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Abstract

What is the power of constant-depth circuits with MODm gates, that can count modulo m? Can they efficiently

compute MAJORITY and other symmetric functions? When m is a constant prime power, the answer is well un-

derstood. In this regime, Razborov and Smolensky proved in the 1980s that MAJORITY and MODm require super-

polynomial-size MODq circuits, where q is any prime power not dividing m. However, relatively little is known

about the power of MODm gates when m is not a prime power. For example, it is still open whether every problem

decidable in exponential time can be computed by depth-3 circuits of polynomial-size and only MOD6 gates.

In this paper, we shed some light on the difficulty of proving lower bounds for MODm circuits, by giving new

upper bounds. We show how to construct MODm circuits computing symmetric functions with non-prime power

m, with size-depth tradeoffs that beat the longstanding lower bounds for AC0[m] circuits when m is a prime power.

Furthermore, we observe that our size-depth tradeoff circuits have essentially optimal dependence on m and d in the

exponent, under a natural circuit complexity hypothesis.

For example, we show that for every ε > 0, every symmetric function can be computed using MODm circuits of

depth 3 and 2nε
size, for a constant m depending only on ε > 0. In other words, depth-3 CC

0 circuits can compute

any symmetric function in subexponential size. This demonstrates a significant difference in the power of depth-3

CC
0 circuits, compared to other models: for certain symmetric functions, depth-3 AC

0 circuits require 2Ω(
√

n) size

[Håstad 1986], and depth-3 AC
0[pk] circuits (for fixed prime power pk) require 2Ω(n1/6) size [Smolensky 1987].

Even for depth-two MODp ◦MODm circuits, 2Ω(n) lower bounds were known [Barrington Straubing Thérien 1990].
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1 Introduction

We consider constant-depth circuits in which every (unbounded fan-in) gate (called a MODm gate) determines

whether the sum of its inputs is divisible by a small constant integer m. Although the model looks rather pecu-

liar, constant-depth circuits with constant moduli gates (a.k.a. CC0 circuits, a.k.a. pure-ACC circuits [Yao90]) have

been a longstanding and fundamental roadblock in the way of improved circuit complexity lower bounds. Since their

identification over 30 years ago [Bar86, BT87], scant progress has been made on lower bounds against CC0 circuits,

and their close cousin ACC0 which includes AND and OR in the gate basis. Some exceptions include work focusing

on special cases of the problem (e.g., [BBR94, GT00, CGPT06, CW09]), uniform lower bounds [AG94], and work

proving strong lower bounds but only for functions whose complexity is in QuasiNP or higher (e.g., [Wil11, CP19,

MW20, CLW20]). If there has ever been a “circuit complexity winter”, CC0 circuits are at least partly to blame.

Besides our own ignorance, could there be deeper reasons why CC0 circuits have been so difficult for showing

limitations? In this paper, we explore the possibility that CC0 circuits may be powerful, focusing on the natural class

of symmetric Boolean functions whose output depends only on the number of ones in the input. Although it has

been conjectured for many years that the AND function does not have polynomial-size CC0 circuits ([BIS90, Thé94,

ST06])1 our results show that low-depth MODm circuits with arbitrary but fixed modulus m can actually compute

arbitrary symmetric Boolean functions (such as MAJORITY) much more efficiently than low-depth circuits with

AND, OR, and MODq gates, when q is a prime power.

It is well-known that AC0 circuits, which consist of AND, OR, NOT gates and have constant-depth, require

exp(Ω(n1/(d−1))) size to compute arbitrary symmetric functions in depth d [Hås86]. In recent work, Oliveira, San-

thanam, and Srinivasan [OSS19] have shown that PARITY gates (a.k.a. MOD2 gates) can help compute symmetric

functions more efficiently than what AND, OR, NOT can accomplish in constant depth. In particular, they show that

AC0[2] circuits (with AND, OR, and PARITY) of depth 4 can compute MAJORITY in exp(Θ(n1/4)) size, depth d ≥ 5

can compute symmetric functions in size exp(Õ(n
2

3(d−4) )), and they show a size lower bound of exp(Ω(n1/(2d−4)))
for the MAJORITY function, improving [Raz87, Smo87].

Smaller MODm Circuits. Could even smaller circuits for symmetric functions be achieved using MODm gates,

for other composite m? It turns out that this is possible. In fact, even in depth three, any symmetric function can

computed with a MODm circuit of size 2nε
for any desired ε > 0.

Theorem 1.1. For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function on n bits can

be computed by depth-3 MODm circuits of exp(O(nε)) size. In fact, the circuits have the form MODp1
◦MODp2···pr ◦

MODp1
, where p1, . . . , pr are distinct primes.2

That is, without any AND/OR gates, we can obtain CC0 circuits that beat the longstanding lower bounds for AC0[q]
circuits, for prime power q.

It has been known for decades [BST90] that depth-two MODp ◦MODm circuits (and CC0[p] ◦MODm circuits)

require 2Ω(n) size to compute the AND function, where p is a prime and m is an arbitrary composite, and that only

certain restricted symmetric functions could be computed in subexponential-size and depth-two [GT00]. Theorem 1.1

shows that one additional layer of MODp gates makes such circuits much more powerful.

