p-isomorphic, or even if they are only p“-isomorphic,
i.e., interconvertible by a permutation A-computable in polynomial time, then U is
P*-immune iff V is P*-immune.]

The Berman—-Hartmanis conjecture implies that complete sets cannot be p-sparse
(a p-sparse set being one whose number of members of length =n is bounded by a
polynomial in n). Immune sets, on the other hand, may be p-sparse or not; for typical
random oracles A the P*-immune set of Theorem 6 below is moderately dense, but its
intersection with a p-sparse set such as 0* is p-sparse, still P*-immune, and still in
NP”. (Recently Mahaney [Ma] has shown that, unless P = NP, no NP-complete set can
be p-sparse).

Although P“*-immune sets can be moderately dense, with probability 1 no
P*-immune set in NP“ can be so dense that its complement is p-sparse. [Proof. Let A be
a typical random oracle, and let S be a co-p-sparse set accepted by the nondeterministic
machine NP;'. Since S is co-p-sparse, there exist probabilistic polynomial time
algorithms (e.g., on input x, accept with probability 27" that, with probability arbi-
trarily close to unity, when applied to the inputs 0,1,2, - in sequence, accept
infinitely many members of S but no nonmembers. Each such probabilistic algorithm
can be simulated by a deterministic polynomial time algorithm that queries A about
strings too long to have been queried by NP,A on the same input. Thus, there is, for
typical A, a deterministic algorithm to accept an infinite subset of S, rendering S not
P*-immune.]

Although P“-immune sets in NP* cannot be co-p-sparse, those not in NP* can be.
For example, the set {x: Vj=|x|¢; (0)# x} is co-p-sparse yet has no infinite A-r.e.
subset. Hence, it is certainly P*-immune.

We now show that with probability 1, NP contains a P*-immune set.

THEOREM 6. If A is a random oracle, the set RANGE3* = {x: 3y £4(y) = xxx} and
its complement are P*-immune with probability 1. Here, xxx denotes x thrice conca-
tenated.

Proof. RANGE3" is infinite and co-infinite, and indeed about as dense as
RANGE", having on the average 2" (1 —e ') members each of length #. It is obviously
in NP*, However, it is P*-immune because, intuitively, the expected cumulative
number of successful guesses, on input x, of a string y that would map into xxx,
approaches a finite limit as x > 0. Note that RANGE3 is not NP*-complete, because
it contains answers to only a few of the questions needed to recognize, say, RANGE" in
polynomial time.

To prove that RANGE3* is P*-immune, it suffices to prove for each deter-
ministic polynomial-time algorithm M that C, the class of oracles A for which that
algorithm accepts an infinite subset of RANGE3", is of measure zero.

Let M be applied to all inputs, A, 0, 1, 00, - - - in sequence and consider the finite
set of oracle strings first examined in the course of the computation on input w:

EXAM(A, w) ={y: M*(w) examines y}—{y: 3v < wM*(v) examines y}.

Recall that a string y is said to be examined when any of the oracle strings affecting the
value of £4(y) is queried. In general, we have regarded the oracle as having been chosen
probabilistically in the beginning, after which computations proceed deterministically
relative to it; however, when considering a fixed sequence of computations, it is

P4 % NP WITH PROBABILITY 1 107

permissible to regard £4(y) as being decided probabilistically for each argument y at the
time that argument is first examined. Subsequent evaluations of £4(y) must of course
return the same value.

In order to be useful evidence in favor of accepting a member of RANGE3“, an
examined string y must have £€4(y) = xxx, for some x, and must have been examined
sufficiently early, 3,,=,y € EXAM(A, w), to influence the acceptance of x. The set of
strings for which this is so may be defined:

EVIDENCE(A)=U {y: y e EXAM(A, w) and 3,z ,£a(y) = xxx}.

It is not difficult to see that, with probability 1, EVIDENCE(A) contains only finitely
many members. To prove this, note that the polynomial bound on M implies that, for all
but finitely many w, EXAM(A, w) contains fewer than 21”2 members. Furthermore,
since at the time each y in EXAM(A, w) is first examined, it has by definition not been
examined before, the event {A: Ix = wéa(y) = xxx} is independent of all previously
examined parts of the oracle, and has probability 272 or less, because of the
preponderance of 3n-bit strings not of the form xxx. Summing 22 272 over all w,
one obtains a finite expected number of strings in EVIDENCE(A), and, by the
Borel-Cantelli lemma, this implies that w{A: EVIDENCE(A) is infinite} = 0.

