Available at

www.ElsevierComputerScience.com Journal of

; A8 . POWERED BY SCIENCE @DIHEOTﬁ> Algorithms

ELSEVIER Journal of Algorithms 50 (2004) 168-193 _
www.elsevier.com/locate/jalgor

Restructuring ordered binary treés
William Evans* and David Kirkpatrick
Department of Computer Science, University of British Columbia, Vancouver BC, Canada, V6T 174
Received 29 June 2000
Abstract

We consider the problem of restructuring an ordered binary Tre@reserving the in-order
sequence of its nodes, so as to reduce its height to some target/vafiech a restructuring
necessarily involves the downward displacement of some of the nodes@fir results, focusing
both on the maximum displacement over all nodes and on the maximum displacement over leaves
only, provide (i) an explicit tradeoff between the worst-case displacement and the height restriction
(including a family of trees that exhibit the worst-case displacements) and (i) efficient algorithms to
achieve height-restricted restructuring while minimizing the maximum node displacement.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Suppose we are given an ordered binary feperhaps a binary search tree for some set
S of keys (or perhaps an alphabetic prefix code tree for & sdtsymbols). Tree” might
have been constructed, either through explicit use of known key access frequencies or by
some self-adjusting strategy, to minimize #agectedost of key accesses (expressed as
the expected depth of the keys stored'in As a consequence, the worst-case cost of key
accesses (expressed asreximundepth of a key stored i), though improbable, may
be unacceptably large. The general question that we address is: in the absence of explicit
information concerning key access frequencies, to what extent can we improve the worst-
case behavior of a given search structure without unduly compromising its expected-case
behavior? We focus, in fact, on the more stringent requirement of minimizing the (local)
degradation in the access cost @ty key as a consequence of restricting the (global)
worst-case access cost for tmtire set of keys.

U This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.
* Corresponding author.
E-mail addresseswill@cs.ubc.ca (W. Evans), kirk@cs.ubc.ca (D. Kirkpatrick).

0196-6774/% — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-6774(03)00094-4

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 169

Fig. 1. TreeT in need of restructuring.

In order to clarify the question and (perhaps) strengthen the reader’s intuition, the
reader is invited to consider the task of restructuring (while preserving the sequence of
nodes encountered in an in-order tree traversal) the (arguably most unbaldnlsed)
tree T in Fig. 1. Obviously, reducing the height @f to [Ig L] (the minimum possible
height) would result in a depth increase @ L] — 1 for some nodes. On the other
hand,T can be restructured to have heidig L] + 1 without increasing the depth of
any node iril” by more than one. The fact that this can be done (as the reader, no doubt, has
confirmed; otherwise, see Appendix A for a suggestive example) leads to the question: can
such restructuring always be (efficiently) done and, more generally, what, if any, tradeoff
arises between the global height bound and the depth increase experienced by individual
nodes?

The results of this paper are perhaps best appreciated in the context of earlier work
on the design and analysis of optimal (and near-optimal) search and coding trees, and
their height-restricted variants. Given a sequence of symbals. ., A; with associated
frequencies, . .., a;, aHuffman tred5] is an L-leaf treeT', together with an assignment
of symbols to the leaves df, that minimizes the expressioE,»L:l a;d;, whered; denotes
the depth inT of the leaf to which symbol4; is assigned. The tree that minimizes
Zleaidi subject to the additional constraint that the symb#is..., A; are assigned
to the leaves of" in left-to-right order is called aalphabetic Huffman trept]. If symbols
(or search keys) are assigned to the internal nodes as well (in an order that respects the in-
order listing ofT’s nodes) then the tree that minimiz{sf:1 a;d;, whered; now denotes
the depth of the (possibly internal) node®to which A; is assigned, is called aptimal
binary search tred8,13]. Near-optimal binary search tree®r given [12] or fixed but
unknown [15] key distributions provide provably good approximations to the minimum
expected depth (access cost) with lower construction cost or, as in the case of [15], the
ability to adapt to changing access frequencies.

Height-restricted versions of these structures have been extensively studied, particularly
with regard to the efficiency of algorithms for their construction [1,6,9-11,14,16]. In
particular, it is known that a height-restricted (restricting height to at rhp$iuffman
tree (respectively, alphabetic Huffman tree, optimal binary search tree) for a det of
symbols can be constructed ifi(Lh) (respectivelyO(LhlgL), O(L?h)) time [10]
(respectively [11], [6,16]).

Few papers address the issue of the increase in the access cost imposed by restricting
height. E.N. Gilbert, in the paper that introduced the study of length-restricted Huffman
codes [2], proves that, for any > 1+ Ig L, the i height-restricted Huffman tree has
expected depth (code-length) at mést+ 1+ L2~ (gL — H), where H denotes the

170 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

entropy of the set of symbol frequencies. Sitgrovides a lower bound on the expected
depth of any (not necessarily height- or order-restricted) Huffman tree (by Shannon’s
theorem), it follows that the increase in expected depth due to height restriction is at most 1,
when’ is as small as l@ + (Iglg L)“, w > 1 and L is sufficiently large. (In fact it is
easy to demonstrate arbitrarily long sequences, with associated frequencies, for which the
expected depth of the optimal Huffman tree of height[lg L7 exceeds that of the optimal
unconstrained Huffman tree by an amount arbitrarily close to 1.) Milidii and Laber [14]
present an upper bound on the average code length difference between optimal length-
restricted and unconstrained Huffman codes. They assume that the symbol frequencies are
fixed, known quantities.

By way of contrast, our results, which are set out more completely and formally in the
next section, show thany L-leaf treeT', with fixed butunknowrleaf access frequencies,
can be restructured into a tré&eof height at most % [Ig L7 such that the expected depth
of R exceeds the expected depth Bfby at most 2. Much of our effort is devoted to
understanding the tradeoff between the height restriction of the restructured trees and the
increase in node depth due to restructuring, and to the construction of trees that realize the
worst-case depth increase over the full range of possible height restrictions.

2. Strict h-leveling costs

Let 7. denote the set of rooted, ordered binary trees litleaves. Forl € 7;, let
vl Wl .. vl | be the in-order sequence of nodedirand¢!, ¢1, ..., ¢! the left-to-
right sequence of leavesin (Of course{iiT = vai_l.) In general, the superscriptis omitted
when it is clear from context. Letr (v) be the depth of nodein T. The depth of the root
is 0 and the height of is just the depth of its deepest leaf.

We define theé:i-leveling cosbf T € 77, to be

A¥(T)= min AX(T, R 1
»(T) ReITL »(T, R) (1)
wheré
o0 if heigh{R) > #h,
AT, R) = R T .
»(T,R) 1@2620271[61'? (vF) —dr(v])] otherwise.