It is well-known that for distinct primes p,q, every symmetric function on n bits has a MODpq circuit of size

exp(O(nε)) and depth O(1/ε).3 Our result shows the depth can always be made 3, at the cost of increasing the

modulus to a large enough constant. Hansen [Han06], building on Bhatnagar, Gopalan, and Lipton [BGL06], shows

that for m which is the product of r primes, and sufficiently small ℓ (smaller than each of the prime factors of m), the

MODℓ function can be represented by a polynomial over Zm of degree O(n1/r). As a corollary of Hansen’s work,

Gopalan observed [Gop06] that for every ε > 0 there is an m such that the MOD2 function has depth-3 MODm circuits

1See [HK10] for an interesting counterpoint. They show that probabilistic CC
0 circuits can in fact compute AND efficiently, and that the

AND ∈ CC
0 problem is equivalent to a certain CC

0 derandomization question.
2The G ◦H ◦ I notation means that the output gate has type G, on the middle layer there are gates only of type H, and on the bottom layer

(nearest the inputs) there are only gates of type I.
3The authors don’t know the origin of this construction. It follows from the fact that every function on k bits has a depth-2 MODpq circuit of

size 2O(k), and that symmetric functions can be easily “decomposed” into smaller functions (as in [AK10]).
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of size 2nε
. This naturally suggests the question of whether every symmetric function admits such a circuit, which is

answered by our Theorem 1.1.

Allowing larger depths, we can obtain MODm circuits with a interesting size-depth tradeoff.

Theorem 1.2. Let d ≥ 3 be an integer, and let m be a product of r ≥ 2 distinct primes. Then every symmetric function

on n bits can be computed by depth-d MODm circuits of size exp(Õ(n1/(r+d−3))).

To contrast, recall that the lower bounds for AC0 are exp(Ω(n1/(d−1))) size for depth d [Hås86], and the lower

bounds for AC0[pk] (with AND, OR, and MODpk gates) are exp(Ω(n1/(2d))) [Raz87, Smo87] for prime power pk

(where the constant factor depends on pk). Thus for constant moduli m with enough prime factors, one can beat both

lower bounds with MODm gates.

For large enough depth d, we can achieve even smaller circuits with a size bound of the form exp(nO(1)/(r·d)),
multiplying r and d in the denominator, instead of adding them.

Theorem 1.3. There is a universal constant c ≥ 1 such that, for all sufficiently large depths d, and all composite

m with r prime factors, every symmetric function can be computed by a MODm gate circuit of depth d and size

exp(O(nc/((d−c)(r−1)))).

We remark that the constant c in the above construction is not terribly small.4 In concurrent (very recently released)

work, [IKK21] give a circuit construction with a similar tradeoff (but better constants) for the special case of the AND

function, building on the polynomials of [BBR94].

Even Smaller Circuits in ACC0. Allowing AND and OR gates in our circuit, the size of our circuit constructions

can be further improved. Say that a product m of primes q1, . . . ,qr is good if every prime factor of φ(m) divides m.

We note that the primorial m = pr#, the product of the first r primes, is good.5

Theorem 1.4. Let m be a good product of r primes. For every symmetric function f on n inputs and every depth d ≥ 4

congruent to 1 modulo 3, there exists an AC0[m] circuit of depth d and size exp(Õ(n3/((r+3)(d−1)−3))) computing f .

In the proof of Theorem 1.4, we make use of several tools from the recent AC0[2] circuits of [OSS19] (circuits

for elementary symmetric polynomials and circuits for the coin problem), along with known results on computing

elementary symmetric polynomials modulo a prime.

Applying standard tricks (seen in [HP10, Wil14, OSS19]), Theorem 1.4 extends to linear threshold functions.

Corollary 1.1. Let m be a good product of r primes. For every linear threshold function f on n inputs and every

depth d ≥ 4 congruent to 1 modulo 3, there exists an AC0[m] circuit of depth d+2 and size exp(Õ(n3/((r+3)(d−1)−3)))
computing f .

This follows directly from the fact that every linear threshold function can be written as an OR of poly(n) ANDs

of poly(n) symmetric functions on n-bit inputs [HP10]. In general, Theorem 1.4 implies that TC0 circuits (composed

of MAJORITY and NOT gates) with small fan-in also have a nontrivial simulation.

Corollary 1.2. Every TC0 circuit of depth e in which every gate has fan-in at most s has an equivalent MODm circuit

of depth d · e and size at most exp(Õ(s3/((r+3)(d−1)−3))), where m is a good product of r primes.

The corollary follows from direct substitution of each MAJORITY gate with depth-d circuits from our Theo-

rem 1.4. Note that such depth-e TC0 circuits have at most O(se−1) gates.

4Our c is at least 6; this matters if one cares about very small d and r.
5Indeed, for all i = 1, . . . ,r, the prime factors of qi −1 are contained in {q1, . . . ,qi−1}, all of which divide m = pr#.
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Can’t you do any better? Theorem 1.4 shows that for certain m which are products of r primes, one can compute

arbitrary symmetric functions in depth d and size exp(n
c
rd ) where c > 0 is a constant. We give evidence that it may be

difficult to improve asymptotically on the dependence of r and d in the exponent of n, based on a natural hypothesis

regarding TC0 circuits, which are constant-depth circuits composed of MAJORITY and NOT gates. (Of course it is

difficult to prove anything unconditional here, because as far as we know, polynomial-size depth-3 MOD6 circuits

could compute every EXP function. Thus we settle for conditional hardness.)

Recall that a SYM ◦AND circuit is a depth-two circuit where the output is a symmetric function and the bottom

layer computes ANDs of input variables and negations. The hypothesis is that subexponential-size SYM ◦AND

circuits cannot compute TC0 circuits in which each gate has linear fan-in.

Hypothesis 1 (SYM ◦AND Hypothesis). There are constants c,k > 1 such that for sufficiently large n, there is a

function f : {0,1}n → {0,1} computable by TC0 circuits of depth c with at most Õ(n) gates where each gate has

fan-in Õ(n), such that f does not have an exp(O(n1/k)) size SYM◦AND circuit.

