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A Casual Tour Around a Circuit Complexity Bound

Ryan Williams

Abstract

I will discuss the recent proof that the complexity cl&H#SXP (nondeterministic exponential time)
lacks nonuniformACC circuits of polynomial size. The proof will be describedrrdhe perspective of
someone trying to discover it.

1 Background

Recently, a new type of circuit size lower bound was provedl@yWil11]. The proof is a formal arrange-
ment of many pieces. This article will not present the prdtodvill not present a series of technical lemmas,
each lemma following from careful logical arguments inwotythe previous ones, culminating in the final
result. This article is a discussion about how to discoverpioof — a casual tour around it. Not all details
will be given, but you will see where all the pieces came framgd how they fit together. The path will
be littered with my own biased intuitions about complexigary — what | think should and shouldn’'t be
true, and why. Much of this intuition may well be wrong; howev can say it has led me in a productive
direction on at least one occasion. | hope this article iithslate the reader to think more about proving
lower bounds in complexity.

The remainder of this section briefly recalls some (but natfahe) basics that we’ll use.

1.1 Uniform Complexity: Algorithms

Recall thatNTIME([t(n)] denotes the class of languages (decision problems) selsbhondeterministic
algorithms running in timé(n) on inputs of lengttm. SoL € NTIME[t(n)] provided that there is a nonde-
terministic algorithm such that for all stringsc L, there is a computation path tfix|) steps that results
in acceptance af, and forx ¢ L, every possible computation pathtgfx|) steps results in rejection of
We defineNEXP = Jy-g NTIME[Z”k]. NEXP informally corresponds to problems with exponentiallydon
solutions which are verifiable in exponential time. Thisssl@ncompasses everything considered feasibly
computable (and moreNP, PSPACE, EXP, etc.

Thenondeterministic time hierarcHEFM78,[Zak83] says that, as one permits longer solutiompsdb-
lems and longer verification time for those solutions, oneasvays find strictly more problems with ver-
ifiable solutions, under the constraints. In notatiNM,IME[t(n)] C NTIME[T (n)] for t(n+1) < o(T(n)).
One consequence of the nondeterministic time hierarchyatsNEXP # NP

*An earlier version of this article appears$iGACT NewsSeptember 2011.
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1Actually, the usual deterministic time hierarchy sufficeptove this, using a padding/translation argument.


http://arxiv.org/abs/1111.1261v1

1.2 Nonuniform Complexity: Circuits

With the usual uniform models of computation (Turing maeisinlambda calculugi-recursive functions,
etc.), a function only counts a®mputablerovided we can find a single algorithm in the model that com-
putes the function on all possible finite inputs. Similaycomplexity theory, a function is onlgfficiently
computablef a single algorithm runs efficiently on all finite inputs.

Suppose | allow you to run a different algorithi for every distinct input lengtim. This amounts to
having a countably infinite set of algorithms, which lookseatisticd But by permitting the length of a
program to grow with the input length, we can more accuratebdel algorithms in practice that exploit
the fact that there is an upper bound on the inputs they recéould there be a program for 3SAT with a
billion lines of code that rapidly solves 3SAT on all formsila&ith less than a billion clauses? Nonuniform
complexity can address questions of this form.

We will imagine an infinite family of algorithmgA,} as a family of logical circuits, whera, takesn
bits of input and returns a bit. (We’ll work exclusively owde binary alphabet, for simplicity.) The classes
of circuits considered in this article are, in increasindesrof expressiveness:

e ACO, the class of circuits with constant depth and polynomizé shaving unbounded fan-in AND,
OR, and NOT gates,

° ACO[m], the class of circuits with constant depth and polynomiaé sihaving unbounded fan-in
MODm, AND, OR, and NOT gates (where a M@igate outputs 1 iff the sum of its inputs is di-
visible bym),

e ACC, the union over alin of the classe&C°m| i and

e P/poly, the class consisting of arbitrary polynomial size Bao circuits with bounded fan-in AND
and OR gates, and NOT gates.

(One can take the “size” of a circuit to be either the numbegatés or the number of wires; for us, the
choice won't matter.) We will identify the circuit classesowe with their correspondiniginguage classes
which consists of all decision problems solvable with amitdi family of such circuits. So,NP C P/poly”
states that every problem MP can be solved with an infinite circuit famifC,} drawn fromP /poly, where
eachC, is run on inputs of lengtin.

A routine fact is that® C P/poly: problems solvable ipolynomial timeby some algorithm can be
solved by an infinite family of polynomial size circuits. Téore, our restriction to considering circuits
rather than arbitrary “growing” programs is actually withdoss of generality: a poly)-time program with
poly(n) lines of code can be simulated by a p@ly-size circuit on alln-bit inputs, although the underlying
polynomials may not have the same degtees.

2Indeed, one can solve undecidable problems using an infiniteber of algorithms: lef\,(1") output 1 iff thenth Turing
machine halts on blank tape. This is a fact that is eitherdrialse for a givem, so for eachn we can make a very short efficient
programA,, that captures this behavior.

3Note that arACC circuit family doesn’t necessarily have to be polynomiaksi. By default, a circuit’s size should be assumed
polynomial unless otherwise specified.

4We use the notation poly) to denote expressions of the fonthfor some fixeck independent of.



1.3 Ruling Out Polynomial Size Circuits for Uniform Complexity Classes

What uniform computations can be simulatedPifpoly? This is largely open. Randomized complexity
classes likeRP andBPP are inP/poly, but we do not believe th&tP-complete problems can be solved
with polynomial size circuit families. However, provindgP ¢ P/poly is only stronger thaf® # NP. The
“smallest” uniform complexity class that we know is not aned inP/poly is MAgxp, the exponential-
time version of Merlin-Arthur game$ [BFT98]. Kabanets amphgliazzol[KI04] “almost” proved that the
slightly smaller classlEXPRP (nondeterministic exponential time with &® oracle) isn't inP /poly: either
NEXPRP doesn't havarithmeticpolysize circuits, or it doesn’t have (the usual Boolearlygiae circuits.
Both MAgxp andNEXPRP are enormous classes, containM§XP and more.

So while we can show that certain functions cannot have polyal size circuits, those functions are
extremelydifficult for uniform algorithms to compute. But it could the true thatEXPNP P/poly. This
looks crazy; if true, it would not only mean that every prablavith exponentially long solutionsan be
solved withpolynomial size circuitsbut that every problem iEXPNP has “highly compressible” solutions,
representable with polynomial size circuits! Moreover, wi# see in Sectio 5 that a similar result holds
assuming\NEXP c P/poly.