Ay (T, R) measures the maximum “drop,” over all nodegZir(the node-drop, in going
from T to a treeR of height at most. In other words Ay (T, R) is an upper bound on the
additional cost to access an itemRrversusT .

We define thdeaf i-leveling cosbf T € 7, to be

AR(T) = min AJT, R), (2
L

1 The multiple definitions oA} () (and similar functions) are intended to minimize notation and highlight the
relations between the associated functions. This should present no cause for confusion since the number and type
of arguments determine which definition applies.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 171

where
0 e if heightR) > ,
A7 (T, R) = . _
W00 12/ZXL [dr(€f) —dr(e)] otherwise.

AB(T, R) measures the maximum “drop,” over all leavesTinthe leaf-drop), in going
from T to a treeR of height at most. Clearly, if » < [Ig L] no tree of height at mogt
can havel. leaves, and bot} (T') andAg(T) are infinite.

We seek an algorithm that, given a tre= 7, and target height, finds a treeR that
realizes the minimum in Eq. (1) (or Eqg. (2)). In addition, we seek the wotsteling and
leaf h-leveling cost as a function of the number of leave& irSpecifically, we seek

AX(L) = maxA*(T) and A%L) = maxaA%(T).
h()TeTLh() h()TeTLh()

Explicit tradeoffs that determine bothy (L) and A?l(L) are developed in Section 6.
Our results are summarized in the following theorems:

Theorem 2.1.
0 if L<h+2,
1 ifh+2< L <Ly,
ANL)y=12 if Ly <Land[lgL] < h,
[lgL7T—1 if[lgL]=h,
00 if [lgL] > h,
where

Lo {Zh‘1+h+1 if 1<h <4,
"Tl Fa43F—1 ifh>4,
and F; is thekth Fibonacci numbe(Fo =0, Fi =1, andF; = F;_1 + F;_o, fori > 1).

Among other things, this theorem states that, when [lg L] + 1, restructuring with
leaf-drop at most 2 is always possible, and wlkern Iog¢((L +1)/(3+ ¢)), where¢
is the golden ratio (1.61803.), leaf-drop at most 1 is always possible (and these results
are essentially tight). This implies, for example, that an optimal binary search tree (with
keys stored at leaves) can be restructured to have worst-case search cost within one of
the optimal worst-case search cogg(L]) without increasing the average search cost (or,
for that matter, the search costarfiy key) by more than two. Equivalently, an (optimal)
Huffman tree for a sequence of symbols can be restructured to give codes of maximum
length at most one bit more than the optimal maximum code length and average code
length at most two bits more than the optimal average code length. In both cases this can
be done without explicit knowledge of the key or symbol frequencies.

Theorem 2.2.
Ap(L)y=min{k: [lgp(L,h —k)| =k},
wherep (L, h) =max{r: 3125 ()¢ —i) < L}.

1

172 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Observation 2.1. By considering certain ranges afand using straightforward approxi-
mations of the binomial coefficient, we observe

0 ifL<h+2,
lgk + 0(1) if L= 0(h%),
Ap(L)y< {lglgL if [IgL] < h,
MgL1—1 if[lgL]=h,
00 if [IgL] > h.

Thus, among other things, Theorem 2.2 implies that, whenlg L1 + 1, restructuring
with node-drop at most Iglg is always possible, and when> +/L the node-drop is
0(1). Hence, even without explicit knowledge of the key frequencies, a given optimal (or
near-optimal) binary search tree can be restructured to have worst-case search cost within
one of optimal at the expense of an additive increase of at most.Igrigthe expected
search cost.

3. Near-h-leveling costs

It happens that considering a slightly different cost function results in solutions to our
original problems. Define theear+#-leveling cosof T € 7; to be

E(T)= min &(T, R),
n (T) nin n ()

where

(1)

(T, R) = lgjngayél[d,e (vF) —min{dr (v]), h}].

Ep(T) differs from A} (T') in that the treeR may have height greater th#@n However,
each node at depth greater thaim R has cost at least its depth Riminush. Define the
leaf near#-leveling cosof T € 77, to be

—~0 . =0
E(T)= min & (T, R),
(1) un i ()

where

EX(T.R) = lgjang[dR(Zf) —min{dr (¢7). h}].

We also define

EX(L)=maxE*(T) and E2(L)= maxZ(T).
h()TeTLh() h()TeTLh()

4. Relationsof k-leveling to near-h-leveling

We can translate bounds &j (L) into bounds om} (L) using the following lemma.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 173

Lemma 4.1. For any pair of treesT” and R in 7., A} (T, R) = min{k: & _, (T, R) =k}
and thus,

Ap(L) =minfk: Ef_ (L) =k}.
Proof. If ;7 (T, R) =k then
heightR) = max dg(vk) < max [k + min{dr (v] D=k} <h

1<<2L-1 Vi 1<<2L-1
and
AT Ry =, _max_ [dr(vf) —dr(v])]
< 1gjn%%)L(71[dR(vf) — min{dr (vf) h—k}]
=k.

If A}(T, R) =k thenheight(R) < h and

gy (T,R) = B [dr (v}) — min{dr (v]), h — k}]

=, max max{dg(vf) — dr(v]). de(vf) = (h =)}

<max{A;(T, R), k}
=k. O

The same proof, restricted to leaf nodes, establishes:

Lemma 4.2. For any pair of treesT” and R in 7, AQ(T, R) = min{k: E,?fk(T, R) =k}
and thus,

AYL) =min{k: 2 (L) =k}.

If we have an algorithnxi*, with inputs7 andh, that finds a tree that achieves (T')
then we can use it to find a tree that achiexis7') as follows:

Leveled Tree Algorithm
Input: binary tree T € 7, integer height /.
Output: binary tree R with heigh(R) < & that minimizes A} (T, R).

1. Find the smallest 0 < k < A} (L) such that R = Xi*(T', h — k) and &E;_, (T, R) <k.
2. If such k exists then output R.

Correctness. For the sake of contradiction, suppose there exists artragth height R’)
< h such thate’ = A} (T, R') < Aj(T,R) =k. By Lemma 4.1, (T, R") <k'. This
contradicts the m|n|maI|ty of.

Since &(T) is monotonically decreasing with increasihgthe smallesk, 0 < k <
Ay (L), suchthatR = Xi*(T, h — k) and&;_, (T, R) < k can be found using binary search
W|th 0(lg(Aj(L))) invocations of algorithnxi*.