A well-known result in circuit complexity is that every ACC0 circuit of size s can be simulated by a SYM◦AND

circuit of size spoly(logs) [BT94, CP19]. Therefore, the SYM◦AND Hypothesis is a strengthening of the longstanding

hypothesis that TC0 6⊂ ACC0: the SYM ◦AND Hypothesis implies exponential lower bounds for simulating TC0

circuits with ACC0 circuits. Indeed, the hypothesis implies that our ACC0 circuits for symmetric functions are nearly

size-optimal in their dependence on depth and modulus.

Theorem 1.5 (Near-Optimality Modulo a Conjecture). Assuming the SYM◦AND Hypothesis, there is a fixed α > 0

such that for every m and d, every depth-d ACC0[m] circuit computing the MAJORITY function on n inputs requires

size at least exp(n
α
rd ) for sufficiently large n, where r is the number of distinct prime factors of m.

The proof of Theorem 1.5 is in Appendix A. Therefore, we view size bounds of the form exp(n1/Θ(rd)) (as seen

in our results) as a natural barrier to better upper bounds on MODm circuits: any function with significantly smaller

MODm circuit complexity (as a function of n, r, and d) would also yield a highly non-trivial SYM ◦AND circuit

simulation of TC0. In order to achieve significantly smaller circuits as a function of n, d, and r, one has to at least

refute the hypothesis. Of course, even assuming Hypothesis 1, our circuits can probably be improved by constant

factors in the exponents.

2 Preliminaries

We assume basic familiarity with computational complexity [AB09] and Boolean circuit complexity [Juk12], al-

though we have tried to keep the paper relatively self-contained.

Notation. For a binary vector x, we use |x|1 to denote the ℓ1-norm, i.e., the number of ones in x.

Besides AC0, ACC0, CC0, and TC0, we also use the following additional notation for various circuit types, all of

which is standard. A circuit of type SYM is simply a symmetric Boolean function. An EMAJ function outputs 1 on

an input (x1, . . . ,xn) ∈ {0,1} if and only if ∑i xi = T for a fixed target T . A circuit of type G1 ◦ · · · ·Gd notation is a

circuit where the output gate has type G1, the next layer of gates all have type G2, and so on, and the bottom layer

(nearest the inputs) only contains gates of type Gd .

The following basic fact is useful to keep in mind.

Proposition 2.1. For all positive m,n ∈ Z, any MODm gate of fan-in t can be simulated by a MODmn of fan-in nt.

Proof. For any positive integer t, m | t if and only if nm | nt. So MODm(x1, . . . ,xt) = MODmn(n · x1, . . . ,n · xt).

Tools. We make use of several known results. First, we note that AND circuits of small fan-in have efficient depth-

two MODm circuits. A version was first used in [BIS90] in the context of MOD circuits, and more recently a strength-

ening was used to reduce the size-depth tradeoff for simulating ACC0 circuits with SYM ◦AND circuits [CP19].

(Chen and Papakonstantinou [CP19] call this “linearization”.)
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Proposition 2.2 ([BIS90, CP19]). Let a,b ≥ 2 be fixed integers with gcd(a,b) = 1. Every AND of k MODb gates can

be represented by an MODa ◦MODb circuit of O(bk) gates. Furthermore, on all k-bit inputs, the sum of the inputs to

the output gate of the circuit is always 0 (mod a) or 1 (mod a).

Our next tool is an old number-theoretic theorem on elementary symmetric polynomials modulo p, masterfully

applied by Beigel, Barrington, and Rudich [BBR94] in their non-trivial degree polynomials for the OR functions over

composite moduli.

Theorem 2.1 (Lucas’ Theorem [Luc78]). For all primes p and natural numbers n,

(
n

pi

)
mod p

is the i-th digit in the p-ary representation of n.

Lucas’ theorem has the following direct consequence for polynomial representations of Boolean functions.

Lemma 2.1 ([BBR94]). Let p be a prime, let n be a natural number, and let ei(x) denote the i-th elementary symmetric

polynomial on n variables. For a binary vector x, let

∑yi · pi = |x|1

be the p-ary expansion of |x|1. Then for every i, epi(x)≡ yi mod p.

In order to apply the elementary symmetric polynomials, our construction also involves arithmetic circuits over

prime fields. These circuits will be translated into Boolean circuits with MODm gates.

Lemma 2.2 ([COST16, OSS19]). Let p be a prime, let n, i ∈N, and let d ≥ 2 be even. There is an arithmetic circuit

over Fp of depth d and size nO(i2/d) computing the i-th elementary symmetric polynomial (over Fp) on n inputs, where

the output gate is a × gate.

We also use AC0 circuits for the coin problem. These were also used by [OSS19] in their improved AC0[2] circuits

for symmetric functions.

In the following, we let i, j ∈ {0,1, . . . ,n}, and let Di, j be any partial function satisfying the properties:

Di, j(x) = 1 if |x|1 = i, and

Di, j(x) = 0 if |x|1 = j.

Lemma 2.3 ([OW07, Ama09, OSS19]). Let d ≥ 2 and n be natural numbers, and let i 6= j. Then there is an AC0

circuit of depth d and size exp(O(d (n/|i− j|)1/(d−1))) computing Di, j on n inputs, where the output gate is an AND.

Intuitively, Lemma 2.3 will be useful when |i− j| is “large”.

3 CC0 Circuits for Symmetric Functions

We begin by giving efficient depth-3 CC0 circuits for symmetric functions.

Reminder of Theorem 1.1. For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function

on n bits can be computed by depth-3 MODm circuits of exp(O(nε)) size. In fact, the circuits have the form MODp1
◦

MODp2···pr ◦MODp1
, where p1, . . . , pr are distinct primes.

