
r

r

r leaves
triction
ms to

set

s or by
as

key
y
explicit
worst-
d-case
local)
al)

Canada.
Journal of Algorithms 50 (2004) 168–193

www.elsevier.com/locate/jalgo

Restructuring ordered binary trees✩

William Evans∗ and David Kirkpatrick

Department of Computer Science, University of British Columbia, Vancouver BC, Canada, V6T 1Z4

Received 29 June 2000

Abstract

We consider the problem of restructuring an ordered binary treeT , preserving the in-orde
sequence of its nodes, so as to reduce its height to some target valueh. Such a restructuring
necessarily involves the downward displacement of some of the nodes ofT . Our results, focusing
both on the maximum displacement over all nodes and on the maximum displacement ove
only, provide (i) an explicit tradeoff between the worst-case displacement and the height res
(including a family of trees that exhibit the worst-case displacements) and (ii) efficient algorith
achieve height-restricted restructuring while minimizing the maximum node displacement.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Suppose we are given an ordered binary treeT , perhaps a binary search tree for some
S of keys (or perhaps an alphabetic prefix code tree for a setS of symbols). TreeT might
have been constructed, either through explicit use of known key access frequencie
some self-adjusting strategy, to minimize theexpectedcost of key accesses (expressed
the expected depth of the keys stored inT). As a consequence, the worst-case cost of
accesses (expressed as themaximumdepth of a key stored inT), though improbable, ma
be unacceptably large. The general question that we address is: in the absence of
information concerning key access frequencies, to what extent can we improve the
case behavior of a given search structure without unduly compromising its expecte
behavior? We focus, in fact, on the more stringent requirement of minimizing the (
degradation in the access cost forany key as a consequence of restricting the (glob
worst-case access cost for theentireset of keys.

✩ This research was supported in part by the Natural Sciences and Engineering Research Council of
* Corresponding author.

E-mail addresses:will@cs.ubc.ca (W. Evans), kirk@cs.ubc.ca (D. Kirkpatrick).
0196-6774/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-6774(03)00094-4

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 169

n, the
nce of

er
f

bt, has
n: can
deoff
ividual

r work
s, and

nt

es

s the in-

um
5], the

icularly
]. In

of

stricting
fman
s

Fig. 1. TreeT in need of restructuring.

In order to clarify the question and (perhaps) strengthen the reader’s intuitio
reader is invited to consider the task of restructuring (while preserving the seque
nodes encountered in an in-order tree traversal) the (arguably most unbalanced)L-leaf
treeT in Fig. 1. Obviously, reducing the height ofT to �lgL� (the minimum possible
height) would result in a depth increase of�lgL� − 1 for some nodes. On the oth
hand,T can be restructured to have height�lgL� + 1 without increasing the depth o
any node inT by more than one. The fact that this can be done (as the reader, no dou
confirmed; otherwise, see Appendix A for a suggestive example) leads to the questio
such restructuring always be (efficiently) done and, more generally, what, if any, tra
arises between the global height bound and the depth increase experienced by ind
nodes?

The results of this paper are perhaps best appreciated in the context of earlie
on the design and analysis of optimal (and near-optimal) search and coding tree
their height-restricted variants. Given a sequence of symbolsA1, . . . ,AL with associated
frequenciesa1, . . . , aL a Huffman tree[5] is anL-leaf treeT , together with an assignme
of symbols to the leaves ofT , that minimizes the expression

∑L
i=1aidi , wheredi denotes

the depth inT of the leaf to which symbolAi is assigned. The tree that minimiz∑L
i=1aidi subject to the additional constraint that the symbolsA1, . . . ,AL are assigned

to the leaves ofT in left-to-right order is called analphabetic Huffman tree[4]. If symbols
(or search keys) are assigned to the internal nodes as well (in an order that respect
order listing ofT ’s nodes) then the tree that minimizes

∑L
i=1aidi , wheredi now denotes

the depth of the (possibly internal) node ofT to whichAi is assigned, is called anoptimal
binary search tree[8,13]. Near-optimal binary search treesfor given [12] or fixed but
unknown [15] key distributions provide provably good approximations to the minim
expected depth (access cost) with lower construction cost or, as in the case of [1
ability to adapt to changing access frequencies.

Height-restricted versions of these structures have been extensively studied, part
with regard to the efficiency of algorithms for their construction [1,6,9–11,14,16
particular, it is known that a height-restricted (restricting height to at mosth) Huffman
tree (respectively, alphabetic Huffman tree, optimal binary search tree) for a setL

symbols can be constructed inO(Lh) (respectivelyO(Lh lgL), O(L2h)) time [10]
(respectively [11], [6,16]).

Few papers address the issue of the increase in the access cost imposed by re
height. E.N. Gilbert, in the paper that introduced the study of length-restricted Huf
codes [2], proves that, for anyh � 1+ lgL, the h height-restricted Huffman tree ha
expected depth (code-length) at mostH + 1+ L21−h(lgL − H), whereH denotes the

170 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

ed
non’s
ost 1,

ich the
l
[14]
length-
cies are

n the
s,
th
to
nd the

lize the

d
t

e

the
r and type
entropy of the set of symbol frequencies. SinceH provides a lower bound on the expect
depth of any (not necessarily height- or order-restricted) Huffman tree (by Shan
theorem), it follows that the increase in expected depth due to height restriction is at m
whenh is as small as lgL + (lg lgL)ω, ω > 1 andL is sufficiently large. (In fact it is
easy to demonstrate arbitrarily long sequences, with associated frequencies, for wh
expected depth of the optimal Huffman tree of height 1+�lgL� exceeds that of the optima
unconstrained Huffman tree by an amount arbitrarily close to 1.) Milidiú and Laber
present an upper bound on the average code length difference between optimal
restricted and unconstrained Huffman codes. They assume that the symbol frequen
fixed, known quantities.

By way of contrast, our results, which are set out more completely and formally i
next section, show thatanyL-leaf treeT , with fixed butunknownleaf access frequencie
can be restructured into a treeR of height at most 1+ �lgL� such that the expected dep
of R exceeds the expected depth ofT by at most 2. Much of our effort is devoted
understanding the tradeoff between the height restriction of the restructured trees a
increase in node depth due to restructuring, and to the construction of trees that rea
worst-case depth increase over the full range of possible height restrictions.

2. Strict h-leveling costs

Let TL denote the set of rooted, ordered binary trees withL leaves. ForT ∈ TL, let
vT1 , vT2 , . . . , vT2L−1 be the in-order sequence of nodes inT and�T1 , �

T
2 , . . . , �

T
L the left-to-

right sequence of leaves inT . (Of course,�Ti = vT2i−1.) In general, the superscript is omitte
when it is clear from context. LetdT (v) be the depth of nodev in T . The depth of the roo
is 0 and the height ofT is just the depth of its deepest leaf.

We define theh-leveling costof T ∈ TL to be

∆∗h(T)= min
R∈TL

∆∗h(T ,R) (1)

where1

∆∗h(T ,R)=
{∞ if height(R) > h,

max
1�j�2L−1

[
dR

(
vRj

)− dT
(
vTj

)]
otherwise.

∆∗h(T ,R) measures the maximum “drop,” over all nodes inT (the node-drop), in going
from T to a treeR of height at mosth. In other words,∆∗h(T ,R) is an upper bound on th
additional cost to access an item inR versusT .

We define theleafh-leveling costof T ∈ TL to be

∆0
h(T)= min

R∈TL

∆0
h(T ,R), (2)

1 The multiple definitions of∆∗
h
() (and similar functions) are intended to minimize notation and highlight

relations between the associated functions. This should present no cause for confusion since the numbe
of arguments determine which definition applies.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 171

6.

sults
(with
one of

(or,
l)

ximum
code

his can
where

∆0
h(T ,R)=

{∞ if height(R) > h,

max
1�j�L

[
dR

(
�Rj

)− dT
(
�Tj

)]
otherwise.