174 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

The preceding algorithm with the superscript
analogous task for the leaf-restricted case.

replaced with “0” performs the

5. The alphabetic minimax tree problem

The neark-leveling cost of a given tree is related to what is known as the alphabetic
minimax cost of an associated weight sequencéV If= wy, wa, ..., wpr—1 iS an odd-
length sequence of integer weights afice 7, then, for everyj, 1< j < 2L — 1, the
W-costof nodev; of T is given by

w; if v; is a leaf ofT,

cw ;) = {max{wj, 1+cw(va), 1+ cw(vp)} if vj has childrery, andu,.

We define theW-cost of 7; (the subtree ofl’ rooted at nodev;), denotedew (T;),
to be cw(vj). (S0 ew(T) = cw(r), wherer is the root of T.) Since cw(T) =
maxig j<2r—1ldr (v;) + w;l, cw(T) can be interpreted as the maximum weighted path
length of T, where the path from the root to v; is assigned weighted path length
dr (vj)+w;. The (ull) alphabetic minimax costf the weight sequend&, denotedr (W),
is defined as

a(W) = }2'7[1 ew(T).

In the event that the even-indexed elementdofcorresponding to internal nodes B)
have values less than or equal to those of all odd-indexed elements (corresponding to the
leaves ofT), the costew (T) becomes the weighted root-to-leaf path lengthTofind
a (W) gives thdeaf-restricted alphabetic minimax castthe subsequence of leaf weights
wi, w3, ..., W21, 1.

Thealphabetic minimax problertakes an odd-length weight sequereas input and
asks for a tre@”, analphabetic minimax treéor W, whoseW-cost realizes«(W). In fact,
we will deal exclusively wittstrongalphabetic minimax trees, in whigverysubtree is an
alphabetic minimax tree for its associated weight sequence. The leaf-restricted version of
the alphabetic minimax problem has been extensively studied [3,7]; many of the results of
this section can be viewed as extensions of earlier leaf-restricted results to the more general
problem addressed here.

Observation 5.1 (Optimal substructure)f T is a (strong alphabetic minimax tree for

the weight sequenc® and if v is any node off then the treel”’, formed by replacing

the subtree of” rooted atv by a single leaf, is dstrong alphabetic minimax tree for the
weight sequenc®’ formed by replacing the subsequence of weights associated with the
nodes in the subtree rooted aby the weighty (v).

Given aweight sequend€ = w1, wa, ..., w2, -1, With L > 1, we define the associated
contracted weight sequen®eé = wo, w1, ..., WL by

Wo = Wy = 00,

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 175

andfori1< j <L -1,
w; =maXxl+wyj_1, wzj, 1+ w2ji1}.

It follows from the next lemma that two weight sequences with the same associated
contracted weight sequence have the same alphabetic minimax cost.

Lemma 5.1. Suppose that weight sequendés= w1, wa, ..., w21 and W' = wj, ws,
..., wy, _, have the same associated contracted weight sequence. Then, fofevéfy
and for every internal nodey; of T, cw (v2;) = cwr (v2)).

Proof. Let W = wyo, w1, . .., W, be the contracted weight sequence associated with both
W andW'’. First note that, for every leab;_1 of T,

cw(vzj—1) =wzj—1<w; —1 and cyr(vzj—1) = w,2j—1 <w; -1
We prove thatw (v2;) = cw (v2;), for every internal node; of T, by induction on
ht(v2;), the height of the subtree @f rooted atvy;.
If ht(vz;) = 1then
cw(v2;) =maXxwzj, 1+ wzj_1, 1+ wzjt1} = W;
=max{wy;, L+ wy; 1, 14+ wp; 1} =cw(v2)).
Suppose thatir(vz;) = h and cw(vr) = cy(v) for all internal nodesy, with
ht(vi) < h. Letv, andv, denote the left and right children of; in T. Then,
cw (v2j) = max{wa;, 14 cw (va), 1+ cw (vp)}
=max{wz;, 14+ wzj—1, 1+ w211, 14+ cw(va), 1+ cw (vp)}
sincecw (vq) = wa;j—1 andew (vp) = waj11
=maX{w;, 1+ cw(va), 1+ cw(vp)} by definition ofw;
=maX{®;, 1+ cw (va), L+ cw(vp)} (%)
=max{wy;, L+ wy; 1, 14+ wh; 1, 1+ cwr(va), L4 cwr(vp) }
by definition ofw ;
=max{wy;, 1+ cw(va), L+ cwr (vp) |
sincecy (vg) > w/zj_l andcy (vp) > w/2j+1
= cwr(v2)).

If v, and v, are internal nodes, linex] follows by the induction hypothesis. If,
(respectivelyyy) is a leaf, line §) follows sincew; > 1+ cw (v,) andw; > 1+ ¢y (vq)
(respectivelyw; > 1+ cw(vp) andw; > 1+ cyr(vp)).

It follows, by induction, thaty (v2;) = cw (v2;), for every internal nodey; of 7. O

If w; satisfiesw;_1 > w; < w;41, then the triple(wz;_1, w2;, wz;11) is called
a right locally minimum triple(abbreviated r.I.m. triple) iriW. The following two local
replacement operations on weight sequences can be used iteratively to reduce an arbitrary

176 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

odd-length weight sequend® to a weight sequence consisting of the single element
a(W).

Contraction of a right locally minimum triple. A r.l.m. tripl€wz;_1, wa;, wa;11) in W
is replaced by the single weigfit; .

Normalization of weights. An internal weighivy; is replaced bywz; + 1 if wz; < w);.
A leaf weightwy; 1 is replaced bywz; 1 4+ 1 if wa; 1 < min{w;_1, w;} — 1.

Lemmab5.2. If W’ is formed fromW by normalization or contraction them(W’) = a(W).

Proof. First consider the case where weight sequefiée is formed from W by
normalization of any subset of its weights. Then, for everg < j < |W],

~ _ ’ ’ ’
wj = maX{l+ wzjil, wzj, 1+ ij+l}
< max{min{@.,'_l, llﬁj}, @j, min{@j, @j+1}} = @j
and

1/13; = max{1+ w’zjfl, w’zj, 1+ w/2j+l} = max{l+ wpj_1, woj, 14+ wajy1}
=w;.
It follows thatW’ andW have the same associated contracted weight sequence, and hence,
by Lemma5.1¢(W') = a(W).

Next, consider the case where the weight sequ#fids formed fromW by contraction
of the r.l.m. triple(w2;_1, w2j, w2j+1). Suppose thatW|=2L — 1. If T’ is any tree in
7.1 then the treel’ formed from7’ by attaching a pair of leaves to thi¢h leaf of T’
satisfiescy (T) = cw/(T"), and hence, taking’ to be the tree that realizes the minimum
cw(T"), it follows thata(W') > o(W). Conversely, lef” be any tree irl7; . It suffices to
show that for some tre®’ in 7; 1, cw/ (T’) < cw (T), and hence(W') < a(W).