1.4 ACC: The Frontier

Can we make progress @&y poly lower bounds, by considering more restricted clas$esrauits? In the
space of this article we can only give a condensed historghnmuore can be found in the surveys [AIl96,
Vio09]. Furst, Saxe, and Sipsér [FS$81] and Ajtai [Ajt83dyerd that simple functions such as the parity
of n bits cannot be computed by polynomial six€® circuits. (These results were later strengthened to
exponential size[Yao85%, Has86].) A natural next step veagrantAC® the parity function for free —
resulting in the study oACO[Z]. Razborov([Raz87] proved an exponential size lower bounddmputing
the majority ofn bits in ACO[Z]. Smolensky [Smo&7] proved exponential lower bounds formaing MOD,
with ACo[p], for distinct primesp andq. Barrington [Bar89] suggested the next step would be toglower
bounds for the clasaCC which allows forMOD, gates wheren can be an arbitrary constant.

Although it was conjectured over 20 years ago that the ntgjarfi n bits cannot be computed with
ACC, strongACC lower bounds have escaped proof. Suppose we d@hboth theMOD, and theMOD3
function for free; this is equivalent to studyiMO[G], as seen by the equations

MOD@(Xl,...,Xn) = |\/|OD3(X;|_,...,Xn)/\|\/|OD2(X;|_,...,Xn)7
MODZ(Xla---7XI"I) - MODG(X17X17X17'"7X|'17Xn7xn)7
MOD3(X1,...,Xn) = MODG(Xl,Xl,...,Xn,Xn).

Even for this class, it was still possible tHexXPNP ¢ ACP[6]! Given thatAC®[p] was known to be very
weak for every primep, this was an extremely frustrating open problem — how céd@Dg be so much
more powerful thatMOD;?

The recent papert [Will1] finally rules out this ludicrous gibflity. For example, we can prove that
ACP[6] circuits for EXPNP must necessarily have at least gize, for somé > 0 that depends on the circuit
depth. The proof extends to the (smaller) clB&SXP as well, although there is some loss in the size lower
bound. Nevertheless we can still rule out polynomial $\&C circuits for NEXP (even quasipolynomial
size). The basic framework behind the proof is generic ehdbagt it is reasonable to believe it can be
extended to prove much stronger results: peridpsP ¢ P/poly, orNP ¢ ACC, or more.



2 Acquiring The Target

Suppose we've set ourselves to finding a probleMEXP that cannot be iACC. What is a goodNEXP
problem to choose? The “hardest” possible candidates glh@NEXP-complete ones — if there’s a problem
in NEXP\ ACC, then the complete ones are there! Howeh&XP-completeness hasn't been studied nearly
as much as\P-completeness, so the list BfEXP-complete problems doesn’t appear to be terribly long.
Nevertheless there is a natural way to constiEXP problems out oNP problems, by focusing on the
highly compressible instances MP-complete problems.

Given a problenTl, we define the 8cciNcT N problem as follows. Let be the set of all Boolean
circuits with a single output gate over the gate basis ANDNIIT. For evenyC € ¢, let T(C) be thetruth
table of the function represented & More formally, lettingn be the number of inputs ©, T(C) is the 2
bit string whereT (C)[i] = C(s), wheres is theith n-bit string (in lexicographical order, say).

Problem: SucciINcTT

Given A circuit C from ¢ with n inputs and polyn) size.
Task: Determine whetheT (C) is a yes-instance df, i.e.,T(C) € .

So in SuccINCT I, we only wish to solve the “highly compressible” instancdslo those 2 bit
instances which are compressible to galybit representations as circuits.

The definition may look odd at first, but studying succinctigpeons is something that many of us already
do. Consider th®R problem given a bit stringk, doesx contain a 1? This problem is trivial from the time
complexity perspective, but still interesting on the citacomplexity level, as it is not known whether
constant-depth circuits made entirely iODg gates can compute OR efficiently [HK09]. However, the
SucCINCT-OR problem is exactly th&lP-complete Circuit Satisfiability problem: given a circudpes its
truth table contain a 1? So even the succinct versions déltfwvoblems are already interestE]g.

What if 1 is anNP-complete problem? How hard isuScINCT IM? There are nondeterministic expo-
nential time algorithms for solving such problems:

Proposition 1 LetI be aNP-complete problem that admits proofs of length) for n-bit instances, with
a verifier that runs in ¢/) time on proofs of length. SuccINCT N can be solved in(¥(2")) + 2" - poly(s)
nondeterministic time, on circuits of size s with n inputs.

Proof. Evaluate the given circuit on all of its possible inputs th Boly(s) time, producing an instance of
N of length 2. By assumption, the instance has a proof (if one exists)rafthe/(2"), and the proof can

be verified int(¢(2")). Nondeterministically guessing tié2")-bit proof and verifying that proof yields the
running time. O

As an example, consider the succinct version of 3SAT:

Corollary 2.1 SuccINCT 3SAT can be solved in nondeterminis&€ - (poly(s) + poly(n)) time on circuits
of ninputs and s size.

SEncyclopedias could be written on succinct representsitidproblems in computer science. In complexity theoryciuatly
represented problems are closely related to the struatotain of sparse sets; this is best illustrated by Hartmdnisnerman,
and Sewelson’s theorem tHatME[20(")] £ NTIME[2°("] iff there is a sparse set P \ P [HIS85]. Implicit representations of
graphs have been widely studied, and solving problems an #aounts to solving the succinct version of a graph problem.
other communities, BDDs (Binary Decision Diagrams) arestamdard means for representing functions; many problémges!
in that arena can be seen as succinct problems where thedyingeircuit classc has been replaced with the set of BDDs. The
Wikipedia articles on these (particular) topics are goaditistg points for further references.
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Proof. Apply the above proposition. Here the proofs are satisfyasgignments, which do not exceed
the length of a formula, sé(n) < n. Verifying a satisfying assignment for &-8ize 3-CNF can be done in
O(2"- poly(n)) time. O

Papadimitriou and Yannakakis_[PY/86] showed that for allwwund\P-complete problemd$1, Suc-
CINCT I is NEXP-complete. We state their result informally:

Theorem 2.1 ([PY86]) If N is NP-complete under “ultra-efficient reductions” théuccINCT 1 is NEXP-
complete.

Essentially what is needed in an “ultra-efficient reductiisrthat each bit of the reduction’s output can
be computed from a polylogarithmic number of bits of the inpupolylogarithmic time. Now we have our
pick of candidateNEXP problems: the succinct versions@P-complete problems are fair game.

WhatNP-complete problem could be more natural than 3SAT? It has beelied to death; the literature
is filled with theorems on it. An attractive property obScincT 3SAT is that it'svery NEXP-complete:
there are super-ultra-efficient reductions from arbitlanguages ifNEXP to SUCCINCT 3SAT instances.
So there is little loss of generality in focusing on&CINCT 3SAT.

Theorem 2.2 (Efficient Cook-Levin for NEXP) SuccINcT 3SAT is NEXP-complete under polynomial
time reductions. Moreover, there is a polynomial time raaucR from arbitrary Le NTIME[2"] to Suc-
CINCT 3SAT with the properties:

e XL < R(X) € SUCCINCT 3SAT; i.e., R)x) is a circuit such that TR(x)) encodes a satisfiable
3-CNF formula.

e R(x) is a circuit with poly(|x|) gates.

e For all sufficiently long x, the number of inputs to the citdR{x) is at mostx| + 4log|x|.