∆0
h(T ,R) measures the maximum “drop,” over all leaves inT (the leaf-drop), in going

from T to a treeR of height at mosth. Clearly, if h < �lgL� no tree of height at mosth
can haveL leaves, and both∆∗h(T) and∆0

h(T) are infinite.
We seek an algorithm that, given a treeT ∈ TL and target heighth, finds a treeR that

realizes the minimum in Eq. (1) (or Eq. (2)). In addition, we seek the worsth-leveling and
leafh-leveling cost as a function of the number of leaves inT . Specifically, we seek

∆∗h(L)= max
T ∈TL

∆∗h(T) and ∆0
h(L)= max

T ∈TL

∆0
h(T).

Explicit tradeoffs that determine both∆∗h(L) and∆0
h(L) are developed in Section

Our results are summarized in the following theorems:

Theorem 2.1.

∆0
h(L)=



0 if L< h+ 2,

1 if h+ 2 � L<Lh,

2 if Lh � L and�lgL�< h,

�lgL� − 1 if �lgL� = h,

∞ if �lgL�> h,

where

Lh =
{

2h−1+ h+ 1 if 1 � h � 4,

Fh+1+ 3Fh − 1 if h > 4,

andFk is thekth Fibonacci number(F0= 0, F1= 1, andFi = Fi−1+ Fi−2, for i > 1).

Among other things, this theorem states that, whenh � �lgL� + 1, restructuring with
leaf-drop at most 2 is always possible, and whenh > logφ((L + 1)/(3+ φ)), whereφ
is the golden ratio (1.61803. . .), leaf-drop at most 1 is always possible (and these re
are essentially tight). This implies, for example, that an optimal binary search tree
keys stored at leaves) can be restructured to have worst-case search cost within
the optimal worst-case search cost (�lgL�) without increasing the average search cost
for that matter, the search cost ofanykey) by more than two. Equivalently, an (optima
Huffman tree for a sequence of symbols can be restructured to give codes of ma
length at most one bit more than the optimal maximum code length and average
length at most two bits more than the optimal average code length. In both cases t
be done without explicit knowledge of the key or symbol frequencies.

Theorem 2.2.

∆∗h(L)=min
{
k:

⌈
lgρ(L,h− k)

⌉= k
}
,

whereρ(L,h)=max{r:
∑r−1 (

h
)
(r − i) � L}.
i=0 i

172 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

i-

al (or
t within

o our
Observation 2.1. By considering certain ranges ofh and using straightforward approx
mations of the binomial coefficient, we observe

∆∗h(L) �



0 if L< h+ 2,

lgk +O(1) if L=O
(
hk

)
,

lg lgL if �lgL�< h,

�lgL� − 1 if �lgL� = h,

∞ if �lgL�> h.

Thus, among other things, Theorem 2.2 implies that, whenh � �lgL�+1, restructuring
with node-drop at most lg lgL is always possible, and whenh >

√
L the node-drop is

O(1). Hence, even without explicit knowledge of the key frequencies, a given optim
near-optimal) binary search tree can be restructured to have worst-case search cos
one of optimal at the expense of an additive increase of at most lg lgL in the expected
search cost.

3. Near-h-leveling costs

It happens that considering a slightly different cost function results in solutions t
original problems. Define thenear-h-leveling costof T ∈ TL to be

Ξ∗h (T)= min
R∈TL

Ξ∗h (T ,R),

where

Ξ∗h (T ,R)= max
1�j�2L−1

[
dR

(
vRj

)−min
{
dT

(
vTj

)
, h

}]
.

Ξ∗h (T) differs from∆∗h(T) in that the treeR may have height greater thanh. However,
each node at depth greater thanh in R has cost at least its depth inR minush. Define the
leaf near-h-leveling costof T ∈ TL to be

Ξ0
h(T)= min

R∈TL

Ξ0
h(T ,R),

where

Ξ0
h(T ,R)= max

1�j�L

[
dR

(
�Rj

)−min
{
dT

(
�Tj

)
, h

}]
.

We also define

Ξ∗h (L)= max
T ∈TL

Ξ∗h (T) and Ξ0
h(L)= max

T ∈TL

Ξ0
h(T).

4. Relations of h-leveling to near-h-leveling

We can translate bounds onΞ∗(L) into bounds on∆∗(L) using the following lemma.
h h

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 173

ch
Lemma 4.1. For any pair of treesT andR in TL, ∆∗h(T ,R) =min{k: Ξ∗h−k(T ,R) = k}
and thus,

∆∗h(L)=min
{
k: Ξ∗h−k(L)= k

}
.

Proof. If Ξ∗h−k(T ,R)= k then

height(R)= max
1�j�2L−1

dR
(
vRj

)
� max

1�j�2L−1

[
k +min

{
dT

(
vTj

)
, h− k

}]
� h

and

∆∗h(T ,R)= max
1�j�2L−1

[
dR

(
vRj

)− dT
(
vTj

)]
� max

1�j�2L−1

[
dR

(
vRj

)−min
{
dT

(
vTj

)
, h− k

}]
= k.

If ∆∗h(T ,R)= k thenheight(R) � h and

Ξ∗h−k(T ,R)= max
1�j�2L−1

[
dR

(
vRj

)−min
{
dT

(
vTj

)
, h− k

}]
= max

1�j�2L−1
max

{
dR

(
vRj

)− dT
(
vTj

)
, dR

(
vRj

)− (h− k)
}

� max
{
∆∗h(T ,R), k

}
= k. ✷

The same proof, restricted to leaf nodes, establishes:

Lemma 4.2. For any pair of treesT andR in TL, ∆0
h(T ,R) =min{k: Ξ0

h−k(T ,R) = k}
and thus,

∆0
h(L)=min

{
k: Ξ0

h−k(L)= k
}
.

If we have an algorithmXi∗, with inputsT andh, that finds a tree that achievesΞ∗h (T)

then we can use it to find a tree that achieves∆∗h(T) as follows:

Leveled Tree Algorithm
Input: binary tree T ∈ TL, integer height h.
Output: binary tree R with height(R) � h that minimizes ∆∗h(T ,R).

1. Find the smallest 0 � k � ∆∗h(L) such that R = Xi∗(T ,h− k) and Ξ∗h−k(T ,R) � k.
2. If such k exists then output R.

Correctness. For the sake of contradiction, suppose there exists a treeR′ with height(R′)
� h such thatk′ ≡ ∆∗h(T ,R′) < ∆∗h(T ,R) ≡ k. By Lemma 4.1,Ξ∗

h−k′ (T ,R′) � k′. This
contradicts the minimality ofk.

SinceΞ∗h (T) is monotonically decreasing with increasingh, the smallestk, 0 � k �
∆∗h(L), such thatR = Xi∗(T ,h− k) andΞ∗h−k(T ,R) � k can be found using binary sear
with O(lg(∆∗(L))) invocations of algorithmXi∗.
h

174 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

betic

ath
th

g to the

ts

sion of
ults of
general

r

e
th the

d

The preceding algorithm with the superscript “∗” replaced with “0” performs the
analogous task for the leaf-restricted case.

5. The alphabetic minimax tree problem

The near-h-leveling cost of a given tree is related to what is known as the alpha
minimax cost of an associated weight sequence. IfW = w1,w2, . . . ,w2L−1 is an odd-
length sequence of integer weights andT ∈ TL then, for everyj , 1 � j � 2L − 1, the
W -costof nodevj of T is given by

cW (vj)=
{
wj if vj is a leaf ofT ,

max
{
wj ,1+ cW (va),1+ cW (vb)

}
if vj has childrenva andvb.