Suppose first, that nodes; 1 andvy; 1 are siblings in". Then,cy (v2;) = w; and so
the treeT”’ formed fromT" by removing nodes,;_1 andvo; 41 satisfiesy () = cw (T).
Hence, it suffices to show that there exists a tfei@ 7, in which Ieaves;ZE,._1 andvfjJrl
are siblings, that satisfiesy (E) < cw (T'). We proceed by induction oh. If L = 2 there
is nothing to show, so suppose tliat- 2 and that the hypothesis holds for trees with fewer
thanL leaves.

Let v, be the root of7 and denote by~ and TR the left and right subtrees of. If
v2; # v, then nodess;_1, v2; andvy;1 lie together in eithe £ or TX. By the induction

hypothesis there exist tre¢s” and EX, with nodesvf,....vE | andvf ;. ..., 05 4,
respectively, in Whichvgj_l and U§j+l are siblings andey . (EY) < ey (Th) and
cwr(E®) < ceyr(TF), whereWl = wy, ..., w,—1 andWR = w,11,..., wz, 1. Hence,

the treeE with rootv, and subtreeg’ andER satisfies
cw (E) = max{wy, L+ cyr (EX), 14 cyr (EX)}
<max{wy, 1+ cyr (Th), L+ cyr (TR)} = cw (D).

So, it remains to consider the situation whére 2 andvy; is the root ofT . We consider
two cases:

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 177

Fig. 2. (Case 1)p; isrootandj = L — 1.

Case 1. vpj41 is the right child ofvp; in T'; equivalently,j = L — 1.

In this case, we construdi from 7' by removing the rootuy;) and its right child
(v2;j+1) and adding a left and right child to the leaf;_1 (see Fig. 2). Itis straightforward
to confirm thatdg(vf) < dr(v), for k < 2L — 3, anddg(vf, 3) = dp(vk,) =
dg(v5, _5) +1=dr(v2r—4) + 1. Hence,

E
1 lIBE) Fon] = gl b

Furthermore,

max{dE (ng—s) + wzr-3,dE (”gL—z) +wzr-2.dE (UgL—l) + w2L—1}
=dg(vg)_p) + Mmaxwar—2, 14+ war—3, 1+ war—1)
< dE(va_z) +maX{wzr—4, 1+ wor—5, 1+ wor_3}
since(wzr—3, war—2, war—1) is ar.l.m. triple
=dr (v2r—24) + MaXx{wzr—4, 1+ wor—5, 1+ wor -3}
<max{dr (vzr—s) + war s, dr (V21 —4) + w24, d7 (v2r-3) + w2r 3}

Hence,

ew(E)=_max [deg(vf)+wi]< max [dr(u) +wi]=cw(T).
1<k<2L-1 1<k<2L-1

Case 2. vp;41 is not the right child ofup; in T'; equivalently,j < L — 1.
In this case, we construét from T by removing leaf,;_1, replacingvz;—» (assuming
j > 1) by its left subtree (iff = 1 then the root; is simply removed), and adding a left and
right child to leafv,; 11 (see Fig. 3). Itis straightforward to confirm tha;(v,f) <dr(w),
1|°_<|)rk <2j—20rk>2j+2, anddE(ug"j_l) = dE(szjH) = dE(szj) +1<dr(v2j42) +2.
ence,

max_ [de(vE) +wk] < max_ [dr(v) + w].
k<2j-2 k<2j-2
ork>=2j+2 ork>2j+42

178 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Fig. 3. (Case 2); isrootandj < L — 1.

Furthermore,

max{dE (UZEj—l) +woj_1,dE (szj) +wypj,dg (szj+1) + w2j+1}
=dg (v%}) +maXwz;, 1+ wzj-1, 1+ w2j41}
<dg(vy;) + maXwz; 2, 1+ w2jr1, 1+ waj3) — 1
since(wz;j_1, wz;, wz;+1) is ar.l.m. triple
<dr(vzj+2) + maxwz;ji2, 1+ wojt1, 1+ w2j43)
< max{dr (v2j4+1) + w2jt+1, dr (v2j42) + w2j12, dr (V2j4+3) + w2;4+3}.

Hence,

v~ g [ds(o) +m] <, g Jaro+m]=evD. 0

Normalization of weights does not change the length of the weight sequEncer
does it change the cost; associated with any triplewz; 1, wz;, wzj41); in particular it
does not change any r.l.m. triple @f. Normalization serves as a tool for maintaining a
structural invariant of the weight sequences that we will encounter in our applications.
On the other hand, each application of contraction reduces the length of the weight
sequenceW by 2. Each such application also corresponds to a join operation in the
construction of an alphabetic minimax tree associated Within particular, if 77 is an
alphabetic minimax tree for the weight sequefi¢eformed fromW by contraction of the
r...m. triple (w2;_1, w2j, w2;+1), and the tred" is formed fromT’ by adding two leaves
to the nodeuszLl, thencw (T) = cw/(T') = a(W') = a(W). Hence,T is an alphabetic
minimax tree forW. Thus the construction of an alphabetic minimax treeifois implicit
in any algorithm for reducing the sequenieto a singleton sequence by application of
normalization and contraction operations.

Theorem 5.1. The alphabetic minimax problem has a linear time solution.

Proof. Successive r..m. triples in a given weight sequence can be located and contracted
in amortized constant time using a simple stack-driven procedure. This is a direct

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 179

generalization of previously presented linear-time leaf-restricted alphabetic minimax tree
algorithms (cf. [7]). O

The iterative algorithm implicit in the proof of the above theorem uses contraction
operations only. It not only produces the alphabetic minimax €0#t) of a given weight
sequencelV, but also lends itself to the construction of an upper boundxOi) as
a function of the multiset of weights ifV. Specifically, if W = w1,..., wpr_1 and
W= wo, ..., wy, is the associated contracted weight sequence then we can @éfie=
Zf:’f 291 | If Wy denotes the initial weight sequence akigd denotes the (length 3) weight
sequence prior to the final contraction, then it is straightforward to confirm that:

(1) ¥ (Wo) <4 ,cw, 2",
(2) w(Wy) =22V and
(3) if sequenca¥’ is formed fromW by contraction thems (W) < & (W).

As an immediate consequence we have the following:

Lemma 5.3. If Wy is any weight sequence theliWp) < 2+ Ig ZweWo A

6. Applicationstotreerestructuring

The motivation for developing results about alphabetic minimax trees is their close
connection with neak-leveling costs of binary trees.
For T € 7., we define theh-leveled weight sequenassociated withl' to be the
sequencev, ..., w21, Where
w; =— min{dT(va), h}
Similarly, we define thé:-leveled leaf-restricted weight sequerassociated witlf" to
be the sequences, ..., war 1, where
—min{dr (vT),h} if jisodd,
wj:{ {T(v])’ } .].
—h if j is even.