The first two properties could be met rather straightfordyardl the circuit R(x) were allowed to have
up to O(|x|) inputs. One of the many textbook proofs that 3SATNB-complete would suffice. We can
convert a nondeterministic tintecomputationA(x) into at®** size 3-CNF formula, by first translating the
computation ofA(x) into a nondeterministic one-tape Turing machMéx) running in timet® and using
spacet, then building &°® x t matrix Ty whereT(i, j) holds the content of th¢th cell of M(x) at stepi of
its execution. (And if the head is reading cglht stepi, thenTi(i, j) also holds the state & (x) at stepi.)
NoteTy is often called dableau (The particular value of depends on the original computational model: if
the model is multitape Turing machines, thes 2 suffices.)

Observing that every entry ifi, can be determined from at most three other entries, we cagraten
constant size 3-CNF formulas, one for each entrpsuch that their conjunction is satisfiable if and only
if A(x) accepts. This 3-CNF formula generated is extremely reginathat essentially the same group
of clauses is produced repeatedly (with only minor changethe variable indices). It follows that the
clauses corresponding to enffyi, j) can be efficiently produced with a pdlggt)-size circuit that is given
(i,]) € [t] x [t] as a(c+ 1) logt + O(1)-bit string. Whert = 2", we obtain a polyn)-size circuit with about
(c+1)ninputs.

However, more efficient proofs of the Cook-Levin theorenmsgxand the formulas obtained there have
high redundancy too. Even for random access machines, ighareeduction from timeé-computation to
o[t Iog4t) size formulas where thigh bit of the formula can be computed (given the inteiges an input) in
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poly(logt) time [Co088| Rob91, FLvMVO5]. This corresponds to a redurctn the number of inputs to the
circuit R(x), from (c+ 1)|x| down to|x| + 4log|x|. There are several ways to achieve this kind of reduction,
but unfortunately we do not have the space to include iwtuitor them; please consult the references above.

We saw earlier that $ccINCT 3SAT can be solved hondeterministically its2(1) time, on circuits with
sgates anadh inputs. Theorerh 212 implies a tinlewer boundon how efficiently iccINCT 3SAT can be
solved nondeterministically.

Theorem 2.3 (Time Lower Bound for SuccINCT 3SAT) SuccINCT 3SAT cannot be solved ig"—@(ogn
time (even with nondeterminism) on circuits with n inputd goly(n) gates.

Proof. Assume ®ccINCT 3SAT had a nondeterministic algorithm with the above rugrtime. By the
Cook-Levin Theorem foNEXP (Theoren{ 2.R), everp-bit instance of every. € NTIME[2"] can be re-
duced in polyn) time to a $y)ccINCT 3SAT circuitC with n+ 4logn inputs and polyn) size. By assump-
tion, the “succinct satisfiability” o€ can be determined in® Ollogn)-w(logn) noly(n) < o(2") time, with a
nondeterministic algorithm. Therefore evdrye NTIME[2"] is contained in the clagSTIME[o(2")], i.e.,
NTIME[2"] € NTIME[o(2")]. But this contradicts the nondeterministic time hierartigorem [SFM78,
Zak83] which sayNTIME[o(2")] C NTIME[2"]. O

So there is a concrete limitation on how efficiently&INCT 3SAT can be solved, and it looks pretty
strong. Could this result on the time complexity af&INCT 3SAT be translated into a limitation on the
circuit complexity? Let's think back to why we believe tha&parations likeNEXP ¢ ACC are true. We
believe that problems in nondeterministic exponentiakttannot be solved with polynomial size circuits,
simply because exponentials grow much faster than polyalsmiThis is the main reason why we can
diagonalize and provBllEXP = NP, but this observation is not at all enough to provwecauniformlower
bound againsNEXP. We have to show that even if one were allowed infinite timagaup infinitely many
polynomial size circuits, each devoted to a separate imgngthn, one still cannot solve S&cCcINCT 3SAT
with this model. The diagonalization argument used in tfwpof NEXP # NP won't work here, and this
is “provably” true. (More formally, the diagonalizationgarment works relative to every oracle, but there
are oracles relative to whiddEXP C P/poly.)

Still, it is hard to let go of a strong feeling that polynomste circuits simply contain too little infor-
mation to carry out a full simulation of an exponential tinterputation. Although you are given a separate
circuit for each input length, that little circuit is compiy representative of some time-intensive function’s
behavior on an exponential number of inputs. A polynomiaé siircuit for a function means that the func-
tion’s truth table is highly compressible and regular. latthense, polynomial size circuits seem much closer
to polynomial time algorithmghan to exponential time algorithms. We'd like to say thihére were small
circuit families for a problem like SccINCT 3SAT, then there may as well be time efficietgorithms
for SuccINCT 3SAT. That is, if IccINCT 3SAT had polynomial size circuits, then these “short repre-
sentatives” of exponential time computation may be disea@lgorithmically in an efficient way. More
generally, the mere existence of these short represeggathould mean that@cINCT 3SAT has so much
problem structure that this structure can also be explaitgdrithmically.

At this point we have reached a degree of handwaving so eanhesne may fear we are about to fly
away. Surprisingly, this handwaving has a completely foiim@orem behind it:

Theorem 2.4 (Spinning Circuits Into Algorithms [Wil11]) If SuccINCT 3SAT can be solved with poly-
nomial sizeACC circuits, there is are > 0 such thatSuccINCT 3SAT can be solved by a nondeterministic
algorithm running in @2"") time, on all circuits with n inputs and pdly) size.



The contrapositive says that time lower bounds can be spowiicuit lower bounds. From Theorém R.4
it follows readily that S)ccINCT 3SAT cannot have polynomial sizZeCC circuits, since the consequence
of Theoren 2.4 contradicts Theorém]2.3, the time lower bdan&uCcCINCT3SAT.

Corollary 2.2 SuccINCT 3SAT does not have polynomial si2€C circuits, i.e.,NEXP ¢ ACC.

So Theorem 214 is now our primary target. Why might it be trbl@® can we spin nonuniform circuits
for SuccINCT 3SAT into a single uniform algorithm which beat® tme? Since we can allow nondeter-
minism in the algorithm, we coulduessa polynomial sizeACC circuit C that solves S8cCINCT 3SAT,
then runC on our input. But how could weheckthatC correctly solves 8ccINCT 3SAT? Naively, we
would need to check that on all' ZJnputsx, C(x) = 1 iff T(x) is an exponentially long satisfiable 3-CNF
formula. The time lower bound (Theorém 2.3) suggests thismssible to do in less-thari*&me.