We define theW -cost of Tj (the subtree ofT rooted at nodevj), denotedcW (Tj),
to be cW (vj). (So cW (T) = cW (r), where r is the root of T .) Since cW (T) =
max1�j�2L−1[dT (vj) + wj], cW (T) can be interpreted as the maximum weighted p
length of T , where the path from the rootr to vj is assigned weighted path leng
dT (vj)+wj . The (full) alphabetic minimax costof the weight sequenceW , denotedα(W),
is defined as

α(W)= min
T ∈TL

cW (T).

In the event that the even-indexed elements ofW (corresponding to internal nodes ofT)
have values less than or equal to those of all odd-indexed elements (correspondin
leaves ofT), the costcW (T) becomes the weighted root-to-leaf path length ofT and
α(W) gives theleaf-restricted alphabetic minimax costof the subsequence of leaf weigh
w1,w3, . . . ,w2L−1.

Thealphabetic minimax problemtakes an odd-length weight sequenceW as input and
asks for a treeT , analphabetic minimax treefor W , whoseW -cost realizesα(W). In fact,
we will deal exclusively withstrongalphabetic minimax trees, in whicheverysubtree is an
alphabetic minimax tree for its associated weight sequence. The leaf-restricted ver
the alphabetic minimax problem has been extensively studied [3,7]; many of the res
this section can be viewed as extensions of earlier leaf-restricted results to the more
problem addressed here.

Observation 5.1 (Optimal substructure).If T is a (strong) alphabetic minimax tree fo
the weight sequenceW and if v is any node ofT then the treeT ′, formed by replacing
the subtree ofT rooted atv by a single leaf, is a(strong) alphabetic minimax tree for th
weight sequenceW ′ formed by replacing the subsequence of weights associated wi
nodes in the subtree rooted atv by the weightcW (v).

Given a weight sequenceW =w1,w2, . . . ,w2L−1, with L> 1, we define the associate
contracted weight sequencêW = ŵ0, ŵ1, . . . , ŵL by

ŵ0= ŵL =∞,

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 175

ciated

both

rbitrary
and for 1� j � L− 1,

ŵj =max{1+w2j−1,w2j ,1+w2j+1}.
It follows from the next lemma that two weight sequences with the same asso

contracted weight sequence have the same alphabetic minimax cost.

Lemma 5.1. Suppose that weight sequencesW = w1,w2, . . . ,w2L−1 andW ′ = w′1,w′2,
. . . ,w′2L−1 have the same associated contracted weight sequence. Then, for everyT ∈ TL
and for every internal nodev2j of T , cW (v2j)= cW ′(v2j).

Proof. Let Ŵ = ŵ0, ŵ1, . . . , ŵL be the contracted weight sequence associated with
W andW ′. First note that, for every leafv2j−1 of T ,

cW (v2j−1)=w2j−1 � ŵj − 1 and cW ′(v2j−1)=w′2j−1 � ŵj − 1.

We prove thatcW (v2j) = cW ′(v2j), for every internal nodev2j of T , by induction on
ht (v2j), the height of the subtree ofT rooted atv2j .

If ht (v2j)= 1 then

cW (v2j)=max{w2j ,1+w2j−1,1+w2j+1} = ŵj

=max
{
w′2j ,1+w′2j−1,1+w′2j+1

}= cW ′(v2j).

Suppose thatht (v2j) = h and cW (vk) = cW ′(vk) for all internal nodesvk with
ht (vk) < h. Let va andvb denote the left and right children ofv2j in T . Then,

cW (v2j)=max
{
w2j ,1+ cW (va),1+ cW (vb)

}
=max

{
w2j ,1+w2j−1,1+w2j+1,1+ cW (va),1+ cW (vb)

}
sincecW (va) � w2j−1 andcW (vb) � w2j+1

=max
{
ŵj ,1+ cW (va),1+ cW (vb)

}
by definition ofŵj

=max
{
ŵj ,1+ cW ′(va),1+ cW ′(vb)

}
(∗)

=max
{
w′2j ,1+w′2j−1,1+w′2j+1,1+ cW ′(va),1+ cW ′(vb)

}
by definition ofŵj

=max
{
w′2j ,1+ cW ′(va),1+ cW ′(vb)

}
sincecW ′(va) � w′2j−1 andcW ′(vb) � w′2j+1

= cW ′(v2j).

If va and vb are internal nodes, line (∗) follows by the induction hypothesis. Ifva
(respectivelyvb) is a leaf, line (∗) follows sinceŵj � 1+ cW (va) andŵj � 1+ cW ′(va)
(respectivelŷwj � 1+ cW (vb) andŵj � 1+ cW ′(vb)).

It follows, by induction, thatcW (v2j)= cW ′(v2j), for every internal nodev2j of T . ✷
If ŵj satisfiesŵj−1 � ŵj < ŵj+1, then the triple(w2j−1,w2j ,w2j+1) is called

a right locally minimum triple(abbreviated r.l.m. triple) inW . The following two local
replacement operations on weight sequences can be used iteratively to reduce an a

176 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

ent

hence,

m

er
odd-length weight sequenceW to a weight sequence consisting of the single elem
α(W).

Contraction: of a right locally minimum triple. A r.l.m. triple(w2j−1,w2j ,w2j+1) in W

is replaced by the single weight̂wj .
Normalization: of weights. An internal weightw2j is replaced byw2j + 1 if w2j < ŵj .

A leaf weightw2j−1 is replaced byw2j−1+ 1 if w2j−1 < min{ŵj−1, ŵj } − 1.

Lemma 5.2. If W ′ is formed fromW by normalization or contraction thenα(W ′)= α(W).

Proof. First consider the case where weight sequenceW ′ is formed from W by
normalization of any subset of its weights. Then, for everyj , 1� j � |W |,

ŵ′j =max
{
1+w′2j−1,w

′
2j ,1+w′2j+1

}
� max

{
min{ŵj−1, ŵj }, ŵj ,min{ŵj , ŵj+1}

}= ŵj

and

ŵ′j =max
{
1+w′2j−1,w

′
2j ,1+w′2j+1

}
� max{1+w2j−1,w2j ,1+w2j+1}

= ŵj .

It follows thatW ′ andW have the same associated contracted weight sequence, and
by Lemma 5.1,α(W ′)= α(W).

Next, consider the case where the weight sequenceW ′ is formed fromW by contraction
of the r.l.m. triple(w2j−1,w2j ,w2j+1). Suppose that|W | = 2L − 1. If T ′ is any tree in
TL−1 then the treeT formed fromT ′ by attaching a pair of leaves to thej th leaf ofT ′
satisfiescW (T)= cW ′(T ′), and hence, takingT ′ to be the tree that realizes the minimu
cW ′(T ′), it follows thatα(W ′) � α(W). Conversely, letT be any tree inTL. It suffices to
show that for some treeT ′ in TL−1, cW ′(T ′) � cW (T), and henceα(W ′) � α(W).

Suppose first, that nodesv2j−1 andv2j+1 are siblings inT . Then,cW (v2j)= ŵj and so
the treeT ′ formed fromT by removing nodesv2j−1 andv2j+1 satisfiescW ′(T ′)= cW (T).
Hence, it suffices to show that there exists a treeE in TL, in which leavesvE2j−1 andvE2j+1
are siblings, that satisfiescW (E) � cW (T). We proceed by induction onL. If L= 2 there
is nothing to show, so suppose thatL> 2 and that the hypothesis holds for trees with few
thanL leaves.