Lemma6.1. For T € 7, if W is theh-leveled weight sequence associated Witand W’
is the h-leveled leaf-restricted weight sequence associated Witthen &7 (7)) = a(W)

and 8X(T) = a(W').

Proof. From the definitions o} (T), w;, cw (R), anda(W):

EXNT) = Ig};g{ lgjn%%z(il[dR(vf) —min{dr (v}), h}]

=min max [dp(v®)+w;:]= min cw(R) = a(W).
Reﬂ1<j<2L—l[r(-’)+ /] ReT, w(R) =a(W)

The leaf-restricted case is similar, since foteveled leaf-restricted weight sequences
cw (R) is realized by one of its leaves.O

180 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Lemma 6.1 allows us to re-express our results on alphabetic minimax trees from
Section 5 in terms of the neadeveling of an arbitrary treel’. Specifically, using
Lemma 6.1 together with Theorem 5.1, we obtain

Corollary 6.1. For T € 7., both 5;(T) and E,?(T) (and their realizations can be
determined in time linear irL.. Furthermore, using the Leveled Tree Algorithay,(7')
(respectiverAg(T)), together with its realization, can be determinedL Ig(Aj (L)))
(respectivelyO (L Ig(AD(L)))) time.

Furthermore, using Lemma 6.1 together with Lemma 5.3 we obtain
Corollary6.2.1f h > [IgL1 + 1thenZ, (L) < 2+1g9(2+1g L) and E,?(L) <2

Referring to Corollary 6.1, it is natural to ask #;(7) and AB(T) can also be
determined in time linear ilh. The algorithm described above determimé,’t{T) in linear
time (sinceAg(L) is constant) except far = [Ig L] when a different linear time algorithm
exists. ForAy (T), the existence of a linear time algorithm is an open problem.

The bounds or&} (L) and E9L) presented in Corollary 6.2 are not tight. To derive
exact values fo;’ (L) andE,?(L) (and henceAj (L) andAg(L)) it turns out to be useful
to reformulate the iterative alphabetic minimax algorithm of the preceding section. This
less efficient but more structured alternative makes explicit use of normalization and more
constrained applications of contraction. At its core is a reduction procedure that serves
to incrementally reduce a measure of the spread of weights in a given sequence while
preserving its alphabetic minimax cost. When this measure is reduced to zero the structure
of the resulting sequence, and hence its alphabetic minimax cost, is completely determined.

If W=uwq,..., wx_1is aweight sequence, denote ﬁythe set

W ={w;+1]jodd U {w; | even.
Thethicknesof W, denoted) (W), is defined a8 (W) = max(W) — min(W).

Reduce
Input: weight sequence W with |W| =2k — 1
Output: weight sequence W’ with a(W’) = (W) and either

N O(W')=6(W)—1or
iy (W) =0(W) =0and |W'| = 2[k/2] — 1

. if [W| = 1 then output W

.a < min(W)

. while there exists a r.l.m. triple (w21, w2j, w2j11) in W with W; =a
contract(w2;—1, w2;, w2;+1)

. while there exists a weight wp; 1 in W with w;_1=a — 1
normalize(wz;-1)

. while there exists a weight wy; in W with w2; = a

(w2;)

. output W

©ONoOUAWNPE

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 181

The correctness of the procedueeluceis an immediate consequence of the following
three lemmas.

Lemma6.2. (W) = a(reducéWw)).

Proof. The lemma follows from Lemma 5.2 sinoeducealtersW only by applications of
contraction and normalization.o

Lemma6.3. If (W) > 0 thend(reduc&W)) =6(W) —

Proof. Let W =reduc&W). The definitions oW andw; insure thata tripl€wz; 1, wo;,
w2;+1) contracted in line 4 hagy;_1 = wyj+1 =a — 1 andwy; = a. After the contract
loop, w; > a for all j. Thus, during the leaf normalization loop (line 5), amyg;_1
with valuea — 1 will nhormalize to valuea. For the same reason, during the internal
normalization loop (line 7), anwy; with valuea will normalize to valuea + 1. Thus,
mm(W)= mln(W) + 1. Sinced (W) > 0, ma>(W) >a+1and maxW)= max(W) O

Lemma 6.4. Let |W| =2k —1 for k > 1. If (W) =0 and W = reducéW) then
|W'| =2[k/2] — 1 andmin(W’) = 1+ min(W).

Proof. Letb=min(W),a=5b —1,¢ = [k/2], andr = 2t — k (r is either O or 1). Since
6(W) =0, it follows thatW has the form

a(ba)*t=aa)? "t =aba)t” r(b(aba))

By the definitions of r.I.m. triple and contraction, after 1 repetitions of the contract loop
(line 3), W has the form

a(ba)"(bb)' L.

After 1 — r more repetitions of the contract loop andepetitions of the leaf normalization
loop (line 5),W has the form

b(bb) L.

After t — 1 repetitions of the internal normalization loop (line 7), we are left with a sequence
of the form

b((b+Db) .
As a direct consequence of Lemma 6.4, we have
Corollary 6.3.1f (W) =0and|W| =2k — 1 (k > 1) thena(W) = [lgk] + min(ﬁ/) -

Lemmas 6.2 and 6.3 and Corollary 6.3 combine to motivate the notiorredusction
sequencédV,, p > 0, associated with a weight sequen&edefined as

Wo=W and W, =reduc&W,_1) forp>0.

182 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

We refer to each application of proceduegluceas aphase and the algorithm that takes

a weight sequenc® as inputand produces a reduction sequence terminating in a sequence
of length one as the Phased Alphabetic Minimax Algorithm. In fact, Corollary 6.3 shows
that the alphabetic minimax cost &¥ can be directly determined as soon Wg has
thickness zero. An example of the reduction sequence associated viitleasled weight
sequence is shown in Fig. 9.

If the input weight sequenc® happens to be alrleveled weight sequence associated
with a treeT € 7 then its special structure can be exploited to derive tight bounds on
its alphabetic minimax cost. For examplefit> heigh(T) ghenwj = —dT(va) anditis
easy to confirm that th¢th element ofW,, is just —dT/(va), whereT’ denotes the tree
formed fromT by truncating at deptheigh{7) — p (i.e., removing all deeper nodes). It
follows thata(W) = 0, and henceg;/(T) = E,?(T) = 0, wheneveh > heigh{(T). Thus,
Ey(L) = E}?(L) =0 whenh > L — 1. On the other hand, it < 1 < heigh(T) then
6(W) =1 andWy has the form(—h)((—h + 1)(—h))L~1. Hencew(W) = [lg L] — h and
E(T)=EXT)=[lgL] —h.Thus,E;(L) = EX(L) = [lg L1 —h,whenh <1< [lgL].