After that, we will generalize the result to a size-depth tradeoff in the next subsection. That tradeoff will be further

improved in Section 4 when we allow the use of AND and OR gates.

As a warm-up, we first consider the special case where ε > 1/3 and m = 30.
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Theorem 3.1. Every symmetric Boolean function on n variables has a depth-three circuit of the form MOD5◦MOD6◦
MOD5, of size exp(O(n1/3 logn)). Furthermore, the output gate is a linear sum which always evaluates to either 0 or

1 modulo 5.

Note that the upper bound of Theorem 3.1 already beats the well-known lower bounds for depth-3 AC0 [Hås86].

The remainder of this section is devoted to the proof. A key component is a low-degree multivariate polynomial over

Z6 that vanishes on a Boolean vector if and only if the sum of the ones in the vector equals a particular value.

Theorem 3.2. For every n ∈ N and every T ∈ {0,1, . . . ,n}, there is a polynomial PT (x1, . . . ,xn) of degree at most

3
√

n such that for all a ∈ {0,1}n, PT (a) = 0 mod 6 if and only if ∑
i

ai = T.

Proof. We want a polynomial p on n variables such that for all y1, . . . ,yn ∈ {0,1} and T ∈ {0,1, . . . ,n},

p(y1, . . . ,yn)≡ 0 mod 6 ⇐⇒ ∑
i

yi = T.

For the elementary symmetric polynomial eJ(y1, . . . ,yn) of degree J, and for all a1, . . . ,an ∈ {0,1},

eJ(a1, . . . ,an) =

(
(∑i ai)

J

)
.

Thus by Lucas’ Theorem (Theorem 2.1), epi(a1, . . . ,an) mod p equals the i-th digit in the p-ary representation of

∑i ai.

Let s and t be integers so that 2
√

n ≥ 2s >
√

n and 3
√

n ≥ 3t >
√

n.

Suppose when we write T ∈ {0,1, . . . ,n} in binary notation, the s low order bits are bs−1, . . . ,b0. Furthermore,

when we write T in ternary notation, the t low order trits are ct−1, . . . ,c0.

Define the polynomials

p2(y1, . . . ,yn) := 1−
s−1

∏
j=0

(1− (b j − e2 j(y))) mod 2

and

p3(y1, . . . ,yn) := 1−
t−1

∏
j=0

(1− (c j − e3 j(y))2) mod 3.

Note the degrees of p2 and p3 are O(
√

n). In particular, deg(p2) =
s−1

∑
j=0

2 j = 2s − 1 and deg(p3) =
s−1

∑
j=0

(2 · 3 j) =

2(3s − 1)/2 = 3s − 1.

We observe a few properties of the polynomials p2 and p3:

Proposition 3.1. For all a∈{0,1}n, p2(a)≡ 0 mod 2 if and only if the binary representation of ∑i ai equals bs−1 · · ·b0

in the last s bits. Analogously, p3(a) ∈ {0,1} mod 3, and p3(a)≡ 0 mod 3 if and only if the ternary representation

of ∑i ai equals ct−1 · · ·c0 in the last t trits.

Proof. We prove the proposition for p3; the case of p2 is analogous. Let a ∈ {0,1}n. Each difference (c j − e3 j(a))2

is either 0 or 1 modulo 3, and it is 0 if and only if c j = e3 j (a). Thus the product ∏t−1
j=0(1− (c j − e3 j(a))2) equals

1 if and only if c j = e3 j(a) for all j = 0, . . . , t − 1, hence p3(a) ≡ 0 mod 3 if and only if c j ≡ e3 j(a) mod 3 for all

j = 0, . . . , t − 1. Recalling that (e3 j (a) mod 3) equals the j-th trit of ∑i ai, the result follows.

We note that in general, working modulo a prime q, we may construct a polynomial with degree (qt − 1) of the

form

pq(y1, . . . ,yn) = 1−
t−1

∏
j=0

(1− (c j − eq j(y))q−1). (1)
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By the above proposition, it follows that for all a ∈ {0,1}n,

p2(a)≡ 0 mod 2 ⇐⇒ ∑
i

ai ≡ T mod 2s

and

p3(y)≡ 0 mod 3 ⇐⇒ ∑
i

ai ≡ T mod 3t .

Since ∑i ai and T are both in {0, . . . ,n} and 2s ·3t > n, by the Chinese Remainder Theorem we have

∑
i

ai = T ⇐⇒ (∑
i

ai ≡ T mod 2s)∧ (∑
i

ai ≡ T mod 3t)

⇐⇒ (p2(y)≡ 0 mod 2)∧ (p3(y)≡ 0 mod 3) ⇐⇒ 3p2(y)+ 2p3(y)≡ 0 mod 6.

Thus 3p2(y)+2p3(y) is a polynomial of degree O(
√

n) which equals 0 mod 6 if and only if ∑
i

yi = T . This completes

the proof of Theorem 3.2.

We now proceed with the proof of Theorem 3.1.

Proof. Let f be a symmetric function and let g : {0,1, . . . ,n}→ {0,1} be its companion function. That is, for every

x, f (x) = g(|x|1).
The output gate will be a MOD5 gate that

• (a) sums over possible choices of T ∈ {0,1, . . . ,n} such that g(T ) = 1 and

• (b) sums over all ways to partition T into a sum of t = ⌈n1/3⌉ parts T1, . . . ,Tt ∈ {0,1, . . . ,T}.

There are 2O(n1/3 logn) choices over (a) and (b). We associate each part Ti with a disjoint set Si of at most ⌈n2/3⌉
variables from the input. For each of the choices from (a) and (b), we wish to verify that, for all i = 1, . . . , t, the sum

of all variables in Si equals Ti. Note that there is at most one choice from (a) and from (b) that could possibly be

consistent with the given input, so we can use a modulo-5 sum (not just a MOD5 gate) to sum over these choices.