Let vr be the root ofT and denote byT L andT R the left and right subtrees ofvr . If
v2j �= vr then nodesv2j−1, v2j andv2j+1 lie together in eitherT L or T R. By the induction
hypothesis there exist treesEL andER, with nodesvE1 , . . . , vEr−1 andvEr+1, . . . , v

E
2L−1,

respectively, in whichvE2j−1 and vE2j+1 are siblings andcWL(EL) � cWL(T L) and

cWR(ER) � cWR (T R), whereWL = w1, . . . ,wr−1 andWR = wr+1, . . . ,w2L−1. Hence,
the treeE with rootvr and subtreesEL andER satisfies

cW (E)=max
{
wr,1+ cWL

(
EL

)
,1+ cWR

(
ER

)}
� max

{
wr,1+ cWL

(
T L

)
,1+ cWR

(
T R

)}= cW (T).

So, it remains to consider the situation whereL> 2 andv2j is the root ofT . We consider
two cases:

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 177

d

nd
Fig. 2. (Case 1)v2j is root andj = L− 1.

Case 1. v2j+1 is the right child ofv2j in T ; equivalently,j = L− 1.
In this case, we constructE from T by removing the root (v2j) and its right child

(v2j+1) and adding a left and right child to the leafv2j−1 (see Fig. 2). It is straightforwar
to confirm thatdE(vEk) < dT (vk), for k < 2L − 3, and dE(v

E
2L−3) = dE(v

E
2L−1) =

dE(v
E
2L−2)+ 1= dT (v2L−4)+ 1. Hence,

max
1�k<2L−3

[
dE

(
vEk

)+wk

]
< max

1�k<2L−3

[
dT (vk)+wk

]
.

Furthermore,

max
{
dE

(
vE2L−3

)+w2L−3, dE
(
vE2L−2

)+w2L−2, dE
(
vE2L−1

)+w2L−1
}

= dE
(
vE2L−2

)+max{w2L−2,1+w2L−3,1+w2L−1}
� dE

(
vE2L−2

)+max{w2L−4,1+w2L−5,1+w2L−3}
since(w2L−3,w2L−2,w2L−1) is a r.l.m. triple

= dT (v2L−4)+max{w2L−4,1+w2L−5,1+w2L−3}
� max

{
dT (v2L−5)+w2L−5, dT (v2L−4)+w2L−4, dT (v2L−3)+w2L−3

}
.

Hence,

cW (E)= max
1�k�2L−1

[
dE

(
vEk

)+wk

]
� max

1�k�2L−1

[
dT (vk)+wk

]= cW (T).

Case 2. v2j+1 is not the right child ofv2j in T ; equivalently,j < L− 1.
In this case, we constructE from T by removing leafv2j−1, replacingv2j−2 (assuming

j > 1) by its left subtree (ifj = 1 then the rootv2 is simply removed), and adding a left a
right child to leafv2j+1 (see Fig. 3). It is straightforward to confirm thatdE(v

E
k) � dT (vk),

for k � 2j−2 ork � 2j+2, anddE(vE2j−1)= dE(v
E
2j+1)= dE(v

E
2j)+1� dT (v2j+2)+2.

Hence,

max
k�2j−2

or k�2j+2

[
dE

(
vEk

)+wk

]
� max

k�2j−2
or k�2j+2

[
dT (vk)+wk

]
.

178 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

a
tions.
eight
the

of

tracted
direct
Fig. 3. (Case 2)v2j is root andj < L− 1.

Furthermore,

max
{
dE

(
vE2j−1

)+w2j−1, dE
(
vE2j

)+w2j , dE
(
vE2j+1

)+w2j+1
}

= dE
(
vE2j

)+max{w2j ,1+w2j−1,1+w2j+1}
� dE

(
vE2j

)+max{w2j+2,1+w2j+1,1+w2j+3} − 1

since(w2j−1,w2j ,w2j+1) is a r.l.m. triple

� dT (v2j+2)+max{w2j+2,1+w2j+1,1+w2j+3}
� max

{
dT (v2j+1)+w2j+1, dT (v2j+2)+w2j+2, dT (v2j+3)+w2j+3

}
.

Hence,

cW (E)= max
1�k�2L−1

[
dE

(
vEk

)+wk

]
� max

1�k�2L−1

[
dT (vk)+wk

]= cW (T). ✷
Normalization of weights does not change the length of the weight sequenceW , nor

does it change the cost̂wj associated with any triple(w2j−1,w2j ,w2j+1); in particular it
does not change any r.l.m. triple ofW . Normalization serves as a tool for maintaining
structural invariant of the weight sequences that we will encounter in our applica
On the other hand, each application of contraction reduces the length of the w
sequenceW by 2. Each such application also corresponds to a join operation in
construction of an alphabetic minimax tree associated withW . In particular, ifT ′ is an
alphabetic minimax tree for the weight sequenceW ′ formed fromW by contraction of the
r.l.m. triple (w2j−1,w2j ,w2j+1), and the treeT is formed fromT ′ by adding two leaves
to the nodevT

′
2j−1, thencW (T) = cW ′(T ′) = α(W ′) = α(W). Hence,T is an alphabetic

minimax tree forW . Thus the construction of an alphabetic minimax tree forW is implicit
in any algorithm for reducing the sequenceW to a singleton sequence by application
normalization and contraction operations.

Theorem 5.1. The alphabetic minimax problem has a linear time solution.

Proof. Successive r.l.m. triples in a given weight sequence can be located and con
in amortized constant time using a simple stack-driven procedure. This is a

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 179

x tree

ction

t

close

es
generalization of previously presented linear-time leaf-restricted alphabetic minima
algorithms (cf. [7]). ✷

The iterative algorithm implicit in the proof of the above theorem uses contra
operations only. It not only produces the alphabetic minimax costα(W) of a given weight
sequenceW , but also lends itself to the construction of an upper bound onα(W) as
a function of the multiset of weights inW . Specifically, if W = w1, . . . ,w2L−1 and
Ŵ = ŵ0, . . . , ŵL is the associated contracted weight sequence then we can defineΨ (W)=∑L−1

i=1 2ŵi . If W0 denotes the initial weight sequence andWf denotes the (length 3) weigh
sequence prior to the final contraction, then it is straightforward to confirm that:

(1) Ψ (W0) < 4
∑

w∈W0
2w,

(2) Ψ (Wf)= 2α(W0), and
(3) if sequenceW ′ is formed fromW by contraction thenΨ (W ′) � Ψ (W).

As an immediate consequence we have the following:

Lemma 5.3. If W0 is any weight sequence thenα(W0) < 2+ lg
∑

w∈W0
2w.

6. Applications to tree restructuring

The motivation for developing results about alphabetic minimax trees is their
connection with near-h-leveling costs of binary trees.

For T ∈ TL, we define theh-leveled weight sequenceassociated withT to be the
sequencew1, . . . ,w2L−1, where

wj =−min
{
dT

(
vTj

)
, h

}
.

Similarly, we define theh-leveled leaf-restricted weight sequenceassociated withT to
be the sequencew1, . . . ,w2L−1, where

wj =
{−min

{
dT

(
vTj

)
, h

}
if j is odd,

−h if j is even.

Lemma 6.1. For T ∈ TL, if W is theh-leveled weight sequence associated withT andW ′
is theh-leveled leaf-restricted weight sequence associated withT , thenΞ∗h (T) = α(W)

andΞ0
h(T)= α(W ′).

Proof. From the definitions ofΞ∗h (T), wj , cW (R), andα(W):

Ξ∗h (T)= min
R∈TL

max
1�j�2L−1

[
dR

(
vRj

)−min
{
dT

(
vTj

)
, h

}]
= min

R∈TL

max
1�j�2L−1

[
dR

(
vRj

)+wj

]= min
R∈TL

cW (R)= α(W).