3 Program Checking?

We may try draw ideas fromprogram checkinga topic introduced by Blum and Kannan [BK95]. In program
checking, one has a desired probl€hin mind, and one is given a prografas a black box along with
an inputx. One wishes to efficiently determine if the outputR{k) equalsi(x), i.e. if P reports a correct
answer orx, by asking questions t8. More formally:

Definition 3.1 A program checker C for a probleim and input x is a probabilistic polynomial time algo-
rithm which is given black-box access to a program P and hasfoiowing properties for every P and
X:

e If P correctly computes§l on all inputs, then €(x) outputs the correct answer, with high probabiﬁy.

e If P(x) # M(x) then C(x) outputs “fail” or the correct answer, with high probability

What problemd1 can be checked in this way? There has been extensive worksoguéstion; cf. the
work of [GGHKRO8] for a survey and recent resultsucINCT 3SAT doesn't seem to have a program
checker, but there is another way in which&INCT 3SAT can be efficiently checked. In a very influential
paper, Babai, Fortnow, and Lund [BFLI91] proved that evdBXP problemI1 can be recognized by a
probabilistic polynomial time (PPT) algorithm with acceéssan arbitrary oracle which is trying to “prove”
that a given instance is ifl. More precisely, for everfllEXP problemT[T there is a PPT algorithrA such
that

e if x € N then there is an oracl® such that AAC(x) accepts> 2/3, and
e if x ¢ I then for all oracle®©, PHAC(x) reject$ > 2/3.

Informally, everyll € NEXP has some PPT verifigk with exponentially long proofs that can be effi-
ciently checked. Since the oradlecould only be asked exjx¥) different queries over all possible runs of
AC(x), it follows that for every of lengthn, the corresponding oraccan be represented by an ¢wf)-bit
string encoding all the possible queries and answed®¢k). Hence this proof verification modehar-
acterizesNEXP. This is encapsulated by the equatidBXP = MIP. (The classMIP stands for Multiple
Interactive Provers, an equivalent model to the PPT algoriwvith oracle access.)

6The notatiorCP denote<C with black-box access (i.e., oracle accesspto



Let’'s see what happens when we try to apply kieXP = MIP theorem directly to our situation. Recall
we want to derive a SCCINCT 3SAT algorithm that is nondeterministic and runs in less1tBatime.
Consider the algorithm:

SATALG(X):
Nondeterministically guess a pdly|)-size circuitC.
Run a PPT algorithm for checking S)cCcINCT 3SAT onx,
treatingC as the oracle.
If AC(x) accepts theacceptelsereject

Unfortunately, 3TALG is not a correct nondeterministic algorithm: it takes a regadministic guess
followed by a randomized computatigviwhich could err when it rejects. SABALG(X) could have an
accepting computation path, wheirs in fact a no-instance oft8 CINCT 3SAT. Moreover, it is not known
how to convert arbitrary (two-sided error) PPT algorithmi® iefficient nondeterministic ones. (Indeed, itis
open whetheBPP = NEXP; that is, probabilistic polynomial timeould be as strong asondeterministic
exponential time!) Could we possibly remove the use of ramuess in the checker? ThNEXP = MIP re-
sult no longer holds when you replace PPT algorithms withdeterministic algorithms: a nondeterministic
polynomial time algorithm that consults an oracle could bly as powerful adN\P itself(]

We seem to have failed to progress towards Therei 2.4, keiskeethought. Program checking has an
inherently black-box aspect. we only study the input/outpehavior of a program (or proof oracle, in the
case ofNEXP = MIP). But our particular box of interest (8 CINCT3SAT) is very special; by assumption,
it can be modeled with a smallCC circuit. In a nondeterministic algorithm, we could guess thrcuit and
dissect its insides. Surely this extra information is ukefu

4 Black Boxes Versus Circuits

What distinguishes a black box from a small circuit? If weldanalyze circuits in a way which is provably
better than analyzing black boxes, perhaps we could imprawehat boxes can offer in the above. We can
approach this improvement from two directions: try to findsg” circuit-analysis problems, or try to find
“hard” black-box-analysis problems. Or we could try both.

Consider a black box that takesinputs and prints a bit; we can query it repeatedly, and wes hav
to determine some property of it. What is the hardest simfaekibox problem? | would say that it is
determining if the box will output a 1 on some input. If | wantdetermine this, an annoying adversary
could simply answer “0” to all my queries until the last oneo t8is simple problem already require% 2
gueries to solve — a hard black-box problem.

Can we solve the problem more efficiently if we put circuitsplace of black boxes? Replacing the
black box with a circuit is precisely the Circuit Satisfidtyilproblem. And if one were to define “more
efficiently” to be “polynomial time” then this is thB versusNP question. We should tread lightly in this
area of the jungle. Before proceeding further, let's do agameck on our line of thought, and assume the
strongest “separation” between black-box hardness andithiardness. Let's assume Circuit SAT can be
solved really efficientlyP = NP. Could we then prove our desired circuit lower bound? Yes.

7One can simulate a nondeterministic algorithm-with-aanINP, by simply guessing an accepting computation path for the
algorithm (along with prospective answers for the oraclerigs along the way), then checking that the oracle answerasistent
with each other. If there is no oracle that makes the nonahétéstic algorithm accept, then no accepting path can elkistvever, if
we considerego-nondeterministialgorithms with oracles, then we recoWEXP again. This point will be revisited in Sectibh 5.
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Theorem 4.1 (Karp-Lipton [KL80], attributed to Meyer) Suppose Circuit Satisfiability is iR. If Suc-
CINCT 3SAT were solvable with polynomial size circuits, then all pexks solvable ir2" time would be
solvable in polynomial time (therefor8uccINCT 3SAT does nohave polynomial size circuits, by the time
hierarchy theorem).

In fact, Meyer proves a stronger implication:Ff= NP thenEXP ¢ P/poly. That is, assuming Circuit
Satisfiability is inP, there is an exponential time computable function that dlbdmve polynomial size
circuits.

The idea of the proof is to set up a fast (contradictory) satioh of every 2 time algorithmA, assuming
bothP = NP andEXP C P/poly. For simplicity let us assum&is a one-tape Turing machine; the argument
can be generalized for other models. On an inputondeterministically guess a polynomial size circliit
that encodes the (exponentially long) computation histdrg; that is, the truth tabld@ (C) of C is a valid
computation history ofA(x). Such aC exists if EXP C P/poly. To verify C works correctly, we can
universally(using co-nondeterminism) try all stepand all tape cellg, and verify thatC makes consistent
claims about the content of cegllat stepi, by comparing the claimed content at stepl of cellsj —1, j,
andj+1. (AsAis a one-tape machine, the content of ¢alan only be affected by that ¢f- 1, j, andj+1
in the previous step.) This only requires evaluathgt four different pairs of indices(i, j), (i—1,j — 1),
(i—1,j), and(i—1,j+ 1), which can be done in polynomial time.dfmakes consistent claims abdutj)
for everyi and j, then our simulation accepts i claims thatA(x) accepts. This is a,P computation,
where we start with a nondeterministic guess and then walgrverify our guess. But iP = NP then
>,P = P, so we have simulated every ime algorithmA in polynomial time, a contradiction to the time
hierarchy theorem.