This modulo-5 sum will always be either 0 or 1 modulo 5.

By our construction of EMAJ polynomials, each sum over the set Si of n2/3 variables can be checked with a MOD6

gate of 2O(n1/3) fan-in, where each input to the MOD6 gate is the output of an AND of fan-in O(n1/3). Putting these

MOD6 ◦AND circuits below each wire of the modulo-5 sum, at this point, we have a modulo-5 sum of 2O(n1/3 logn)

ANDs of fan-in O(n1/3) of MOD6 of fan-in 2O(n1/3) of ANDs of fan-in O(n1/3).

To eliminate the AND gates, we apply Proposition 2.2, yielding that an AND of f MODq gates can be represented

by a modulo-p sum of O(q f ) MODq gates, as long as gcd(p,q) = 1. In particular, for the “middle” ANDs we set

p = 5 and q = 6, and for the “bottom” ANDs we set p = 6 and q = 5. We obtain a modulo-5 sum of 2O(n1/3 logn)

MOD6 of fan-in 2O(n1/3) of MOD5 of fan-in O(n1/3).

The above construction has several interesting corollaries; here is one.

Corollary 3.1. Every circuit of the form MOD5 ◦SYM of size 2O(n1/3 logn) can be simulated by a depth-three MOD5 ◦
MOD6 ◦MOD5 circuit of size 2O(n1/3 logn).

Proof. We simply replace each SYM gate (which takes n inputs) in the MOD5 ◦SYM circuit with a modulo-5 sum

of MOD6 ◦MOD5 as in the previous theorem.

We are now ready to generalize to Theorem 1.1.

Reminder of Theorem 1.1. For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function

on n bits can be computed by depth-3 MODm circuits of exp(O(nε)) size. In fact, the circuits have the form MODp1
◦

MODp2···pr ◦MODp1
, where p1, . . . , pr are distinct primes.
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Proof. Let ε > 0, and let f be a symmetric function. Take k := ⌊1+ 1/ε⌋, let m be the product of the first k primes,

and let m′ = m/2.

We use a similar construction as in Theorem 3.1 to get a MOD2 ◦MODm′ ◦MOD2 circuit for f .

The differences are that we partition the target T ∈ {0,1, . . . ,n} into a sum of ⌊n1/k⌋ parts where each part is over

v := n1−1/k variables, and by using k−1 primes instead of two, we can obtain a polynomial for EMAJ on v variables

of degree O(v1/(k−1))≤ O(n1/k) in an analogous way.

More precisely, let T ′ ∈ {0,1, . . . ,v} be a target value. For the first k− 1 odd primes q1, . . . ,qk−1, we take k− 1

polynomials pq1
(x), . . . , pqk−1

(x) as defined in (1) such that each pqi
(x) has degree (qi)

ti − 1, where the ti are chosen

such that for all i ∈ [k],

• (qi)
ti = Θ(v1/(k−1)),

• T ′ ≤ v < ∏i(qi)
ti , and

• for all a ∈ {0,1}v we have

pqi
(a) = 0 mod qi ⇐⇒ ∑

i

ai ≡ T ′ mod (qi)
ti .

By the Chinese Remainder Theorem, and similar reasoning as in Theorem 3.1, there are fixed coefficients Mi ∈ [m′]
such that

k−1

∑
i=1

Mi · pqi
(a)≡ 0 mod m′ ⇐⇒

k−1∧

i=1

[pqi
(a)≡ 0 mod qi] ⇐⇒ ∑

i

ai = T ′.

Thus we have a polynomial of degree O(v1/(k−1)) that vanishes modulo m′ precisely when the sum of v variables

equals the target T ′. Naturally we might write this polynomial as a MODm′ ◦AND circuit of exp(Õ(v1/(k−1))) size; by

replacing each AND with a modulo-m′ sum of MOD2 gates (Proposition 2.2), we can express it as a MODm′ ◦MOD2

circuit. Our final circuit has the form MOD2 ◦MODm′ ◦MOD2 and size exp(Õ(n1/k))≤ exp(O(nε)).

3.1 Size-Depth Tradeoff with CC0

Allowing depth d circuits for d > 3, the size of the above construction can be improved as a function of the number of

distinct primes r in the modulus. Here we only briefly describe the construction, as the size bound will be improved

significantly (as a function of d and r) in the following section.

Reminder of Theorem 1.2. Let d ≥ 3 be an integer, and let m be a product of r ≥ 2 distinct primes. Then every

symmetric function on n bits can be computed by depth-d MODm circuits of size exp(Õ(n1/(r+d−3))).

Proof. Let p and q be the smallest prime factors of m. We prove by induction on d that there are circuits of size

exp(O(n1/(r+d−3) logn)), and we prove additionally that the output gate is a MODp gate when d is odd and a MODq

gate when d is even.

For d = 3, we use the construction of Theorem 1.1 to obtain a MODp ◦MODm/p ◦MODp circuit of depth 3 and

size exp(O(n1/r logn)).