The leaf-restricted case is similar, since forh-leveled leaf-restricted weight sequenc
cW (R) is realized by one of its leaves.✷

180 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

from

ive
l
This
more

serves
while

ructure
mined.
Lemma 6.1 allows us to re-express our results on alphabetic minimax trees
Section 5 in terms of the near-h-leveling of an arbitrary treeT . Specifically, using
Lemma 6.1 together with Theorem 5.1, we obtain

Corollary 6.1. For T ∈ TL, both Ξ∗h (T) and Ξ0
h(T) (and their realizations) can be

determined in time linear inL. Furthermore, using the Leveled Tree Algorithm,∆∗h(T)

(respectively∆0
h(T)), together with its realization, can be determined inO(L lg(∆∗h(L)))

(respectivelyO(L lg(∆0
h(L)))) time.

Furthermore, using Lemma 6.1 together with Lemma 5.3 we obtain

Corollary 6.2. If h � �lgL� + 1 thenΞ∗h (L) < 2+ lg(2+ lgL) andΞ0
h(L) � 2.

Referring to Corollary 6.1, it is natural to ask if∆∗h(T) and ∆0
h(T) can also be

determined in time linear inL. The algorithm described above determines∆0
h(T) in linear

time (since∆0
h(L) is constant) except forh= �lgL� when a different linear time algorithm

exists. For∆∗h(T), the existence of a linear time algorithm is an open problem.
The bounds onΞ∗h (L) andΞ0

h (L) presented in Corollary 6.2 are not tight. To der
exact values forΞ∗h (L) andΞ0

h(L) (and hence∆∗h(L) and∆0
h(L)) it turns out to be usefu

to reformulate the iterative alphabetic minimax algorithm of the preceding section.
less efficient but more structured alternative makes explicit use of normalization and
constrained applications of contraction. At its core is a reduction procedure that
to incrementally reduce a measure of the spread of weights in a given sequence
preserving its alphabetic minimax cost. When this measure is reduced to zero the st
of the resulting sequence, and hence its alphabetic minimax cost, is completely deter

If W =w1, . . . ,w2k−1 is a weight sequence, denote bỹW the set

W̃ = {wj + 1 | j odd} ∪ {wj | j even}.
Thethicknessof W , denotedθ(W), is defined asθ(W)=max(W̃)−min(W̃).

Reduce
Input: weight sequence W with |W | = 2k − 1
Output: weight sequence W ′ with α(W ′)= α(W) and either

i) θ(W ′)= θ(W)− 1 or
ii) θ(W ′)= θ(W)= 0 and |W ′| = 2�k/2�− 1

1. if |W | = 1 then output W
2. a←min(W̃)

3. while there exists a r.l.m. triple (w2j−1,w2j ,w2j+1) in W with ŵj = a

4. contract(w2j−1,w2j ,w2j+1)
5. while there exists a weight w2j−1 in W with w2j−1= a − 1
6. normalize(w2j−1)
7. while there exists a weight w2j in W with w2j = a

8. (w2j)

9. output W

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 181

ing

nal

p

n

ence
The correctness of the procedurereduceis an immediate consequence of the follow
three lemmas.

Lemma 6.2. α(W)= α(reduce(W)).

Proof. The lemma follows from Lemma 5.2 sincereducealtersW only by applications of
contraction and normalization.✷
Lemma 6.3. If θ(W) > 0 thenθ(reduce(W))= θ(W)− 1.

Proof. LetW ′ = reduce(W). The definitions of̃W andŵj insure that a triple(w2j−1,w2j ,

w2j+1) contracted in line 4 hasw2j−1 = w2j+1 = a − 1 andw2j = a. After the contract
loop, ŵj > a for all j . Thus, during the leaf normalization loop (line 5), anyw2j−1
with value a − 1 will normalize to valuea. For the same reason, during the inter
normalization loop (line 7), anyw2j with valuea will normalize to valuea + 1. Thus,
min(W̃ ′)=min(W̃)+1. Sinceθ(W) > 0, max(W̃) � a+1 and max(W̃ ′)=max(W̃). ✷
Lemma 6.4. Let |W | = 2k − 1 for k > 1. If θ(W) = 0 and W ′ = reduce(W) then
|W ′| = 2�k/2�− 1 andmin(W̃ ′)= 1+min(W̃).

Proof. Let b =min(W̃), a = b − 1, t = �k/2�, andr = 2t − k (r is either 0 or 1). Since
θ(W)= 0, it follows thatW has the form

a(ba)k−1= a(ba)2t−r−1= a(ba)1−r
(
b(aba)

)t−1
.

By the definitions of r.l.m. triple and contraction, aftert −1 repetitions of the contract loo
(line 3),W has the form

a(ba)1−r(bb)t−1.

After 1− r more repetitions of the contract loop andr repetitions of the leaf normalizatio
loop (line 5),W has the form

b(bb)t−1.

After t−1 repetitions of the internal normalization loop (line 7), we are left with a sequ
of the form

b
(
(b+ 1)b

)t−1
.

As a direct consequence of Lemma 6.4, we have

Corollary 6.3. If θ(W)= 0 and|W | = 2k− 1 (k � 1) thenα(W)= �lgk�+min(W̃)− 1.

Lemmas 6.2 and 6.3 and Corollary 6.3 combine to motivate the notion of areduction
sequenceWp , p � 0, associated with a weight sequenceW , defined as

W0=W and Wp = reduce(Wp−1) for p > 0.

182 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

s
uence
ows

ted
s on

e
It

l node

ds for
e

dd-
of
We refer to each application of procedurereduceas aphase, and the algorithm that take
a weight sequenceW as input and produces a reduction sequence terminating in a seq
of length one as the Phased Alphabetic Minimax Algorithm. In fact, Corollary 6.3 sh
that the alphabetic minimax cost ofW can be directly determined as soon asWp has
thickness zero. An example of the reduction sequence associated with anh-leveled weight
sequence is shown in Fig. 9.

If the input weight sequenceW happens to be anh-leveled weight sequence associa
with a treeT ∈ TL then its special structure can be exploited to derive tight bound
its alphabetic minimax cost. For example, ifh � height(T) thenwj =−dT (vTj) and it is
easy to confirm that thej th element ofWp is just−dT ′(vT ′j), whereT ′ denotes the tre
formed fromT by truncating at depthheight(T)− p (i.e., removing all deeper nodes).
follows thatα(W) = 0, and henceΞ∗h (T) = Ξ0

h(T)= 0, wheneverh � height(T). Thus,
Ξ∗h (L) = Ξ0

h(L) = 0 whenh � L − 1. On the other hand, ifh � 1 < height(T) then
θ(W)= 1 andW1 has the form(−h)((−h+ 1)(−h))L−1. Hence,α(W)= �lgL� − h and
Ξ∗h (T)=Ξ0

h (T)= �lgL�−h. Thus,Ξ∗h (L)=Ξ0
h(L)= �lgL�−h, whenh � 1< �lgL�.

We summarize the above discussion in the following:

Observation 6.1.

Ξ∗h (L)=Ξ0
h (L)=

{
0 if L< h+ 2,

�lgL� − h if h � 1< �lgL�.

It remains to considerh-leveled weight sequences with 1< h< height(T). In this case
θ(W)= h (since one internal node has associated weight 0 and at least one interna
has associated weighth). In the reduction sequence associated withW , the sequenceWp

has thicknessh− p, for 0� p � h, and the sequenceWh has the form(−1)(0(−1))k, for
somek > 0.