So the idea of using a circuit-analysis algorithm to provereud lower bound has merit. But ugh...
P = NP? Do we really need such a strong (probably false) algorittassumption? One can get away with a
slower algorithm for Circuit SAT. We say that a functibn N — N is “half-exponential” iff (f (n€)%) < 2/2
for all k > 1. Examples of half-exponential functions dr@) = nPoY(°9 and f (n) = 22" Carefully
following the above argument, one can prove:

Theorem 4.2 (Karp-Lipton [KL80], attributed to Meyer) If Circuit Satisfiability is in half-exponential
time, thenEXP ¢ P/poly.

Now how plausible is this assumption? Unfortunately, ikquite hard to find even &2ime algorithm
for Circuit SAT for somee < 1. (Note, 2° is much larger than half-exponential.) The state of therart i
satisfiability algorithms is far from half-exponential #malthough steady progress has been made since
Monien and Speckenmeyer [MS85]. They showed that for eketlgere is aro, < 1 such thak-SAT is
solvable in 2" time, but lim_.. ax = 1. Many improvements on the valuesof have been found over the
years (e.g.,[Sch92, Sch02, PPSZ05, M$11, Herl1]), but edars found an algorithm for 3SAT that runs
in 29" time for everya > 0. TheExponential Time Hypothesi$ Impagliazzo and Paturi [IP01] states that
3-SAT (and hence, Circuit SAT) require$"2ime for somex > 0, and a majority of researchers believe this
hypothesis.

5 Backtrack

We have reached an impasse, so let’s review how we got herewaffted to prove that, if SCCINCT
3SAT can be solved iIACC, then we can design a faster-thdhrdndeterministic algorithm for @& cINCT
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3SAT (a contradiction). We started by imagining a nondeteistic algorithm which guesses a polynomial
size circuit for yccINCT 3SAT and checks correctness of that circuit, but that seemedssible to
efficiently implement directly. Using the ideas behiN@XP = MIP, we proposed an algorithmaSALG

that guesses an “oracle circuit” and verifies that, but théfigation doesn’t seem to be implementable
nondeterministically. We concluded that the black-boxureabf NEXP = MIP made it insufficient for our
purposes, so we began looking for circuit-analysis problérat are easier than the corresponding black-box
problems. Examining an argument of Karp-Lipton-Meyer, werfd that a half-exponential algorithm for
Circuit Satisfiability would imply circuit size lower bousdBut such an algorithm may not exist. Here are
two observations:

1. If we assum@&EXP has small circuits, then all sorts of expensive computatizan be captured with
small circuits. So with a hondeterministic algorithm, weulcbalways guess more circuits encoding
additional information that may help verify other circuits

2. We have not yet used any particular propertie8©€ circuits: all of our considerations would apply
equally well forP/poly.

Let's focus on the first point; the second will be handledrlatenpagliazzo, Kabanets, and Wigder-
son [IKWO0Z2] proved that iNEXP C P/poly, then not only does&cINCT 3SAT have polynomial size
circuits, but in fact for every circuit succinctly repretieg a satisfiable 3-CNF formula, there is another
circuit succinctly representingsatisfying assignmeifior that formula.

Let T(x) be the truth table of a string providedx is encoded as a circuit. (¥does not encode a valid
circuit, let T (x) = 02" .) For a circuitx, let F; be the 3-CNF formula encoded Ay(x). (If T(x) does not
encode a 3-CNF, Id% be the trivially false formula.)

Theorem 5.1 ([IKW02]) Suppos&lEXP C P/poly. Then for every & SUCCINCT 3SAT, there is a circuit
W of poly(|x|) size and @|x|) inputs such that TW) is a satisfying assignment to the formula F

The proof is an ingenious mixture of results on “hardnessuserandomness” and good old-fashioned
diagonalization; we do not have space to describe it hetegrimourage the reader to take a look. It is not
hard to show that iINEXP C ACC, then these “satisfying assignment circuits” can be asdumealso be
ACC:

Corollary 5.1 SupposeNEXP C ACC. Then for every x SuccINCT 3SAT, there is anACC circuit W of
poly(|x|) size and @|x|) inputs such that TW) is a satisfying assignment to the formula F

Proof. NEXP C ACC impliesNEXP C P/poly, so everyx € SuccINCT 3SAT has a succinct satisfying
assignment represented by a circMi§. SinceP C ACC, it follows that the GRCUIT VALUE PROBLEM
has polynomial siz&CC circuitsB Therefore from\, there is an equivalemCC circuit W, obtained by
plugging in an encoding o into the inputs of alACC circuit for the GRCUIT VALUE PROBLEM. O

(Notice again that we still have not used specific properfesCC in the above proof.) Hence NEXP
were solvable with smalACC circuits, then every problem with an extremely long solutwould always
havesomesolution with an extremely efficie®8CC representation.

This prompts the idea: rather than guessing a circuit fac@NCT 3SAT, or an oracle circuit that's
verifiable with randomness, why not guess a circuit encodisatisfying assignment for our given instance?
Perhaps this is easier to check. We are immediately led to:

8Recall the GrRCUIT VALUE PROBLEM is: given a circuit C and input x, does(€) = 1?
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SATALG2(X):
Nondeterministically guess a pdly|)-size circuit\.
If T(W) encodes a satisfying assignmenfc= T (x), thenacceptelsereject

Verifying thatW, encodes a satisfying assignmenEaan be done in exponential time, by evaluatiig
on all inputs, obtaining the string (W), evaluatingx on all inputs obtainind, then checking thaf (W)
satisfiesky. ProvidedNEXP C P/poly, SATALG2 will correctly solve SicCINCT 3SAT, by Theorem 5]1.
Now the interesting question isan SATALG2 be implemented to run 2"~ ©(°9" time, assumindlEXP c
P/poly? If yes, we will have finally contradicted Theorém 2.3, thedifower bound for 8ccINCT 3SAT.

Checking that a variable assignment satisfies a 3-CNF fa@roan be done using an amount of workspace
that is only logarithmic in the size of the formula and assignt. Hence STALG2 can be implemented to
run in only polynomial space. Try all possible polynomiaestircuits\, and for eacW, run a logspace
algorithm A for checking satisfiability as follows: whef needs a bit of, evaluate the circuik on the
appropriate index; wheA needs a bit of the assignment, evalldeon the appropriate index. This way,
we do not have to hold the entire formula or assignment in nmg@oonce, and we’ll take only polynomial
space. So if we could solve thimlynomial spac@roblem faster than™we could solve 8ccINCT 3SAT
in less than 2time, getting a contradiction.