For the inductive step, we proceed similarly to the proof of Theorem 1.1, except that we use a MODp or MODq

gate as the output gate (depending on the parity of d). We partition the target T into a sum of t = ⌈n1/(r+d−3)⌉ parts,

where each part contains at most ⌈n(r+d−4)/(r+d−3)⌉ variables, and our circuit sums over all exp(O(t logn)) choices

for the number of true variables in each part. Since EMAJ is a symmetric function, we can inductively compute each

EMAJ on ⌈n(r+d−4)/(r+d−3)⌉ variables with a circuit of depth d−1, as guaranteed by the inductive hypothesis. These

circuits have size exp(O((n(r+d−4)/(r+d−3))1/(r+d−4) logn)) = exp(O(n1/(r+d−3) logn)), and their output gates have

fan-in exp(O(n1/(r+d−3) logn)). WLOG assume d is odd. Then the depth-(d− 1) circuits for EMAJ described above

have the form

MODq ◦ · · · ◦MODp ◦MODm/p ◦MODp,

and our entire circuit has the form

MODp ◦AND◦MODq ◦ · · · ◦MODp ◦MODm/p ◦MODp,
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where the ANDs have fan-in t. As before, each AND◦MODq can be replaced by a modulo-p sum of MODq gates

using Proposition 2.2, which only increases the circuit size by a factor of 2O(t).

Our final circuit has depth d and size exp(O(n1/(r+d−3) logn)).

A Better Dependence on Depth and Modulus. We can give a CC0 circuit construction with a better asymptotic

tradeoff (in the double-exponent). We will keep the description of this construction brief and to the point, as its size

will be further improved (replaced by better constants) in the next section, using OR and AND gates.

Reminder of Theorem 1.3. There is a universal constant c ≥ 1 such that, for all sufficiently large depths d, and m

which is the product of the first r prime factors, every symmetric function can be computed by a MODm gate circuit

of depth d and size exp(O(nc/((d−c)(r−1)))).

Proof. First, we recall that every symmetric function f on n variables can be expressed as a MAJORITY of O(n)
MAJORITY gates over the n variables (see for example [BBL92] for a reference). Thus it suffices to give a circuit

for MAJORITY.

Allender and Koucky [AK10, Theorem 3.8] give a downward self-reduction for the MAJORITY function: they

prove that there is a universal constant a ≥ 1 such that for every k ≥ 1, the MAJORITY function on n bits can be

computed by a TC0 circuit of depth at most ak where each MAJORITY gate has fan-in at most O(n1/k). Applying

these circuits to the depth-two TC0 circuits described in the previous paragraph, we obtain an analogous circuit of

depth 2ak for any given symmetric function f .

Replace each MAJORITY gate of fan-in at most O(n1/k) with a depth-3 MODm circuit of size at most

exp(Õ(n1/(k(r−1)))),

as provided by Theorem 1.2. (Note that each NOT gate can always be replaced by a single MODm gate, if we do not

want to allow NOT gates in our CC0 circuit.) This results in a circuit of depth 6ak and size

exp(Õ(n1/(k(r−1))))≤ exp(Õ(n1/(k(r−1)))).

Thus for depths d = 6ak where k is a positive integer, the size bound is at most exp(n6a/(d(r−1))). For depths d that

are not divisible by 6a, we can simply use the construction for d′ = 6ak where d′ < d < 6a(k+ 1), which has size at

most exp(n6a/(d′(r−1)))< exp(n6a/((d−6a)(r−1))).

The above construction is not useful for d < 6 and small r, which are of interest. In the next section, we will show

that much better constants are obtainable in the ACC0 setting.

4 Size-Depth Tradeoff With ACC0

We now turn to showing how adding AND and OR gates can help improve the circuits even further. We begin with a

result using the concrete modulus 42.

Theorem 4.1. For every symmetric function f on n inputs and every depth d with d ≡ 2 mod 6, there exists an

AC0[42] circuit of depth d and size exp(Õ(n
6

13(d−2) )) computing f .

Observe that, for sufficiently large d, the circuit size of Theorem 4.1 already drops below Smolensky’s AC0[pk]
depth-d lower bound of exp(Ω(n1/(2d))) size [Smo87] for computing MODq when gcd(p,q) = 1.

We build on the results of Oliveira et al. [OSS19] for computing symmetric functions in AC0[2]. At a high level,

we note that every symmetric function can be written as an OR of AND of (partial) functions of the form Di, j, where

Di, j(x) = 1 if |x|1 = i, and

Di, j(x) = 0 if |x|1 = j,

recalling that |x|1 is the number of 1’s in x. Note that Di, j could have arbitrary behavior on any other Boolean inputs.
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When |i− j| is large, the function Di, j can be simulated by the standard Coin Problem, for which there are known

AC0 circuits (see the Preliminaries). When |i− j| is small, we give a new construction of AC0[42] circuits for Di, j.

We will utilize arithmetic circuits for elementary symmetric polynomials. To that end, the following lemma shows

how to generically translate low-depth arithmetic circuits over Fp into AC0[p(p− 1)] circuits, in a way that only

increases the circuit depth by a 3/2 multiplicative factor. (Getting some constant factor increase is not too difficult;

[AAD00] first showed a correspondence between ACC0 and arithmetic circuits over finite fields.)

Lemma 4.1. Let p be prime, and let C be an arithmetic circuit over Fp of size s and depth 2d (with alternating layers

of + and × gates) on n inputs, such that for every x∈ {0,1}n, C(x)∈ {0,1}. Then C is equivalent to an AC0[p(p−1)]
circuit C′ of size O(s · p) and depth 3d.

Proof. We represent an element x of Fp in unary, by p indicator bits

b0(x),b1(x), . . . ,bp−1(x),

where b0(x) = 0 iff x = 0, and for i 6= 0, we let bi(x) = 1 iff x = i. (We treat the 0-th indicator bit as a special case

to make later constructions easier.) We now obtain C′ by replacing each gate in C with a small AC0[p(p− 1)] gadget

circuit.

For each addition gate of C computing

x =
k

∑
j=1

x j,

we replace that gate with p parallel MODp gates, so that

bi(x) = 1 ⇐⇒ (p− i)+
k

∑
j=1

p−1

∑
i′=1

i′ ·bi′(x j)≡ 0 mod p.