We now define x,(A) as the kth input string accepted without evidence under
oracle A:

xk(A) =min {x: x> xk_l(A) and x € MA and VyeEVIDENCE(A)gA(Y) # xxx}.

xx(A) may not always be defined (e.g., when M*, the language accepted by M with
oracle A, is finite, or when, with probability zero, EVIDENCE(A) is infinite); however,
when infinitely many inputs are accepted, then (with conditional probability 1) all but
finitely many of them are accepted without evidence.

The class C ={A: M is an infinite subset of RANGE3“}, which we seek to show
has measure zero, has the same measure as D = CN{A: EVIDENCE(A) is finite}. D, in
turn, can be viewed as the limit of the nested sequence of classes D;>D;>D;3 - - -,
where

D ={A: xi(A) exists and V,<x;(A) e RANGE3“}.

D can have nonzero measure only if the ratio u(D.)/u(Dk-1) approaches unity as
k - c0. However, it is easy to see that this ratio has a lim sup not exceeding 1—e¢ ' =
0.632. This is the limiting probability that, at the stage when input x = x, (A) is accepted
without evidence, xxx, having no inverse image among the strings examined so far, does
have an inverse image among the nearly 23 strings of length 3|x| not examined so far.
Therefore, u(D) = u(C) =0, and RANGE3* is P*-immune with probability 1.

The proof that RANGE3” is P*-co-immune with probability 1 proceeds
similarly. Here it is even clearer that if infinitely many members of the complement of
RANGE3" are accepted, all but finitely many of them must be accepted without
adequate evidence (no polynomial number of instances of y such that £a(y) # xxx
can increase above 1/e=~0.368, the asymptotic fraction of oracles for which
Vyéa(y) # xxx). O

Remark. The set RANGE2” ={x: 3, éa(y) =xx} may also be P“-immune,
inasmuch as the obvious strategy for recognizing members of it yields only finitely
many. RANGE2* and RANGE” are P*-coimmune with probability 1.

5. Relativization of the P =? NP 1 co-NP question. It is unclear whether, relative
to a random oracle A, P* is properly contained in the intersection of NP* and co-NP*,

108 CHARLES H. BENNETT AND JOHN GILL

If P*=NP”*Nco-NP* then P* includes such non-oracle-dependent, seemingly-
difficult problems as factorization, known to be in NP co-NP. By the corollary to
Theorem 5, this would imply that such problems are solvable probabilistically in the
sense of BPP, making them computationally tractable in a practical sense, contrary to
appearances.

On the other hand, we have not been able to find an oracle-dependent language in
NP*-P* whose complement is also in NP*-P“. The attempt to construct an oracle-
dependent language analogous, say, to FACTPROJ ={(x, y): x = prime-factorization-
of(y)}, which encodes factorization, is frustrated by the existence of multiple inverse
images under the ¢ function, in contrast with the uniqueness of factorization. Thus,
FACTPROJ is in both NP and co-NP, but the obvious A-dependent analogue,
XIPROJ” = {(x, y): 3,x = z and &a(z) = y}, like RANGE®, is in NP* but not co-NP*.

If we replace the random function £4(x) by a function r (x) which randomly maps
strings of each length onto one another in a 1: 1 fashion (i.e., a permutation), then it is
easy to show that, with probability 1, P” is properly contained in NP™ N co-NP”. The
probability measure is the product measure over n of an assignment of equal weight
1/(2"1) to each permutation of n-bit strings. This separation can be demonstrated using
the oracle-dependent language PIPROJ™ ={(x,y): x == '(y)}, or, more simply,
HALFRANGE” ={x: 3y #(0y)=x}. Both PIPROJ” and HALFRANGE" are in
(NP” Nco-NP™)-P".

By a proof like that of Theorem 6, the oracle-dependent set HALFRANGE3" =
{x: 3y 7(0y) = xxx}, which belongs to NP” N co-NP”, can be shown to be P”-immune
and P”-coimmune with probability 1.

All the theorems given earlier for complexity classes relativized to a random oracle
A hold for the analogous complexity classes relativized to arandom 1 : 1 function 7. The
7 analogues of all but Theorem 3 are proved using the many-to-one random function
£.(x) =[the first |x| bits of 7(xx)], which has nearly the same statistics as £4. The 7
analogue of Theorem 3 can be proved using the language ODDPERM™ ={x: =
performs an odd permutation on strings of length |x[}. For any string length n, odd and
even permutations are equiprobable, and they remain conditionally equiprobable as
long as two or more arguments of the permutation remain unexamined. On the other
hand, by exhaustively tracing all the permutation’s cycles, its parity can be determined
within a polynomial space bound. A random permutation can thus apparently substi-
tute for a random oracle.