This still looks algorithmically difficult to implement ireter than 2time; can the complexity of check-
ing be reduced even further? To verify that an assignmersfiegta 3-CNF formula, one checks for all
clauses that the assignment satisfies at least one of theegldiin the clause. We can “iterate over all
clauses” by feeding different inputs into the circuit We can compute the three literals of a particular
clause off by evaluatingx at O(|x|) inputs. We can compute the values of those three literaientine
assignment (W), by feeding three appropriate inputs if§. The picture of how to determine whether
theith clause of is satisfied byl (W) looks like this:

In this picture, theth clause ofy is (—zV 2V —z3), andD(i) = 1 iff the variable assignment encoded
by W, satisfies theth clause of the formula encoded ky But for everyi, x can be rigged to print thith
clause ofF, which can then be checked agamét It follows that the circuit-D is unsatisfiable if and only
if the variable assignment encoded W satisfies the 3CNF formula encoded xyWe have reduced the
exponential time check of ALG2 to Circuit Satisfiability! Let's give a revised version aifocSUCCINCT
3SAT algorithm:

SATALG3(X):
Nondeterministically guess a pd@|y|)-size circuit\.
Construct the circuiD made up ok andW.
Acceptiff =D is unsatisfiable.
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If Circuit SAT is solvable in 2-(1°9" time for poly(n)-size circuits, then SrALG3 can be implemented
to run in 2«09 time. But SX\TALG3 solves $cCINCT 3SAT, contradicting Theorefn 2.3. We have
established:

Theorem 5.2 (Wil10]) Assume Circuit SAT on circuits with n inputs and fgo)ysize can be solved in
2n-(logn) time, TherNEXP is not inP /poly.

This assumption appears to be more plausible. The best kalgwrithms for general CNF-SAT [SchO05,
DHO8,[CIP06] run faster than"2©(09": there are everhCP-SAT algorithms that beat"2©(°9" [CIPOE,
IMP11]. However it does not look easy to generalize theserdhlgns to unrestricted polynomial-size
circuits.

6 Enter ACC

We are now ready to think about how to incorporAteC into our arguments. We have found that faster Cir-
cuit SAT (an algorithmic upper bound) impliewScINCT 3SAT is not inP /poly (a circuit lower bound).
Informally, this is because “$ccINCT 3SAT has small circuits” implies that we can guess smallesgn-
tations of exponentially long information, and a fastercQit SAT algorithm can help verify the correctness
of the small representations. Together, the two result astef nondeterministic algorithm folugScINCT
3SAT, contradicting a known time lower bound.

Ideally, one would hope that this upper bound / lower bounthegation can be extended to other circuit
classes, not jud®/poly. For each circuit class, we may define a correspondingSAT problem: given
a generic circuit from the clasg, is it satisfiable? As mentioned above, very little is known about the
worst-case time complexity of this problem.

If we could design a faster-thari-algorithm forc-SAT, that should intuitively help prove a lower bound
against circuits front: we have determined a property of circuits frgmthat is quantitatively easier than
the corresponding property for black boxes.

6.1 Spinning restricted Circuit SAT into restricted circui t lower bounds

What goes wrong in &TALG3 when we assume that onjCC-SAT can be solved in less thafl #me?
Applying Corollary(5.1, ifNEXP c ACC then every satisfiablel@ cINCT 3SAT instance (construed as a
circuit) has a polynomial sizACC circuit W, such thafl (W) is a satisfying assignment f& = T(x), the
formula encoded by. This means we could guess AGC circuit W instead of\y in SATALG3. But what
about the circuik itself? There is no restriction ax because the definition of 8 CINCT 3SAT letsx be
arbitrary. So the resulting circul2 that we produce to checkandW will be unrestricted as well. Hence
an ACC-SAT algorithm won't necessarily run correctly @n

However, assuming@® c ACC, Corollary[5.1 tells us that foeverypolysize circuitx, thereexistsan
equivalent, polynomial siz&CC circuit X. Again, this is because thel®&UIT VALUE PROBLEM is in
ACC, hence we can simulate the behavior of all unrestricteditg@isingACC circuits. So we could try to
guess thisACC circuit X, and use that in place afin the construction of the circul®. Then, the circuiD
will have anACC circuit X composed with three copies of &€ C circuit W, which will altogether be an
ACC circuit. That is, we are proposing the following modificatitn SATALG3:
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SATALG4(X):
Nondeterministically guess a pgly|)-size ACC circuit W,.
Nondeterministically guess a pgly|)-size ACC circuit X'
Verify thatx andx’ are equivalenf???)
Construct theACC circuit D made up ofk' andW'.
Acceptiff =D is unsatisfiable.

SATALG4 now checks the satisfiability of aCC circuit, rather than an unrestricted circuit. By an
argument analogous to what we gave far&LG3, a 2—«(1°9" algorithm forACC Circuit SAT for n-input
poly(n)-size circuits would appear to give our desired nondetastinalgorithm for SICCINCT 3SAT.

However, as th€???) indicates, there remains a hole to be filled in. We have tdy#rat the inputx and
our gues( are really computing the same function. Can that be done avittsterACC-SAT algorithm?
The usual way of checking equivalencexaindx’ would be to set up a Circuit SAT instance of the form

E(i) = (x(i) vX(i)) A (=x(i) v X (i),

and check ifE is satisfiable. But thi§ contains a copy of the unrestricted circxisoE is also unrestricted!
It seems hopeless to tuthinto anACC satisfiability question. We could guess an equivale@C circuit
E’, but that wouldn’t seem to help; we'd then have to verify tBais equivalent tcE’, andE,E’ are only
larger tharx, X'.

This is an annoying and impossible-looking problem. The kegolving it is touse the assumption
that NEXP has small circuits, and guess small “helper” circuits in s ccINCT 3SAT algorithm If
NEXP C ACC then many types of functionality could be guessedATC form; if we choose the right
functionality, ourACC circuit SAT algorithm can help verify the functionality. Waust also avoid an
infinite regress: eventually we must have some guessedtsithat can be directly checked for correctness.

What else can we guess? We want to obtai@g x that’s provably equivalent to the input in the
sense that both circuits produce the same outputs. But tipeitoaf a circuit is only one bit of information.
Why not guess aACC circuit that captures even more information abdutWhen we construeas a circuit
and evaluate it on input many bits of information are produced: on an inpuit values are carried along
every wire inx. AssumingP C ACC, these bits can be producedAQC: there are pol{n)-size ACC circuits
C which take as input an (unrestricted) circxidescribed im bits, an inpuf to x, and an integey, such that

C(x,i, J) prints the value output by thgh gate of the circuik, whenx is evaluated on inpuit

(Determining this value can be done in polynomial time giyen, j), so if P € ACC then there ardCC
circuits that can determine the value.) Provided we havecaitiC meeting the above specification, then
for everyi we havex(i) = C(x,i, j*), wherej* is the index of the output gate &f By settingx' = C(x,-, j*),
we have arACC circuit equivalent tox.

Supposing we guess this circdi we have to verify it is correct on our input At this point, it appears
we have made our job only harder, sir@¢akes strictly more inputs than our original guesdid! But by
forcing the guessed circuit to primorevalid information abouk, we can more easily verify thatl the
information is correatl For instance, if we find an AND gatgin x where the values output B(x;i, )

9There is a similar principle behind error-correcting codgsappending a message with more information about theagess
one can still verify the content of the original message hedits get flipped. The principle can also be seen in the tqabn
of algebrization where in order to better manipulate a Boolean functi¢xy,...,xn), one “lifts” f to a low-degree multivariate
polynomial p which is equivalent tof on the set{0,1}". Queryingp on pointsoutsideof the set{0,1}", one can often gain
considerable advantages in verifying and manipulafing
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imply that j receives the inputs 1 and O, ix, i, j) = 0, then we have detected an erro€inConversely, if
C(x,1,-) manages to make consistent claims about the inputs andtewtixevery gate ot on inputi (that is,
OR gates always output the OR of their inputs, ANDs alwayputiLthe AND of their inputs, NOTs always
negate), then we know th&ts claim about the final output ofi) must also be correct.