(As a special case, we output the negation of the right hand side in the case of b0(x).) To see why this works, we

observe that the inner sum computes x j, and so the outer sum computes x. Now x+(p− i)≡ 0 mod p precisely when

x = i.

Take g to be a generator of the multiplicative group F
∗
p of Fp, and let logg(n) denote the discrete logarithm base g

in Fp (i.e., glogg(n) = n mod p). For each multiplication gate of C computing

x =
k

∏
j=1

x j,

we replace that gate with an AND gate placed in parallel with p− 1 AND ◦MODp−1 circuits, implementing the

conditions

b0(x) =
k∧

j=1

b0(x j),

and for i 6= 0,

bi(x) = Gi ∧
k∧

j=1

b0(x j).

where Gi is a MODp−1 gate such that

Gi = 1 ⇐⇒ (p− logg(i))+
k

∑
j=1

p−1

∑
i′=2

bi′(x j) · logg(i
′)≡ 0 mod p− 1.

To see why this works, we observe that the inner sum computes the discrete logarithm of x j (for the same reason that

the inner sum in the addition case computes x j). Since x = ∏x j, we have (for non-zero x) logg x = ∑ logg x j, so the

outer sum computes the discrete logarithm of x. Now (logg x)+ (p− logg i)≡ 0 mod p− 1 precisely when x = i.

Finally, we take the output wire of C′ to be the negation of the b0 wire from the output gate of C.
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We note that as a special case, an arithmetic circuit over F2 can be viewed directly as an AC0[2] circuit (with the

same size and depth), since an element of F2 is simply a bit, addition in F2 is MOD2, and multiplication is AND.

Additionally, when p− 1 is not square-free, we can improve the modulus in the circuit above.

Lemma 4.2. Let p be prime, and let C be an arithmetic circuit over Fp of size s and depth 2d (with alternating layers

of + and × gates) on n inputs, such that for every x ∈ {0,1}n, C(x) ∈ {0,1}. Then C is equivalent to an AC0[pm]
circuit of size O(sp−1 p(p−1) log(p−1)) and depth 3d, where m is the product of the distinct prime factors of p− 1.

Proof. We start with the circuit C′ given by Lemma 4.1. We now use Theorem 2.1 and the Chinese Remainder

Theorem to simulate each MODp−1 gate of fan-in f using an AND◦MODm ◦AND, where the three layers of gates

have fan-in at most log(p− 1), f p−1, and p− 1, respectively. The bottom layer of AND gates have MODp gates as

inputs, so can be replaced with a sum (mod m) of fan-in O(pp−1) using Proposition 2.2. This can be absorbed into the

layer of MODm gates. The top layer of AND gates can similarly be converted into a sum (mod p) of fan-in at most

plog(p−1), which can be absorbed into the MODp gates for which they are inputs (since MODp−1 gates in C′ can only

be inputs to MODp gates).

Putting these results together, we obtain the following:

Theorem 4.2. Let d be a multiple of 6, let n be a natural number, and let α ∈ (0,1]. Set

s :=

⌈
3α log2 n

7

⌉
, t :=

⌈
2α log3 n

7

⌉
, u :=

⌈
2α log7 n

7

⌉
,

and m := 2s3t7u. Then there is an AC0[42] circuit of depth d + 1 and size 2Õ(n6α/7d) computing the MODm function

on n inputs, where the output gate is an AND gate.

Proof. Applying Lemma 2.2, we construct:

• arithmetic circuits C1,C2, . . . ,C2s over F2 of depth d, where Ci computes the i-th elementary symmetric poly-

nomial modulo 2,

• arithmetic circuits D1,D3, . . . ,D3t over F3 of depth 2d/3, where Di computes the i-th elementary symmetric

polynomial modulo 3, and

• arithmetic circuits E1,E7, . . . ,E7u over F7 of depth 2d/3, where Ei computes the i-th elementary symmetric

polynomial modulo 7,

all of which have size nO(n6α/7d), given our parameters.

We convert each of the Di and Ei into AC0[42] circuits D′
i and E ′

i using Lemma 4.1, and as previously observed, the

Ci are already AC0[2] circuits.

Finally, from Lemma 2.1 and the Chinese Remainder Theorem, all of the Ci(x), D′
i(x), and E ′

i (x) output 1 if and

only if |x|1 ≡ 0 mod m. Our final circuit for MODm is obtained by taking the AND of all of these circuits.

We are now ready to prove Theorem 4.1.

Proof. Let d ≡ 2 mod 6, let f be a symmetric function on n inputs, and let g be its companion function; that is, for

every x, f (x) = g(|x|1). We begin with the same opening move as Oliveira, Santhanam, and Srinivasan [OSS19],

observing that

f (x) =
∨

i∈g−1(1)

∧

j 6=i

Di, j,

where Di, j(x) = 1 if |x|1 = i and Di, j(x) = 0 if |x|1 = j (and has otherwise arbitrary behavior). Thus it suffices to

construct circuits Ci, j computing functions consistent with Di, j.

When |i− j| ≥ n7/13, Lemma 2.3 gives an AC0 circuit Ci, j of depth d − 1 and size exp(Õ(n6/(13(d−2)))) computing

Di, j.
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When |i− j| ≤ n7/13, we observe that a circuit for MODm suffices, with m > n7/13. We take α = 7/13 in Theorem

4.2. Then we have a circuit C′
i, j of depth d − 1 and size exp(Õ(n6/(13(d−2)))) computing the MODm function on 2n

inputs, where m > n7/13. We now take Ci, j(x) =C′
i, j(x1m−i0n−m+i). Finally, we set

C =
∨

i∈g−1(1)

∧

j 6=i

Ci, j.