We are able to construct worst-case families of trees that provide exact boun
Ξ0

h(L) and Ξ∗h (L) over the full range of possible height boundsh. These results ar
developed in Sections 6.1 and 6.2 for the case of leaf-h-leveling cost and generalh-leveling
costs, respectively.

6.1. Leaf-restricted weight sequences

SupposeT ∈ TL and letW be theh-leveled leaf-restricted weight sequence forT , where
h > 1. LetWp denote thepth sequence in the reduction sequence associated withW . Let
Up denote the subsequence ofWp corresponding to the original leaf weights (i.e., the o
indexed elements). It is easy to confirm that the remaining (even-indexed) elementsWp

all have value−h + p. We analyse the effect of applying the phased reduction ofW in
terms of the potential functionΦ, where

Φ(Ui)=
∑
u∈U

2u.
i

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 183

e

se
e
ssive

n
iginal

al
SinceWh has the form(−1)(0(−1))k, for somek > 0,Uh has the form(−1)k+1. It follows
thatΦ(Uh)= |Uh|/2 and, by Corollary 6.3,

α(W)= ⌈
lg |Uh|

⌉− 1= ⌈
lg

⌊
2Φ(Uh)

⌋⌉− 1. (3)

To determineΦ(Uh), we determine the potentialΦ(U1) and the potential increas
Φ(Uh)−Φ(U1). Since the first phase in the reduction sequence associated withW affects
only the even-indexed elements (changing their value from−h to −h + 1), U1 = U0.
Hence, by several applications of the Kraft equality, we have

Φ(U1)=Φ(U0)=
∑
u∈U0

2u =
∑

k: dT (�k)�h

2−dT (�k) +
∑

k: dT (�k)>h

2−h

=
∑

1�k�L

2−dT (�k) +
∑

k: dT (�k)>h

(
2−h − 2−dT (�k)

)= 1+ (
L− λ

(
T h

))
2−h,

where, for any binary treeR, λ(R) denotes the number of leaves ofR andRh denotes the
tree formed fromR by truncation at depthh (removing all deeper nodes).

The potential differenceΦ(Uh)−Φ(U1) is bounded by looking at the potential increa
associated with each phase. First, note that each application of contraction in phasp > 1
(phasep createsWp) has no impact on the potential (since it replaces two succe
elements of value−h + p − 2 in Up by one new element of value−h + p − 1). Each
application of (leaf) normalization in phasep > 1 replaces an element of value−h+p−2
by one of value−h+ p − 1 thereby raising the potential ofWp by 2−h+p−2. We assign
the potential increase associated with each such normalized weightui , with i > 1, to its
predecessorui−1 in Up (which must have value greater thanui , since by assumptio
ui−1 does not belong to a r.l.m. triple, and must correspond to a weight in the or
sequenceU1). The potential increase associated with weightu1 is accumulated in a
separate boundary total. We observe that an initial weightuj could be assigned potenti
increases in phasesh + uj+1 + 2, . . . , h+ uj + 1, if initial weight uj+1 is less thanuj ,
totalling at most

h+uj+1∑
t=h+uj+1+2

2−h+t−2= 2uj − 2uj+1.

Furthermore, the boundary total could receive increments in phasesh + u1 + 2, . . . , h
totalling at most

h∑
t=h+u1+2

2−h+t−2= 1/2− 2u1.

Thus, ifU1= u1, . . . , uL, the total potential increaseΦ(Uh)−Φ(U1) is at most

1/2− 2u1 +
∑ [

2uj −̇ 2uj+1
]
. (4)
1�j<L

184 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

he
)

ve
ment.

t
is
a

y
e

Note that the monus operation,−̇, is defined asx −̇ y = max{x − y,0}. Sinceuj =
−min{dT (�Tj), h}, this bound on the total potential increase can be re-expressed as

1/2− 2−dR(�R1) +
∑

1�j<λ(R)

[
2−dR(�

R
j) −̇ 2−dR(�

R
j+1)

]
, (5)

whereR = T h (the truncation ofT at levelh). Notice that the summation in (4) is over t
leaves ofT while in (5) it is over the, typically fewer, leaves ofR. Equations (4) and (5
are equivalent since consecutive−h values in the leafh-leveled weight sequenceU1 (i.e.,
wheredT (�Tj) � h) make no contribution to the potential increase.

It follows that

Φ(Uh)=Φ(U1)+
[
Φ(Uh)−Φ(U1)

]
� 1+ (

L− λ(R)
)
2−h + 1/2− 2−dR(�R1)

+
∑

1�j<λ(R)

[
2−dR(�Rj) −̇ 2−dR(�

R
j+1)

]
whereR = T h.

So, to establish an upper bound onΦ(Uh) as a function ofL andh, it will suffice to
determine, amongall treesR of heighth, one that maximizes the functionf (R) given by

f (R)=−2x1 − λ(R)2−h +
∑

1�j<λ(R)

[
2xj −̇ 2xj+1

]
, (6)

wherexj =−dR(�Rj).
We begin by showing that any treeR that maximizesf (R) can be assumed to ha

a particular structure. Two recursively defined families of trees play a role in this argu
A k-chain is defined as follows: a 0-chain is just an isolated vertex and, fork > 0, ak-chain
is the binary tree whose left subtree is a singleton leaf and whose right subtree is a(k−1)-
chain. AFibonacci treeof heightk � 0,Fk, is defined as follows: for 0� k � 4,Fk is just
a k-chain and, fork > 4,Fk is the binary tree whose left subtree isFk−1 and whose righ
subtree has a leaf as its left subtree andFk−2 as its right subtree. Figure 4 illustrates th
construction. A tree of heighth is said to bek-fringed if each of its subtrees rooted at
node of depthh− k is either a singleton node (leaf) or ak-chain. (Note that every binar
tree is 0-fringed, every tree of heighth < k is (trivially) k-fringed, and every Fibonacci tre
of heighth � 4 is 4-fringed.)

By straightforward induction onh, we get the following:

Lemma 6.5. For 0 � h � 3, f (Fh) = −(h + 2)2−h, and for all h � 4, f (Fh) = 1−
(Fh+2+ 3Fh+1− 1)2−h, whereFk is thekth Fibonacci number(F0= 0,F1= 1, . . .).

Fig. 4. A Fibonacci tree of heightk > 4.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 185

d by

the

(or a
f

y

e

We first observe that, for 0� h � 3, Fh maximizesf (R), and, for everyh � 4, there
is a 4-fringed tree that maximizesf (R). (This is proved by demonstrating, fori running
from 2 to 4, that if there exists an(i−1)-fringed tree that maximizesf (R) then there is an
i-fringed tree that maximizesf (R). In each step the rightmost node at levelh− i that is
neither a leaf nor the root of ani-chain, while such a node exists, has its subtree replace
ani-chain. It suffices to observe that each such replacement does not decreasef (R).) Thus,

Φ(Uh) � 3/2+ (L− h− 2)2−h (7)

when 1� h � 3.
Continuing withh � 4, we observe that ifR is a 4-fringed tree that maximizesf (R)

then the treeS = Rh−4 (formed by removal of the 4-fringe) can be assumed to satisfy
additional three properties:

(1) min{yj , yj+1} = −h+ 4 for 1� j < λ(S),
(2) y1=−h+ 4, and
(3) yλ(S) =−h+ 4,

whereyj =−dS(�Sj).
Suppose thatS has two consecutive shallow (depth less thanh−4) leaves, or a shallow

first or last leaf. Let�∗ denote the deeper of a consecutive pair of shallow leaves
shallow first or last leaf) and letk denote the depth of�∗ in S. (Note that�∗ must be a lea
of R as well.) It is straightforward to confirm that the treeR′ formed fromR by replacing
leaf �∗ by the subtreeFh−k satisfies

f (R′) � f (R)+ 2−kf (Fh−k)+ 2−h + 2−h+3 > f (R).