We summarize the above discussion in the following:

Observation 6.1.

. _0 0 if L <h+ 2,
h(L)::,h(L):{ .
MgL1—h ifh<1l<TlgL].

It remains to considek-leveled weight sequences with<lh < heigh{(T). In this case
0(W) = h (since one internal node has associated weight 0 and at least one internal node
has associated weigh}. In the reduction sequence associated iiththe sequenc#,
has thickness — p, for 0< p < i, and the sequend#, has the form(—1)(0(—1))*, for
somek > 0.

We are able to construct worst-case families of trees that provide exact bounds for
E}?(L) and &/ (L) over the full range of possible height bountdisThese results are
developed in Sections 6.1 and 6.2 for the case ofketgveling cost and generatleveling
costs, respectively.

6.1. Leaf-restricted weight sequences

Supposd’ € 71, and letW be thei-leveled leaf-restricted weight sequencefomwhere
h > 1. LetW, denote thepth sequence in the reduction sequence associatediitbet
U, denote the subsequenceld), corresponding to the original leaf weights (i.e., the odd-
indexed elements). It is easy to confirm that the remaining (even-indexed) elem&nys of
all have value-h + p. We analyse the effect of applying the phased reductioWw dh
terms of the potential functio@, where

D U;) = Z 2",

ueU;

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 183

SinceW, has the form{—1)(0(—1))¥, for somek > 0, U}, has the form(—1)**1. It follows
that® (Uy) = |Uy|/2 and, by Corollary 6.3,

a(W) = [1g|Ux|] - 1=[lg[20Un)|] - 1. (3)

To determine® (U,), we determine the potentiab(U1) and the potential increase
@ (Uy) — @ (Uy). Since the first phase in the reduction sequence associate@dtfects
only the even-indexed elements (changing their value frebnto —h + 1), U1 = Up.
Hence, by several applications of the Kraft equality, we have

D Uy) =P Up) = Z 21 = Z 2—dr (o) 4 Z o—h

uelp k:dr (L)<h k: dr(Lx)>h
- Y et Y @2) =1k (L A(z)2
1<k<L k:dr(Lx)>h

where, for any binary tre®, A(R) denotes the number of leaves®fandR , denotes the
tree formed fromR by truncation at depth (removing all deeper nodes).

The potential differenceé (U;,) — @ (U1) is bounded by looking at the potential increase
associated with each phase. First, note that each application of contraction irpphdse
(phasep createsW,) has no impact on the potential (since it replaces two successive
elements of value-i 4+ p — 2 in U, by one new element of valueh + p — 1). Each
application of (leaf) normalization in phage> 1 replaces an element of valué: + p — 2
by one of value-h + p — 1 thereby raising the potential &¢, by 2~"+P=2. We assign
the potential increase associated with each such normalized weightith i > 1, to its
predecesson;_1 in U, (which must have value greater thap, since by assumption
u;—1 does not belong to a r.I.m. triple, and must correspond to a weight in the original
sequencel1). The potential increase associated with weightis accumulated in a
separate boundary total. We observe that an initial weigttould be assigned potential
increases in phasés+ uj1+2,...,h +u; + 1, if initial weight u ;,; is less than,
totalling at most

h-‘ruj-‘rl
Z o—h+t=2 _ouj _ ouji1
t=h+uj+1+2

Furthermore, the boundary total could receive increments in phases; + 2,...,h
totalling at most

h
Z 27h+172 — 1/2 _ Qu1
t=h+u1+2

Thus, ifU1 = us, ..., ur, the total potential increase(U;) — @ (U1) is at most

12-244 Y [29 =24, 4)
1<j<L

184 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Note that the monus operatio#r, is defined ast — y = max{x — y,0}. Sinceu; =
—min{dr (EJT), h}, this bound on the total potential increase can be re-expressed as

12— 270 4 3 [2 D iG], 5)
1<j<A(R)

whereR =T, (the truncation of” at level). Notice that the summation in (4) is over the
leaves of7 while in (5) it is over the, typically fewer, leaves &. Equations (4) and (5)
are equivalent since consecutivé values in the leafi-leveled weight sequendé (i.e.,
wheredr (EJT) > h) make no contribution to the potential increase.

It follows that

®(Uy) = D(U) + [@(Up) — & (U]
<14 (L—A(R)27" +1/2 — 27D

+ Z [Zfdk(ﬁf);zfdk(ﬁﬁl)]
1<j<A(B)

whereR=T,.
So, to establish an upper bound @U,) as a function ofL and#, it will suffice to
determine, amongll treesR of heightx, one that maximizes the functiof(R) given by

f(R)=—=2"—x(R)27" + Z [2% = 2%+1], ©)
1<j<A(R)

wherex; = —dg(£R).

We begin by sfwwing that any treR that maximizesf (R) can be assumed to have
a particular structure. Two recursively defined families of trees play a role in this argument.
A k-chain is defined as follows: a 0-chain is just an isolated vertex ané $dd, ak-chain
is the binary tree whose left subtree is a singleton leaf and whose right subtrge-isl
chain. AFibonacci treeof heightk > 0, 7, is defined as follows: for & k < 4, F; is just
ak-chain and, fok > 4, F; is the binary tree whose left subtreefs_; and whose right
subtree has a leaf as its left subtree @nd2 as its right subtree. Figure 4 illustrates this
construction. A tree of height is said to bek-fringedif each of its subtrees rooted at a
node of depthk — k is either a singleton node (leaf) okachain. (Note that every binary
tree is O-fringed, every tree of height< k is (trivially) k-fringed, and every Fibonacci tree
of heighth > 4 is 4-fringed.)

By straightforward induction oh, we get the following:

Lemma 6.5. For 0< h <3, f(Fy) = —(h+2)27", and forallh > 4, f(F,) =1—
(Fpy2 + 3Fy41 — 1)27", whereF; is thekth Fibonacci numbetFo=0, F1=1,...).

Fr

Fig. 4. A Fibonacci tree of heiglit > 4.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 185

We first observe that, for & 7 < 3, 7, maximizesf (R), and, for everyr > 4, there
is a 4-fringed tree that maximize& R). (This is proved by demonstrating, forunning
from 2 to 4, that if there exists ai — 1)-fringed tree that maximizeg(R) then there is an
i-fringed tree that maximizeg(R). In each step the rightmost node at lekel i that is
neither a leaf nor the root of drchain, while such a node exists, has its subtree replaced by
ani-chain. It suffices to observe that each such replacement does not detta3d hus,

D (Up) <3/24+ (L —h—2)27" (7

when 1< 7 < 3.