We can think ofC as encoding aatisfying assignmertb an exponentially large constraint satisfaction
problem: for every input to the circuitx and every gatg of x, the (i, j) constraint is thaC’s claimed
inputs to gatej in the evaluation ok(i) are consistent witle’s claimed output of gaté. This constraint
satisfaction problem has a succinct description — namwedycircuitx itself. Every circuitx with sgates can
be represented as a set of tuples

Sc={(J;i1, 2,9 [ 1 =1,....8]1,j2 < J;9 € {AND, OR, NOT, INPUT} }.

The tuple(], j1, j2,0) says that thgth gate ofx takes its inputs from the output of gajtg the output of gate
j2, andj has gate typgld (For j =1,...,n, we use the convention that ggteorresponds to thgh bit of
input, so the integerf and j, equal 0, and) = INPUT.) From the seg,, we can define a functioGy which
takesj as input and prints the rest of the tuglg, j2,g) from S,. Since the number of all possible inputs
to Gy is only s (the number of gates ir), Gx can be implemented in Boolean logic with @flog |x|)-size
collection of CNF formulas, each wit®(log|x|) variables an®(|x|) clauses.

So to check that a guessa@ C circuit C is correct, we can use the followirfgCC circuit:

E: A

T 111 IIIjIH

TheO(1)-size circuitt takes bitd, b, (from ji, j2) a bitb (from j), and a gate typg; t(bs, by, b,g) =1
iff g(by,b2) =b. For examplet(1,0,1,0R) =1, sinceOR(1,0) = 1.
For a given, E(i, j) = 1 for all j iff C outputs the correct value of every wirej(i). Now define

n S
E'(i)= A\ [Cxi,i) &x]n A E(,)).
j=1 j=n+1
(The first group of ANDs check th& represents the input gates correctly.) The cir&ilits alsoACC, has

exactly the same number of inputs as the cirguand—E’ is unsatisfiable iflC is correct on all inputs to
X. Our modified algorithm now looks like:

1Owjithout loss of generality, we may assume every gate of tteitihas at most two inputs.
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SATALG5(X):
Nondeterministically guess a pdly|)-size ACC circuit W'.
Nondeterministically guess a pd|y|)-size ACC circuitC.
Construct the collection of CNFs representiag
Construct theACC circuit —-E’ made up ofC andG,.
If —E’ is satisfiable theneject
/* at this point, C must be correet/
Definex =C(x,-, j*) wherej* corresponds to the output gatexof
Construct theACC circuit D made up ofk' andW'.
Acceptiff =D is unsatisfiable.

We have finally reached a correct algorithm farc&INCT 3SAT (under the assumption thHdEXP C
ACC) with the property that iIACC satisfiability can be solved faster thath then ITALGS can be imple-
mented to run faster thart 2yielding our desired lower bound.

Theorem 6.1 ([Wil11]) If ACC Circuit SAT can be solved on circuits with n inputs affcize in2n—«(logn)
time for every k, theDNEXP is not contained irACC.

We only needed a few basic closure propertie8@€ in the above argument: if you take a polynomially
large AND of differentACC circuits, then the result is still aACC circuit; given twoACC circuit families
{Cn} and{Dp}, if you define a circuit family{ E,} by the rule

En(X1,...,X%) = Ck(Dn(X1,...,%n),---,Dn(X1,...,%n))

for some fixedk, this “composition” of{C,} and{Dy} is also anACC circuit family. Most well-studied
circuit classes satisfy these composition propertieshsabove considerations apply to them as well: faster
circuit satisfiability for a restricted class entails lower bounds for solving problems in Intuitively,

the difficulty faced by researchers who design fast algmrsttior verification of certain kinds of circuits

is related to the difficulty of proving that certain problewan't be efficiently solved with these kinds of
circuits.

6.2 ACC Circuit Satisfiability

It remains to prove thaACC circuit satisfiability really does have a faster algorithtie can discover this
algorithm by studying a known decomposition resultAgrC circuits, from work initiated by Yaad [Yao90],
continued by Beigel and Tarui [BT94], Allender and Gare [Afk9%and Greeret al. [GKRST95]. The
decomposition result says that evér§ C circuit family can be expressed as a family of functions

{on(Pn(X1,..., %))},

whereh, is a “sparse” multilinear polynomial, arg} is a “sparse” lookup table.

Lemma 6.1 ([Yao90| BT94, AG94]) There is an algorithm and function :fN x N — N such that given
an ACC circuit C with MOD, gates of n inputs, depth d, and size s, the algorithm outputmetion

g:{0,...,K} = {0,1} and a multilinear polynomial fxs,...,X,) with K monomials, such that € goh,

where K= 20(09"“™s) The algorithm takes at mo€(K) time.

15



Call this transformation thgolynomial decompositiofor ACC. The functionf(d,m) is estimated to
be no more thamm®¥. The high-level idea behind the decomposition is to firstvesnevery OR and
AND gate in theACC circuit to low-degree polynomials (i.e., low fan-in ANDs dfOD2 gates) using
randomness, “push” these low fan-in ANDs down to the bottéthe circuit, derandomize the construction
using pairwise independence and a MAJORITY gate at the tmm tise more sophisticated polynomial
tricks to “push” the remaining layers of MOD gates into thp tgrate, which remains a symmetric function
throughout the transformation. At the end, what remains sgyrametric function of a quasipolynomial
number of ANDs, which can be represented hyaf h in the above manner. Of course this is a very rough
description; the reader should check the references foe mhetails.

What does this polynomial decomposition algorithm say &bolving satisfiability forACC? Razborov
and Smolensky’s lower bounds Mo[p] can be seen as “approximations by polynomials” — they shaiv th
smallACo[p] circuits can be approximated on many points by low-degrdgnpmials, so limitations on
representing functions with low-degree polynomials capdréed over to limitations oACO[p]. Lemmd6.1
allows the polynomiah to output a number of possible values; those values are thenedi down to a single
bit by another functioryg. While we may not approximate aCC circuit very well with a polynomial, we
can still simulate a great deal of tkemputationin an ACC circuit with a polynomial: after the evaluation
of the polynomialh, we are only ag-evaluation away from th&CC circuit's output. (In fact, Greemt
al. [GKRST95] prove thayg can be made a specific, simple function: the “middle bit” fio.)