On the other hand, we can think of no way to use a random oracle A to construct a
rapidly-evaluable random 1: 1 function 7, analogous to the construction of £4 from A;
for this reason, the 7 function is less intuitively appealing, seeming to have more
built-in structure, than the many-to-one ¢ function.

Oracles with even more complicated kinds of randomness can be imagined, and
indeed are apparently necessary to yield an easy proof, in the relativized setting, of
certain putative properties of the natural number system, viz., the ability to support
classical and public-key cryptography [DH]. A secure public-key cryptosystem, for
example, exists with probability 1 relative to the oracle A join B, where A is a random
oracle of the usual sort and B contains pairs of mutually-inverse random permutations
indexed by A; e.g., for each n-bit string x, if # and v denote respectively the first
and last halves of the 6n-bit string £4(xxxxxx), then the functions &z(uy)=uz and
&g (vz) = vy define mutually inverse random permutations between n-bit strings y and
z. Each user of such a system picks an x randomly and secretly, finds # and v from it
using A, and publishes u but not v. Other users then use B in conjunction with the
public key u to encrypt messages (y - z) that only the original user, with private key v,

P4 #«NP* WITH PROBABILITY 1 109

can economically decrypt (z - y) (using keys of length 3n rather than » insures that,
despite the many-to-one nature of £4, all but finitely many of the keys will be unique).
The oracle A join B is a random analogue of the more complicated but recursive
cryptographic oracles of Brassard [Br]. As Brassard points out, it is difficult to find an
intuitively satisfactory asymptotic definition of cryptographic security. The relativized
cryptosystem described above is secure in the ordinary, non-asymptotic sense that for
typical message sizes (say #» = 100), standard cyptanalytic tasks such as chosen plaintext
attack could not be performed rapidly and reliably by a probabilistic query machine
with a small number of internal states.

6. Discussion, random oracle hypothesis. Without oracles, the hierarchy of
complexity classes includes the following known relations:

RcNP
LOGSPACEcP<cZPPc<(RUco-R)<BPP; c PP< PSPACE.
co-R = co-NP

None of the inclusions is known to be proper, except that LOGSPACES PSPACE.
Relativization with respect to a random oracle A yields the following greatly sharpened
relations, with probability 1:

P* =7ppP* NP*
LOGSPACE" ¢ = # < PP* < PSPACE".
R* = BPP* co-NP*

L

Relativization with respect to a random permutation function 7, instead of the
random oracle A, yields all these results and, in addition, P™ < NP™ N co-NP” with
probability 1, which we have been unable to decide for a simple random oracle.

In view of the large number of classes that are separated by random oracle
relativization, one might suppose that if there exists any oracle at all relative to which
two classes are distinct, they they will be distinct relative to a random oracle. That this is
not the case was shown by Hunt’s [Hu] construction of an oracle X for which
P < ZPP”, even though, by Theorem 5, these classes coincide with probability 1
relative to a random oracle. On the other hand, separations and identities that hold with
probability 1 relative to a random oracle can generally also be demonstrated relative to
particular recursive oracles.

Most of the random oracle results are obtained by using the oracle’s randomness to
force language recognition to depend on oracle queries, thereby in effect substituting
number and size of queries for the more conventional (but theoretically intractable)
dynamic computation resources of time and space. Thus, there is no immediate
prospect of proving similarly sharp results in the absence of an oracle. On the other
hand, random oracles by their very structurelessness appear more benign and less
likely to distort the relations among complexity classes than the oracles traditionally
used in complexity theory and recursive function theory, which are usually designed
expressly to help or frustrate some class of computations. This suggests that statements
that hold with probability 1 for languages relativized to a random oracle A are also true
in the unrelativized case A = J.

To formalize this conjecture, the universe of appropriate statements needs to be
defined. In particular, one wishes to include statements such as P* # NP*, P* = BPP*,
and 3S (S € NP* and S is P*-immune), while excluding such incompletely relativized
statements as P=P”, or “A is recursive.”

110 CHARLES H. BENNETT AND JOHN GILL

Since the languages of interest in relativized complexity theory are uniformly
A-recursive (i.e., recognizable by Turing machines that halt for all oracles and inputs),
they may be referred to by the Godel numbers of their characteristic function, and a
k-adic relativized relation among such languages may be represented by a denumerable
set of k-tuples of Godel numbers of languages obeying the relation.