Continuing with > 4, we observe that iR is a 4-fringed tree that maximize&(R)
then the trees = R;,_, (formed by removal of the 4-fringe) can be assumed to satisfy the
additional three properties:

(1) min{y;, yj+1} =—h+4for1< j < A(S),
(2) yy=—h+4,and
(3) yis)=—h+4,

wherey; = —ds(£3).

Suppose thaf Iz1as two consecutive shallow (depth less than4) leaves, or a shallow
first or last leaf. Lett* denote the deeper of a consecutive pair of shallow leaves (or a
shallow first or last leaf) and létdenote the depth & in S. (Note thatt* must be a leaf
of R as well.) Itis straightforward to confirm that the trBeéformed fromR by replacing
leaf £* by the subtreer;,_, satisfies

FRYZ F(R) + 27 f(Fhoi) + 27" 4273 5 £ (R).

The first inequality expresses the change in Eq. (6) due to the remowl (2~")
and its replacement b, _x (2% f (Fu_x)). The value 2+3 represents the minimum
additional contribution tgf (R’) arising from the first leaf iF;, . The second inequality
is equivalent tof (Fj,_x) > —9- 2~k which follows from Lemma 6.5.

A tree R is said to be anih-combfor & > 4 if R is ak-chain, for 0< k <3, or R
is a 4-fringed tree of height whose associated (unfringed) trée= R,_, satisfies
property (1). (Note that an isolated node is/acomb for all 4.) Thus, whem: > 4, it
suffices to find am-comb R, whose associated tree= R, _, has both of its extreme
leaves at depth — 4, and which maximizeg(R) defined by

gR)=—AR27"+ Y [2912u] (8)
1< R)
(note the change in summation boundary) where
‘= { —dR(zj?) if j <A(R),
' —h+3 if j=A(R)+ 1.
If A;, denotes this maximum value then
O(Uy) <3/2+4 L2 —27h+3 1 4, (9)

forall T € 7., whenh > 4.

186 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

To determineAy, it helps to consider two related optimizations. @t denote the
maximum value ofg(R) over all hi-combs R at least one of whose extreme leaves
has depth:, and letC;, denote the maximum value @f(R) over all h--combs without
constraints on their extreme leaves.

Lemma 6.6.
Ap=1— (Fup2+3Fs1— 927", By=1— (Fyp1+3F)27",
Ch=1-9.-27",

for all & > 4, whereF;, is thekth Fibonacci numbefFp =0, F1=1,...).

Proof (by induction om:). Fork = 4, the unique 4-comb of height 4 givdg = B4 = 273,
The 4-comb of height 0 (an isolated node) gives= 7 - 2-4. Suppose that > 4 and

denote by@o (respectively@a, c@o c@v) an h-comb of heightz whose

associated unfringed tree has both (respectively at least its left, at least its right, possibly
neither) extreme leaf at depth— 4. Then by the comb property we have (foe= 1 — 1):

N must b e or ok
PSR ANAAWAN
e must b/ Se e or ok
(@) must bm or@ or a single node.

Hence,
Ap=Ap_1/2+ By_1/2, By =max{B,_1/2+ By—1/2, Ch_1/2+ An—1/2},
Cp= max{Bh,l/Z—i— Cp-1/2,1-9. Zih}.

The result follows by straightforward calculation

We conclude from Lemma 6.6 and Eq. (9) that
®(Up) <5/2+ (L — Fyp2 — 3Fpp1 + 27" (10)

forh > 4.

By choosingT € 7;, arbitrarily and considering particular rangesiofwe can extend
the results of Observation 6.1. Specifically, iK1k < 3 andL < 2"*t% — 2" + h + 1, for
some integek > 1, then it follows from Eq. (7) that

20(Up) <3+ (L —h—2)27" <3+ (2" - 28 —1)27"+t
— 2k+l _ 27h+l +1
and so, by Lemma 6.1 and Eq. (3),
EXT) <a(W) =[lg|20 Uy]|] - 1<k

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 187

Similarly, if h >4 andL < 2"(2K — 2) + Fj,,» + 3F,;1 — 2, for some integek > 1,
then it follows from Eqg. (10) that
20(Up) <5+ (L — Fpy2 — 3Fpp1 + D271 <54 (27(25 - 2) —)27
=212t
and soE2(T') < k, as above.
In summary, if
. _{(t+1)2h+h+2 if1<h<4,
= Frio+3Fp41— 1+ 2 ifh> 4,

then
0 if L<h+2,
. 1 ifh+2<L <Ly,
EP(L) < . | (11)
k if Lh’zk—l_z g L < Lh,2k72 andk > 1,

MgL]—h ifh<1l<TlgL].

In all cases, the Fibonacci trees introduced earlier can be used to construct examples
of trees that realize our upper bounds E‘ﬁ(L). Since £9(L) is monotonically non-
decreasing it suffices to demonstrate, for elachl andk > 1, a treel’, whose number of
leaves\(T) satisfiesi(T) = Lj, y_,, for which ZX(T) =k + 1.

An extended Fibonacci treef heightz > 1 and potentiak > 0, denoted?; (z), is

defined as follows: for X h < 4, F; (1) is just a((r + 1)2" 4+ h + 1)-chain and, for > 4,
Fj (t) is the binary tree whose left subtreei§_, (0) and whose right subtree has a leaf as
its left subtree andr;_,(4t) as its right subtree. Figure 5 illustrates this construction. See
Figs. 7 and 8 for examples of extended Fibonacci trees.

By straightforward induction oh, we have:

Lemma6.7. Forall h > 1andt > 0, A(F;(t)) = L.
Furthermore,
Lemma 6.8. For everyh > Landk > 1, E2(F; (2 —2) =k + 1.

Proof. It suffices to confirm, by induction ok, that for everyr > 1, if W is theh-leveled
weight sequence associated wigi(r) thenW,, (theith weight sequence in the reduction
sequence associated wiih) has the form

(_1) (0(_1))21-‘1-5.
Thus, by Lemma 6.1 and Corollary 6 30 (F; (28 — 2)) = [lg(2*+1 + 1)1 — 1=k + 1.

Fiit)

Fig. 5. An extended Fibonacci tree of height- 4.

188 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Thus, the upper bounds cﬁ‘y?(L) given in Eq. (11) are tight. Using Lemma 4.2, these
bounds translate into the following exact bounds on the leldveling cost (thereby,
establishing Theorem 2.1)

0 if L <h+2,

1 ifh+2<L<Lp 10,
ANL)y=12 if L>L,_10andflgL] <h,

MlgL1—1 if[lgL] =h,

S if [lgL] > h.