The first inequality expresses the change in Eq. (6) due to the removal of�∗ (2−h)
and its replacement byFh−k (2−kf (Fh−k)). The value 2−h+3 represents the minimum
additional contribution tof (R′) arising from the first leaf inFh−k . The second inequalit
is equivalent tof (Fh−k) >−9 · 2−h+k which follows from Lemma 6.5.

A tree R is said to be anh-combfor h � 4 if R is a k-chain, for 0� k � 3, or R
is a 4-fringed tree of heighth whose associated (unfringed) treeS = Rh−4 satisfies
property (1). (Note that an isolated node is anh-comb for allh.) Thus, whenh � 4, it
suffices to find anh-combR, whose associated treeS = Rh−4 has both of its extrem
leaves at depthh− 4, and which maximizesg(R) defined by

g(R)=−λ(R)2−h +
∑

1�j�λ(R)

[
2xj −̇ 2xj+1

]
(8)

(note the change in summation boundary) where

xj =
{−dR(

�Rj

)
if j � λ(R),

−h+ 3 if j = λ(R)+ 1.

If Ah denotes this maximum value then

Φ(Uh) � 3/2+L2−h − 2−h+3+Ah (9)

for all T ∈ TL, whenh � 4.

186 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

es

ssibly
To determineAh, it helps to consider two related optimizations. LetBh denote the
maximum value ofg(R) over all h-combsR at least one of whose extreme leav
has depthh, and letCh denote the maximum value ofg(R) over all h-combs without
constraints on their extreme leaves.

Lemma 6.6.

Ah = 1− (Fh+2+ 3Fh+1− 9)2−h, Bh = 1− (Fh+1+ 3Fh)2−h,
Ch = 1− 9 · 2−h,

for all h � 4, whereFk is thekth Fibonacci number(F0= 0,F1= 1, . . .).

Proof (by induction onh). Forh= 4, the unique 4-comb of height 4 givesA4= B4= 2−3.
The 4-comb of height 0 (an isolated node) givesC4 = 7 · 2−4. Suppose thath > 4 and

denote by (respectively , ,) an h-comb of heighth whose
associated unfringed tree has both (respectively at least its left, at least its right, po
neither) extreme leaf at depthh− 4. Then by the comb property we have (forx = h− 1):

must be or .

must be or .

must be or .

must be or or a single node.

Hence,

Ah =Ah−1/2+Bh−1/2, Bh =max{Bh−1/2+Bh−1/2,Ch−1/2+Ah−1/2},
Ch =max

{
Bh−1/2+Ch−1/2,1− 9 · 2−h}.

The result follows by straightforward calculation.✷
We conclude from Lemma 6.6 and Eq. (9) that

Φ(Uh) � 5/2+ (L− Fh+2− 3Fh+1+ 1)2−h (10)

for h � 4.
By choosingT ∈ TL arbitrarily and considering particular ranges ofh, we can extend

the results of Observation 6.1. Specifically, if 1� h � 3 andL � 2h+k − 2h + h+ 1, for
some integerk � 1, then it follows from Eq. (7) that

2Φ(Uh) � 3+ (L− h− 2)2−h+1 � 3+ (
2h+k − 2h − 1

)
2−h+1

= 2k+1− 2−h+1+ 1

and so, by Lemma 6.1 and Eq. (3),

Ξ0(T) � α(W)= ⌈
lg

⌊
2Φ(Uh)

⌋⌉− 1 � k.
h

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 187

amples

f

as
See

on
Similarly, if h � 4 andL � 2h(2k − 2)+ Fh+2 + 3Fh+1 − 2, for some integerk � 1,
then it follows from Eq. (10) that

2Φ(Uh) � 5+ (L− Fh+2− 3Fh+1+ 1)2−h+1 � 5+ (
2h

(
2k − 2

)− 1
)
2−h+1

= 2k+1+ 1− 2−h+1

and soΞ0
h(T) � k, as above.

In summary, if

Lh,t =
{
(t + 1)2h+ h+ 2 if 1 � h � 4,

Fh+2+ 3Fh+1− 1+ t2h if h > 4,

then

Ξ0
h(L) �


0 if L< h+ 2,

1 if h+ 2 � L<Lh,0,

k if Lh,2k−1−2 � L � Lh,2k−2 andk > 1,

�lgL� − h if h � 1< �lgL�.
(11)

In all cases, the Fibonacci trees introduced earlier can be used to construct ex
of trees that realize our upper bounds onΞ0

h(L). SinceΞ0
h(L) is monotonically non-

decreasing it suffices to demonstrate, for eachh > 1 andk � 1, a treeT , whose number o
leavesλ(T) satisfiesλ(T)= Lh,2k−2, for whichΞ0

h(T)= k + 1.
An extended Fibonacci treeof heighth � 1 and potentialt � 0, denotedF∗h 〈t〉, is

defined as follows: for 1� h � 4,F∗h 〈t〉 is just a((t + 1)2h+ h+ 1)-chain and, forh > 4,
F∗h 〈t〉 is the binary tree whose left subtree isF∗h−1〈0〉 and whose right subtree has a leaf
its left subtree andF∗h−2〈4t〉 as its right subtree. Figure 5 illustrates this construction.
Figs. 7 and 8 for examples of extended Fibonacci trees.

By straightforward induction onh, we have:

Lemma 6.7. For all h > 1 andt � 0, λ(F∗h 〈t〉)= Lh,t .

Furthermore,

Lemma 6.8. For everyh > 1 andk � 1, Ξ0
h(F∗h 〈2k − 2〉)= k + 1.

Proof. It suffices to confirm, by induction onh, that for everyh � 1, if W is theh-leveled
weight sequence associated withF∗h 〈t〉 thenWh (thehth weight sequence in the reducti
sequence associated withW) has the form

(−1)
(
0(−1)

)2t+5
.

Thus, by Lemma 6.1 and Corollary 6.3,Ξ0
h(F∗h 〈2k − 2〉)= �lg(

2k+1+ 1
)� − 1= k + 1.

Fig. 5. An extended Fibonacci tree of heighth> 4.

188 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

se
,

llest
lest

ight

t

y 1.
Thus, the upper bounds onΞ0
h (L) given in Eq. (11) are tight. Using Lemma 4.2, the

bounds translate into the following exact bounds on the leafh-leveling cost (thereby
establishing Theorem 2.1)

∆0
h(L)=



0 if L< h+ 2,

1 if h+ 2� L<Lh−1,0,

2 if L � Lh−1,0 and�lgL�< h,

�lgL� − 1 if �lgL� = h,

∞ if �lgL�> h.

6.2. Generalh-leveled weight sequences

For any givenc � 1 andh � 0 we are interested in determining the size of the sma
treeT satisfyingΞ∗h (T) = c. By Lemma 6.1 this is equivalent to asking for the smal
tree T whoseh-leveled weight sequenceW satisfiesα(W) = c. Let Wz be the weight
sequence in the reduction sequence associated withW that has min(W̃z)= 1. The thickness
of Wz is zero and by Corollary 6.3,α(W)= �lg r� where|Wz| = 2r − 1. LetΛ(r,h) equal
the minimumL such that there exists anh-leveled weight sequenceW with |W | = 2L− 1
whose associated sequenceWz has length 2r − 1. Then

Ξ∗h (L)= c, for all L satisfyingΛ
(
2c−1+ 1, h

)
� L � Λ

(
2c, h

)
. (12)

The action of the Phased Alphabetic Minimax Algorithm on anh-leveled weight
sequence associated with a treeT can be understood in terms of its action on the we
sequences associated with the left and right subtrees ofT . This gives rise to the following
recurrence forΛ(r,h).