We can collapse the output AND gates of all of the Ci, j into the second layer AND gates, so C has depth d and size

exp(Õ(n6/(13(d−2)))), as desired.

More generally, for certain m which are the product of r primes, we can improve the results of Theorem 4.1. Recall

from the introducion that we defined a product m of primes q1, . . . ,qr to be good if every prime factor of φ(m) divides

m, and we noted that the primorial m = pr#, the product of the first r primes, is good.

Reminder of Theorem 1.4. Let m be a good product of r primes. For every symmetric function f on n inputs and ev-

ery depth d ≥ 4 congruent to 1 modulo 3, there exists an AC0[m] circuit of depth d and size exp(Õ(n3/((r+3)(d−1)−3)))
computing f .

Proof. Let

m =
r

∏
a=1

pa

be a good product of r primes. For each a ∈ [r], let sa =
⌈
α logpa

n
⌉

for some α to be defined later. By Lemma 2.2,

there are arithmetic circuits Ca,b over Fpa of depth (2/3)(d−1) and size nO(n3α/(d−1)) computing the pb
a-th elementary

symmetric polynomial in 2n inputs over Fpa . By Lemma 4.2, we can convert these into AC0[m] circuits C′
a,b of depth

d− 1 and size 2Õ(n3α/(d−1)). When |i− j| ≤ nαr, i 6≡ j mod psa
a for at least one a by the Chinese Remainder Theorem,

so we can construct a circuit Ei, j computing Di, j by taking

Ei, j(x) = ¬C′
a,b(x,0

p
sa
a − j1n+ j−p

sa
a )

for some pair (a,b). When |i− j| ≥ nαr, we use Lemma 2.3 to get a circuit Ei, j of depth d−1 and size exp(Õ(n(1−αr)/(d−2)))

computing Di, j. All of the Ei, j have AND gates as output gates, so we take α = d−1
(r+3)(d−1)−3

to balance the sizes of

the two circuit constructions and complete the proof as per Theorem 4.1.

It is worth noting that when 2 | m, we can improve this construction slightly. When 2 | m (and 6 | d − 1), the

(r+ 3)(d− 1)− 3 in the denominator of the double exponent instead becomes (r+ 7
2)(d − 1)− 3.

5 Conclusion

We believe our work demonstrates that CC0 circuits are not as weak as conventional wisdom anticipates, even at depth

three. We hope that researchers seriously consider (possibly refuting) the SYM ◦ AND hypothesis, as it stands in the

way of obtaining significantly smaller CC0 and ACC0 circuits for symmetric functions.

A natural next step would be to explore how much further our constructions can be pushed beyond symmetric

functions. Our Theorem 1.5 already demonstrates that TC0 circuits with linearly many gates and linear fan-in can be

non-trivially simulated with CC0 circuits in subexponential size. Another question is whether NC1 circuits or Boolean

formulas can be simulated similarly. For another example, it is well-known that time t and space s computations can

be simulated with depth-three AC0 circuits of size 2O(
√

t·s); this follows from efficient simulations in the polynomial

hierarchy of space-bounded computation [Nep70]. Could the size of this construction be improved, using MODm

gates? If such an improved circuit could be constructed in a uniform way, it would likely imply new time-space lower

bounds for decision problems in PP or the counting hierarchy [AKR+01]. However, even a non-uniform construction

would be very interesting.
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[ST06] Howard Straubing and Denis Thérien. A note on MODp - MODm circuits. Theory Comput. Syst.,

39(5):699–706, 2006.

13
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A Proof of Theorem 1.5

Let us recall the SYM ◦ AND Hypothesis and its consequence stated in the introduction.

Reminder of Hypothesis 1. There are constants c,k > 1 such that for sufficiently large n, there is a function

f : {0,1}n →{0,1} computable by TC0 circuits of depth c with at most Õ(n) gates where each gate has fan-in Õ(n),
such that f does not have an exp(O(n1/k)) size SYM◦AND circuit.

Reminder of Theorem 1.5. Assuming the SYM ◦AND Hypothesis (Hypothesis 1), there is a fixed α > 0 such that

for every m and d, every depth-d ACC0[m] circuit computing the MAJORITY function on n inputs requires size at

least exp(n
α
rd ) for sufficiently large n, where r is the number of distinct prime factors of m.

We prove the contrapositive. We start with the negation of the theorem’s conclusion:

Suppose for every α > 0, there is some modulus m which is a product of r primes, along with some depth

d, such that MAJORITY can be computed by a depth-d ACC0[m] circuit of size exp(O(n
α
rd )).

Assuming the above, we will refute the SYM◦AND Hypothesis: we will show for all c,k > 1 and every function

f computable by the appropriate depth-c TC0 circuits, f has an exp(O(n1/k)) size SYM◦AND circuit.

Let c,k > 1 be arbitrary. Let C be a TC0 circuit C with depth c and Õ(n) gates each of fan-in at most Õ(n). Suppose

we substitute each MAJORITY gate of C with a copy of the assumed ACC0[m] circuit. We obtain a ACC0[m] circuit

C′ of depth at most c ·d and of size exp(Õ(n
α
rd )) such that C′ is equivalent to C.

Chen and Papakonstantinou [CP19] prove that for every depth-d′ size-s circuit D over AND, OR, and MODm gates,

where m is the product of r distinct primes, D is equivalent to a SYM ◦ AND circuit D′ of size at most

S′(s,m,r,d′) = 2(m logs)10rd′
.

Applying their reduction to our C′, we obtain a SYM◦AND circuit C′′ of size exp(Õ(n10αc)) that is equivalent to

our original circuit C. For all α < 1/(10ck), we obtain a SYM◦AND circuit equivalent to C with size exp(O(n1/k)).
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