Polynomials are nice, but what good do they serve for sdtiifinalgorithms? The short answer ithe
Fast Fourier Transform Less ambiguously, if we are given a multilinear polynonineits coefficient rep-
resentation (we are told the coefficients of tfiegp@ssible monomials), then we can determine that polyno-
mial’'s value on all points if0,1}", in only O(2" - poly(n)) time. That is, from the coefficient representation
of the polynomial we can quickly compute the point represton. This is very nice; we are spending only
poly(n) time per evaluation point, even though our original polymedroould have been arbitrary — it could
have 2 different coefficients!

There are several ways to derive @€FFICIENFTO-POINT algorithm. Perhaps the most natural one is
a recursive strategy. We are given a multilinear polynorp{ai, . .. ,x,), and wish to compute a table of
2" entries such that

T =[p(O,...,0,0),p(0,...,0,1),...... ,p(1,...,1,0),p(1,...,1,1)].

If n=1, we can returm = [p(0), p(1)] in unit time. Whemn > 1, because is multilinear we can write it
as

P(X1, .-+, %) = X101 (X2, - - -, Xn) + G2 (X2, - ., Xn)-
That is, we can splip into sums of monomials which includg, and sums of monomials which do not
includex;. Recursively calling our algorithm o anddp, we receive two table$; and T, of 2"~ num-

bers each. Notice thgt(0,Xz,...,X,) = G2(X2,...,%Xn), @NAP(L, X2, .., %) = Q1(X2,..., %) + G2(X2, ..., Xn)-
Therefore the corresponding gize table fomp is

T=[T1],.... 22" T[]+ T[1],..., a2 1+ T2 Y]] .
The merging of tables can be done®2" - poly(n)) time, so the running time recurrence is
R(2") =2-R(2"')+0(2" poly(n)),
which solves td(2"- poly(n))

11Here we are assuming that the sizes of coefficients in thenpoijal p are negligible, so the bit-complexity of arithmetic does
not play a significant role in the running time. This assumpts valid for the polynomials we are considering.
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How can a @EFFICIENFTO-POINT algorithm lead to a fastekCC SAT algorithm? There seem to be
two sticking points.

1. The above works directly on a multilinear polynomiabut we need an algorithm that works foga
of anh.

2. The above runs in"2ime, but we need a SAT algorithm that runs faster than 2

Addressing the first point is straightforward. We can evadaon all 2" points, and after we have
produced the 2table, we can determine all the distinct numbers in the tahlk check if some number
makesg output 1. Sincén is a “sparse” polynomial, the total number of different nrsinT is “sparse”
so this can be done in no more tha@" - poly(n)) time.

The second point looks more difficult to overcome. To applyeEFICIENTTO-POINT and get less-
than-2' time, we need to work with a polynomial that has fewer tmavariables. This would seem to
require that our originaACC circuit has fewer than inputs — something we are not willing to concede.

There is a trick to circumvent this problem, and it exploitstobservations. First, note the circuit
satisfiability problem amounts to asking if the OR of soMiei?cuits (with no free variables) evaluates to
1. Second, if we take an OR of many copies of i circuit of depthd, the result is arACC circuit of
depthd + 1, becaus@CC circuits allow for OR gates of unbounded fan-in.

Suppose we take a subsetkodf the n inputs to anACC circuit C, evaluateC on all X possible values
of this subset, then take the OR of the&ei2cuit copies induced by the different evaluations. Trsiténg
circuit C’' has the properties:

e C' has onlyn— k free inputs.

e If C had sizes, thenC’ has sizeD(2X - s).

e Cis still anACC circuit (but with one more level of depth).
e Cis satisfiable iffC’ is satisfiable.

Call this transformation thk-blowupof the circuitC. Basically, we have “brute-forced” the SAT problem
for C on ak-subset of the inputs ©. This blows up the size, butdtecreases the number of input variables
something we are interested in doing, but with polynomitllswever, becausg’ is anACC circuit, we can
still perform a polynomial decomposition on the circGit then work with the underlyingn — k)-variate
polynomial.

Now we are ready to stitch together tA€C satisfiability algorithm, which is given a circu@ with n
inputs ands size.

ACCSaT(C):
Let k = nt/(2f(dm)
ComputeC’, thek-blowup ofC, which has size< 2Ks,
Decompos€’ into go h,
whereh hasn — k variables andk = 20
Evaluateh on all 22~ points inO(2" *poly(n) + K) time.
Outputsatisfiableiff go h equals 1 on at least one point.

KM +1og"™™s) monomials

1 1/240(1 . 1/(2f(d, .
Whens < 2™ we haveK = 2> and ACCS\T runs in about 2™ ™ time.
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Theorem 6.2 ([Wil11]) ACC Circuit Satisfiability for subexponential size cirsuian be computed 2™
time, for some > 0 which depends on the depth and modulo gates of the inputtcircu

Combining this with Theorem 6.1, we conclude thatc®INCT 3SAT is not inACC.

7 Further Directions

There are two obvious directions to continue in:

e Find an easier problem that is not in ACC. It is possible the ideas here may be extended to find
an EXP problem (not justNEXP) which isn't in ACC. More precisely, faster-SAT for a circuit
classc ought to lead t&EXP ¢ ¢. Here is my extremely hand-wavy argument for this. Inteity
a fasterc-SAT algorithm reveals aeaknessn representing computations withcircuits. The class
¢ is notlike a set of black boxes: these circuits cannot hide a gaigfinput so easily. Moreover, a
faster SAT algorithm for highlights astrengthof algorithms that run in less-tha-8ime: they can
solve nontrivial satisfiability problems on circuits fram That is, my intuition is that a faster-SAT
algorithm shows “less-than?2lgorithms are strong” andc*circuits are weak” — so perhap8 @me
can be separated from-circuits using satisfiability algorithms alone.

e Prove stronger circuit lower bounds for SuccINCT 3SAT. In order to separatd EXP from a circuit
classc, we need only design faster satisfiability algorithms fecircuits. In fact, it suffices to find
a faster algorithm for the problengiven a circuit Ce ¢ where you are promised that either C is
unsatisfiable or C accepts/2 of its inputs, determine which is the cédeHence we only need to
derandomize certain promise problems to establish therlbaends. So far | have personally found
it convenient to think about satisfiability directly, butemtually we will probably find the promise
problem to be an easier chore.

There are several other not-so-obvious directions. Onsilpitiyy is to prove almost-everywher&CC
circuit lower bounds. Right now we can only say tA&iC circuits can’'t solve 8cCINCT 3SAT on infinitely
many input lengths. But we don'’t believe that some input fea@re inherently easier than others, so our
lower bound ought to be extendable to all but finitely manyiripngths.

Another angle is to try proving new separations of uniforrmptexity classes. Can we proi is not
equal touniform ACC, where a single efficient algorithm given input €@n construct theth circuit in the
family? Can some of the ideas here be used to finally pN&EXP £ BPP?

Finally, much of our analysis centered around specific pt@seof SyccINCT 3SAT. Might it be the
case that other “Succinct” problems are useful for lowemuls, too?

Acknowledgments. | thank Anup Rao for an inspiring discussion, and Virginia lier patience while |
was finishing this article (we were supposed to be touring@&ana, not circuit complexity).
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