DEFINITION: A natural number i is a uniform index if the function ¢;" is total and
zero-one valued for all oracles A.

In this definition, <p?, as usual, denotes the function computed by the ith Turing
machine with oracle A. Without loss of generality, these Turing machines may be taken
to be deterministic machines with no time or space bound, since nondeterminism,
probabilism, and uniform (i.e., oracle-independent) time or space bounds can be
incorporated implicitly by appropriate choice of the index i. A relativized language class
such as NP* (or equivalently the monadic relation L € NP*) may now be formally
defined as an indexed collection of A-parameterized languages invariant under appro-
priate group operations.

DEFINITION. Let I be a set of uniform indices. The A-parameterized class of
languages C7 = {{x: ¢{*(x) =1}: i e I'} indexed by members of I is an acceptable rela-
tivized class iff:

1) for every oracle A, the class C# isinvariant under pA-isomorphism [BH] i.e.,if
fisa1:1 onto function such that both f and ' are computable in polynomial time with
oracle A, and if L is any language, then L € Ciff f(L)eCP

2) the class C7 is invariant under polynomial time Turing equivalences [La], [LLS]
of the oracle set; i.e., if B € P* and A € P?, then cf=c?h

Using this definition, it is not difficult to find index sets I for the language classes
P*, BPP* NP*, co-NP*, PP* and PSPACE". Other pA -invariant classes generable
in this manner are the class of finite languages and the class of languages with exactly k
members, k =0, 1, 2, etc. It is not clear, however, that more complicated classes such as
{S: S is NP“-complete} and {S: S € NP* and S is P*-immune} can be generated by a
single set of indices. To handle such cases, higher order relativized relations appear
necessary.

DEFINITION: Let J be a set of ordered k-tuples of uniform indices. The A-
parameterized class R} of k-tuples of languages indexed by the members of J is an
acceptable relativized relation iff:

1) for every oracle A, the relation R% is invariant under pA-isomorphism:
ie, if fis a pA -isomorphism, and (L, M, - - -, Q) is a k-tuple of languages, then
(LM, -, Q)eRFift (f(L), [(M), - -, f(Q)eRT;

2) R7 is invariant under polynomial time Turing equivalences of the oracle set.

Among the important dyadic relations are language equality and complementation
(L =M and L = M) and reducibilities such as the relativized Turing reducibility <A,
whose index set is the union over k of pairs (i, j) such that for all A, @i = i ioinA
where L(j, A) denotes the language whose characteristic function is cpf‘. An important
refinement of <*, obtained by restricting the index k to polynomial time bounded
machines, is the reducibility =", which holds between two languages L and M iff they
are uniformly A-recursive and L is uniformly recognizable in polynomial time with
oracle M join A. Notice that simple Turing reducibility (or its polynomial refinement),
in which the oracle for the reduction is M rather than M join A, is not an acceptable
relativized relation, because it is not invariant under p“-isomorphism for typical A. In
the present context of full relativization, NP“-completeness should be taken to mean
completeness with respect to an invariant reducibility such as =4

P4 #NP* WITH PROBABILITY 1 111

Intersection and union of languages may be expressed by acceptable triadic
relations, e.g.,

R} ={(L,M,N): L, M, and N are uniformly A-recursive and L =M N N}.

The subset relation L <M, used for example in defining P*-immunity, may be
expressed by quantifying the above triadic relation as 35 L= M N N, where the bound
variable N, like the free variables L and M, range over uniformly A-recursive
languages.

With the notion of acceptable relativized classes and relations thus delimited, it is
easy to define a broad class of statements to which the random oracle hypothesis may
reasonably be expected to apply.

DEFINITION. The A-parameterized statement $* is an acceptable relativized
statement if it is definable in quantificational logic using

bound variables denoting uniformly A-recursive languages;
acceptable relativized relations on these variables;
the logical operators AND, OR and NOT.

The oracle set A and the relations’ index sets I, J, etc., appear only as parameters, and
cannot be acted on by any of the quantifiers or relations. Note that acceptable
relativized statements, by virtue of their invariance under P-Turing equivalence of the
oracle set, can only have probability 0 or 1. The random oracle hypothesis may now be
stated:

Random Oracle Hypothesis. Let $* be any acceptable relativized statement. The
corresponding unrelativized statement $° is true if and only if §* is true with
probability 1 when A is chosen randomly.