Lemma 6.9.

Λ(r,0)= r, Λ(1, h)= 1,

and forr � 2 andh � 1,

Λ(r,h)= min
a,b: �(a+b)/2�=r

{
Λ(a,h− 1)+Λ(b,h− 1)

}
.

Proof. If h = 0 then anyh-leveled weight sequenceW has the form 02L−1, thus
min(W̃1)= 1 and|W1| = 2L− 1 which impliesΛ(r,0)= r.

If r = 1 thenΛ(1, h)= 1 sinceW = (0) has min(W̃0)= 1 and|W0| = 1.
Let T ∈ TL and letT L andT R denote the subtrees ofT rooted at the left and righ

children of the root ofT . If W is theh-leveled weight sequence associated withT , for
someh � 1, thenW has the form(WL − 1)0(WR − 1), whereWL (respectivelyWR)
denotes the(h− 1)-leveled weight sequence associated withT L (respectivelyT R).2

2 If S is a sequence of integers then(S − 1) denotes the same sequence with each element decreased b

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 189

ith
e

Recall thatWz is the weight sequence in the reduction sequence associated wW

that has min(W̃z) = 1. For r � 2 andh � 1, it is straightforward to confirm that th
weight sequenceWz−1 has the form(WL

zL
− 1)0(WR

zR
− 1), whereWL

zL
(respectively

WR
zR

) denotes the sequence in the reduction sequence associated withWL (respectively

WR) with min(W̃L
zL
) = 1 (respectively min(W̃R

zR
) = 1). If |WL

zL
| = 2a − 1 and |WR

zR
| =

2b − 1 thenWz−1 has the form(−1)(0(−1))a+b−1 and, by Lemma 6.4,Wz has length
2�(a + b)/2� − 1. Thus, if weight sequenceW realizesΛ(r,h) then sequencesWL and
WR realizeΛ(a,h − 1) andΛ(b,h − 1) for somea andb satisfying�(a + b)/2� = r.
Hence,

Λ(r,h)= min
a,b: �(a+b)/2�=r

{
Λ(a,h− 1)+Λ(b,h− 1)

}
. ✷

Lemma 6.10.

Λ(r,h)=
r−1∑
i=0

(
h

i

)
(r − i).

Proof (by induction onr andh). Forh= 0, the lemma states

Λ(r,0)=
r−1∑
i=0

(
0

i

)
(r − i),

which isr, since
(0
i

)= 0 for i > 0.
For r = 1, the lemma states

Λ(1, h)=
0∑

i=0

(
h

i

)
(1− i),

which is 1.
We claim that the minimum ofΛ(a,h − 1) + Λ(b,h − 1) over all valuesa, b such

that �(a + b)/2� = r is achieved whena = r − 1 andb = r (or a = r andb = r − 1).
SinceΛ(r,h) is an increasing function inr, we need only considera and b such that
a + b = 2r − 1.

Let

f (t)=
t−1∑
i=0

(
h− 1

i

)
(t − i)+

2r−2−t∑
i=0

(
h− 1

i

)
(2r − 1− t − i).

Our claim, and the lemma, follows iff (t) achieves its minimum att = r − 1. Consider
f (t)− f (t + 1).

f (t)− f (t + 1)=
2r−2−t∑
i=0

(
h− 1

i

)
−

t∑
i=0

(
h− 1

i

)
. (13)

190 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

ed the

eased

l to their
If t < r − 1 then 2r − 2− t > t andf (t) − f (t + 1) is positive. If t > r − 1 then
2r−2− t < t andf (t)−f (t+1) is negative. Thus,f (t) is minimized whent = r−1. ✷

By Lemma 6.10 and Eq. (12),Ξ∗h (L)= �lgρ(L,h)�whereρ(L,h)=max{r:
∑r−1

i=0

(
h
i

)
(r − i) � L}. We then use Lemma 4.1 to obtain Theorem 2.2.

Acknowledgments

The authors express their appreciation to Prosenjit Bose, both for having pos
central question investigated in this paper and for numerous helpful discussions.

Appendix A. Restructuring examples

Fig. 6. Chain (left) withL= 16 that is restructured (right) to have height at most 5. Nodes whose depth incr
are circled.

Fig. 7. Smallest tree (top) whose leaf-restrictedh-leveling cost is 2 whenh = �lgL� + 1 (L = 59), and the
resulting restructured tree (bottom) obtained by our algorithm. Leaves are circled a number of times equa
depth increase.

W
.E

va
n
s,D

.K
irkp

a
trick

/Jo
u
rn

a
lo

fA
lg

o
rith

m
s

5
0

(2
0
0
4
)

1
6
8
–
1
9
3

191

the resulting restructured tree (bottom) obtained by our algorithm.
Fig. 8. Smallest tree (top) whose leaf-restrictedh-leveling cost is 2 whenh= �lgL�+2 (L= 253), and
Leaves are circled a number of times equal to their depth increase.

192 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193

d by the
est tree
eir

1974)

(1971)

h. 37

. Appl.

952)

.

7 (3)
Fig. 9. An example of near-4-leveling, the resulting weight sequence, the weight sequences produce
phased alphabetic minimax algorithm, and the resulting “balanced” tree. The original tree is a small
(L = 23) whoseh-leveling cost is 2 whenh = �lgL� + 1. Nodes are circled a number of times equal to th
depth increase.

References

[1] M.R. Garey, Optimal binary search trees with restricted maximal depth, SIAM J. Comput. 3 (2) (
101–110.

[2] E.N. Gilbert, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory IT–17 (3)
304–314.

[3] T.C. Hu, D.J. Kleitman, J.K. Tamaki, Binary trees optimum under various criteria, SIAM J. Appl. Mat
(1979) 246–256.

[4] T.C. Hu, A.C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J
Math. 21 (4) (1971) 514–532.

[5] D.A. Huffman, A method for the construction of minimum-redundancy codes, Proc. IRE 40 (9) (1
1098–1101.

[6] A. Itai, Optimal alphabetic trees, SIAM J. Comput. 5 (1) (1976) 9–18.
[7] D.G. Kirkpatrick, M.M. Klawe, Alphabetic minimax trees, SIAM J. Comput. 14 (3) (1985) 514–526.
[8] D. Knuth, The Art of Computer Programming, vol. 3. Sorting and Searching, Addison–Wesley, 1973
[9] L.L. Larmore, Height restricted optimal alphabetic trees, SIAM J. Comput. 16 (1987) 1115–1123.

[10] L.L. Larmore, D.S. Hirschberg, A fast algorithm for optimal length-limited Huffman codes, J. ACM 3
(1990) 464–473.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168–193 193

M J.

IAM J.

aphs,

rafias

tt. 4 (4)
[11] L.L. Larmore, T.M. Przytycka, A fast algorithm for optimal height-limited alphabetic binary trees, SIA
Comput. 23 (6) (1994) 1283–1312.

[12] K. Mehlhorn, Best possible bounds on the weighted path length of optimal binary search trees, S
Comput. 6 (2) (1977) 235–239.

[13] K. Mehlhorn, Data Structures and Algorithms, vol. 1: Sorting and Searching, in: EATCS Monogr
Springer-Verlag, 1984.

[14] R.L. Milidiú, E.S. Laber, Improved bounds on the inefficiency of length-restricted prefix codes, Monog
em Ciênciada Computação 33, Departamento de Informática, PUC-Rio, 1997.

[15] D.D. Sleator, R.E. Tarjan, Self-adjusting binary search trees, J. ACM 32 (3) (1985) 652–686.
[16] R.L. Wessner, Optimal alphabetic search trees with restricted maximal height, Inform. Process. Le

(1976) 90–94.