In particular, since NP* # P* and P* = BPP* are acceptable statements that are
true with probability 1, the random oracle hypothesis would imply P = BPP # NP. We
believe that this hypothesis, or a similar but stronger one, captures a basic intuition of
the pseudorandomness of nature from which many apparently true complexity results
follow. The random oracle hypothesis could be strengthened by attempting to include
non A-recursive languages, by relaxing the invariances required of acceptable relations
(e.g., invariance under logspace”-isomorphism rather than p*-isomorphism), and by
asserting further that results true relative to a random permutation are true absolutely.

The random oracle hypothesis does not deny all differences between no oracle and
a random oracle: clearly, machines equipped with a random oracle can recognize
nonrecursive sets, while unaided machines cannot. Similarly, there exist sets which are
immune absolutely, but, with probability 1, not immune relative to a random oracle
[Ba). However, all known differences of this sort concern partially relativized proper-
ties; in a fully relativized setting the differences disappear, since (for example) the
nonrecursive sets recognized by random oracle machines are all A-recursive.

In view of the great amount of effort expended in unsuccessful attempts to prove
apparently true statements such as P # NP, and NP # PSPACE, it is possible that these
statements may be independent of other commonly accepted axioms of arithmetic and
set theory. The random oracle hypothesis is thus a plausible candidate for a new axiom.

The random oracle hypothesis would be proved if an easily computable substitute
for £ (or A or) could be found, e.g., a function ¢ that requires little time and space to
evaluate, but is pseudorandom in the sense that the inevitable correlations among ¢ (x)
for different x cannot be exploited without large amounts of time and space. The search
for this kind of pseudrorandomness is related to the search (also quite unsuccessful so

112 CHARLES H. BENNETT AND JOHN GILL

far) for a provably almost-everywhere moderately-hard-to-compute function
[Rb], [GB].

It is not hard to invent polynomially computable functions that appear pseu-
dorandom,; the difficulty arises in proving them so. For example, the function ¢(x)=
[the third |x| bits of cos (x)] appears to have the statistical properties of the £ function,
and finding inverse images appears to require an exponential search, but no one knows
how to prove this.

[Remark. In defining ¢ it is necessary to skip an increasing number of early bits of
cos (x) because these early bits are more often 1 than zero, owing to the cosine’s
turning points at +1. The bias in the kth bit is of order 272, thus, the sequence of
(2]x[+ 1)st bits of cos (x), for x=1,2,3, - should have a bias decreasing as x ',
rendering it statistically indistinguishable from a random Bernoulli sequence. Other
more complicated deviations from pseudorandomness, e.g., those arising from the
nonuniform distribution of the difference between cos (x) and cos (x +1), would
presumably be obliterated in the same way.]

By giving up the requirement that a function or set be easy to compute, one gains
the ability to prove that specific sets are pseudorandom, i.e., that they have the
properties of a generic random oracle with respect to bounded computation. A natural
but nonrecursive example would be an algorithmically random set such as the bit
sequence of Chaitin’s real number w [Ch], which expresses the halting probability of a
universal Turing machine with random input. The set {x : the xth digit of w is a 1} is in
class A, of the arithmetical hierarchy, but passes all computable tests of randomness,
and could be substituted for the generic A in all the above theorems. Meyer and
McCreight [MM], using a priority construction, have exibited a recursive pseudoran-
dom set, recognizable in quadruple exponential space but appearing random with
respect to all test sets recognizable in double exponential space. Similar constructions
should yield a proof of a weak analogue of the random oracle hypothesis, viz., that if an
acceptable relativized statement § is true with probability 1 for random A, then it is
also true for some recursive A. The converse, of course, does not hold, since many
relativized statements [BGS] are known to be true for some recursive oracles but false
for others.

Acknowledgments. The authors thank Larry Carter, Mark Wegman, George
Markowsky, Dexter Kozen and Gilles Brassard for numerous helpful discussions,
Gregory Chaitin for helping to formulate the method of using a random oracle to
simulate probabilistic computation, and Robert Solovay for criticizing a preliminary
version of the proof of Theorem 1.

REFERENCES

[Ad] L. ADLEMAN, Two theorems on random polynomial time, Proceedings of the 19th IEEE Symposium on
the Foundations of Computer Science, Ann Arbor, MI, 1978, pp. 75-83.

[AM] L. ADLEMAN AND K. MANDERS, Reducibility, Randomness, and Intractability, Proceedings of the
9th ACM Symposium on the Theory of Computing, 1977, pp. 151-153.

[An] D. ANGLUIN, On counting problems and the polynomial time hierarchy, Theoret. Comput. Sci., to
appear.

[Ba] YA. M. BARZDIN’, On computability by probabilistic machines, Dokl. Akad. Nauk SSSR, 189 (1969),
pp. 699-702, = Soviet Math. Dokl., 10 (1969), pp. 1464-1467.

[Br] G. BRASSARD, Relativized cryptography, Proceedings of the 20th IEEE Symposium on the Foundations
of Computer Science, San Juan, Puerto Rico, 1979, pp. 383-391.

[BGS] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations of the P =" NP question, this Journal, 4
(1975), pp. 431-442.

P4 % NP* WITH PROBABILITY 1 113

[BH] L. BERMAN AND J. HARTMANIS, On isomorphisms and densities of NP and other complete sets, this
Journal, 6 (1977), pp. 305-322.

[BS] T. BAKER AND A. SELMAN, A second step toward the polynomial hierarchy, Proceedings of the 17th
IEEE Symposium on the Foundations of Computer Science, 1976, pp. 71-75.

[Ch] G.CHAITIN, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach.,
22 (1975), pp. 329-340.

[DH] W. DIFFIE AND M. HELLMAN, New directions in cryptography, IEEE Trans. Inform. Theory IT-22
(1976), pp. 644-654.

[Fe] W. FELLER, An Introduction to Probability Theory and its Applications, John Wiley, New York, 1957,
Chapter 7.

[Fe2] W. FELLER, An Introduction to Probability Theory and its Applications, volume II, John Wiley, New
York, 1971, Chapter 4.

[GB] J. GILL AND M. BLUM, On almost everywhere complex recursive functions, J. Assoc. Comput. Mach.,
21(1974), pp. 425-435.

[Gi] J. GILL, Computational complexity of probabilistic Turing machines, this Journal, 6 (1977), pp. 675-695.

[Hu] J. W. HUNT, Topics in probabilistic complexity, Ph.D. dissertation, Department of Electrical Engineer-
ing, Stanford University, Stanford CA, 1978, p. 58.

[KM] D. KOZEN AND M. MACHTEY, On relative diagonals, J. Comput. System Sci., to appear.

[La] R. E.LADNER, On the structure of polynomial time reducibility,J. Assoc. Comput. Mach., 22 (1975), pp.
151-171.

[LL] R. E. LADNER AND N. A. LYNCH, Relativization of questions about log space computability, Math.
Systems Theory, 10 (1976), pp. 19-32.

[LLS] R. E. LADNER, N. A. LYNCH AND A. L. SELMAN A comparison of polynomial time reducibilities,
Theoret. Comput. Sci., 1 (1975), pp. 103-123.

[dLMSS] K. pE LEEUW, E. F. MOORE, C. E. SHANNON AND N. SHAPIRO, Computability by probabilistic
machines, in Automata Studies, An. Math. Studies No. 34, Princeton University Press, Princeton,
NJ, 1956, pp. 182-212.

[Ma] STEPHEN R. MAHANEY, Sparse complete sets for NP: solution of a conjecture by Berman and
Hartmanis, Proceedings of the 21st IEEE Symposium on the Foundations of Computer Science,
Syracuse, New York, 1980, to appear.

[Me] K. MEHLHORN, On the size of sets of computable functions, Proceedings of the 14th IEEE Symposium
on Switching and Automata Theory, Iowa City, IO, 1973, pp. 190-196.

[MM] A.R.MEYER AND E. M. MCCREIGHT, Computability complex and pseudorandom zero-one valued
functions, in Theory of Machines and Computations, Z. Kohavi and Azaria Paz, eds., Academic
Press, New York, 1971, pp. 19-42.

[MS] A. MEYER AND L. STOCKMEYER, The equivalence problem of regular expressions with squaring
requires exponential time, Proceedings of the 13th IEEE Symposium on Switching and Automata
Theory, 1972, pp. 125-129.

[Ra] C. RACKOFF, Relativized questions involving probabilistic algorithms, Proceedings of 10th ACM
Symposium on Theory of Computing, San Diego, CA, 1978, pp. 338-342.

[Rb] M. O. RABIN, Degree of Difficulty of Computing a Function and a Partial Ordering of Recursive Sets,
Tech. Rep. 2, Hebrew Univ., Jerusalem, Israel, 1960.

[Ro] H. ROGERS, JR. Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York,
1967.

[Si] J. SIMON, On Some Central Problems in Computational Complexity, Tech. Rep TR 75-224, Dept. of
Computer Science, Cornell University, Ithaca, NY, 1975.