6.2. Generah-leveled weight sequences

For any giverc > 1 andh > 0 we are interested in determining the size of the smallest
tree T satisfyingZ; (T) = c. By Lemma 6.1 this is equivalent to asking for the smallest
tree T whose/-leveled weight sequenc¥ satisfiesa(W) = c. Let W, be the weight
sequence in the reduction sequence associatediittat has migW,) = 1. The thickness
of W, is zero and by Corollary 6.3,(W) = [Igr] where|W,| =2r — 1. Let A(r, h) equal
the minimumL such that there exists @nleveled weight sequend® with |W|=2L —1
whose associated sequerigehas length 2— 1. Then

]

#(L)=c, forall L satisfyingA(2°™t+1,7) <L < A(2°h). (12)

[x

The action of the Phased Alphabetic Minimax Algorithm on /ateveled weight
seguence associated with a tflBecan be understood in terms of its action on the weight
seguences associated with the left and right subtre®s ©his gives rise to the following
recurrence forA(r, h).

Lemma 6.9.

A(r,0)=r, A, h) =1,

and forr > 2andh > 1,

A(r,h) = min {A@,h—1)+ A, h—D}.
a,b: [(a+b)/2]1=r

Proof. If h = 0 then anyh-leveled weight sequenc® has the form &1, thus
min(W1) = 1 and|W1| = 2L — 1 which impliesA(r, 0) = r.

If » =1 thenA(L, h) = 1 sinceW = (0) has mirp) = 1 and|Wp| = 1.

Let T € 7; and letTX and TR denote the subtrees @f rooted at the left and right
children of the root off'. If W is the h-leveled weight sequence associated withfor
someh > 1, thenW has the form(Wt — 1)O(WX — 1), where W’ (respectivelyw X)
denotes theéi — 1)-leveled weight sequence associated With (respectivelyr ¥).2

21fSisa sequence of integers then— 1) denotes the same sequence with each element decreased by 1.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 189

Recall thatW; is the weight sequence in the reduction sequence associatediwith
that has mikWw,) = 1. Forr > 2 andh > 1, it is straightforward to confirm that the
weight sequencéV,_; has the form(WZLL - 1)0(W212 — 1), where WZLL (respectively
Wz’f() denotes the sequence in the reduction sequence associate® wifrespectively
WR) with min(WZLL) =1 (respectively minWZ’fe) =1). If |WZLL| =2a—1 and|WZ’§’e =
2b — 1 thenW,_1 has the form(—1)(0(—1))*t*~1 and, by Lemma 6.4\. has length
2[(a 4+ b)/2] — 1. Thus, if weight sequenc@ realizesA(r, k) then sequence®’ and
WR realize A(a,h — 1) and A(b, h — 1) for somea andb satisfying[(a + b)/2] =r.
Hence,

A(r,h) = min Ala,h—1)+ A(b,h —1)t. O
() a,b: [(a+b)/2}:r{ () ()}
Lemma 6.10.
r—1 h
A = —1).
(r,h) Z(l.)(r i)
i=0
Proof (by induction orv andhi). Forh =0, the lemma states
r—1 0
A@r,0) = —i
(r, 0) ;@(r i),

which isr, since(%) = 0 fori > 0.

Forr =1, the lemma states

0 /n
Al h) = —1i
(1, h) Z(l.>(1 i,
i=0
which is 1.

We claim that the minimum ofA(a, h — 1) + A(b, h — 1) over all valuesa, b such
that [(a + b)/2] = r is achieved whem =r — 1 andb=r (ora=r andb =r — 1).
Since A(r, h) is an increasing function in, we need only consider and b such that
a+b=2r—1.

Let

t—1 2r—2—t

h—1 h—1
f(t)=z< ; >(t—i)+ Z (i >(2r—1—t—i).

i=0 i=0

Our claim, and the lemma, follows if (+) achieves its minimum at=r — 1. Consider
f@&—fa+1.

2r—2—t _1 t _1
fO—-fa+D=) (hl.)— (hl.) (13)
=0

i=0 i

190 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

ft<r—1then2 —2—¢>randf() — f(+ 1) is positive. Ift > r — 1 then
2r—2—t <tandf(t)— f(t+1)is negative. Thusf (r) is minimizedwhen =r—1. O

By Lemma6.10 and Eq. (12, (L) = [lg o(L, h)] wherep(L, h) = max(r: 375 (%)
(r —i) < L}. We then use Lemma 4.1 to obtain Theorem 2.2.
Acknowledgments

The authors express their appreciation to Prosenjit Bose, both for having posed the

central question investigated in this paper and for numerous helpful discussions.

Appendix A. Restructuring examples

Fig. 6. Chain (left) withL = 16 that is restructured (right) to have height at most 5. Nodes whose depth increased
are circled.

P s ST e

Fig. 7. Smallest tree (top) whose leaf-restrictedeveling cost is 2 wherk = [IgL] + 1 (L = 59), and the
resulting restructured tree (bottom) obtained by our algorithm. Leaves are circled a number of times equal to their
depth increase.

T -
oA D o g t@g‘?,g&

Fig. 8. Smallest tree (top) whose leaf-restrictetbveling cost is 2 wheh = [lg L]+ 2 (L = 253), and the resulting restructured tree (bottom) obtained by our algorith
Leaves are circled a number of times equal to their depth increase.

£6T-887 (¥00Z) 0 SWYIOBIY JO [euINO / XoLTEdIIN *Q ‘SUBAT ‘M

T6T

192 W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193

Wo -2 -1 -3 -2 -4 -3 -4 -4 -4 -4 -4 0-3-2-4-3-4-4-4-4-4-1-4-3-4-4-4-4-4-2-4-4-4-4-4-3-4-4-4-4-4-4-4-4-4
Wi -2-1-3-2-4-3-4-3-4-3-40-3-2-4-3-4-3-4-3-4-1-4-3-4-3-4-3-4-2-4-3-4-3-4-3-4-3-4-3-4-3-4-3-4
Wy -2 -1-3-2 -3 2 3 0-3-2 -3 -2 -3 -1 3 -2 3 -2 -3 -2 -3 -2 3 -2 -3
Ws -2 -1 -2 -1 2 0-2-1 -2 -1 -2 -1 -2 -1 -2

Wi-1 0 -1 0-10 -1 0 -1

Ws 0 1 0 1 0

We 1 2 1

W 2

Fig. 9. An example of near-4-leveling, the resulting weight sequence, the weight sequences produced by the
phased alphabetic minimax algorithm, and the resulting “balanced” tree. The original tree is a smallest tree
(L = 23) whoseh-leveling cost is 2 wherk = [Ig L] + 1. Nodes are circled a number of times equal to their
depth increase.

References

[1] M.R. Garey, Optimal binary search trees with restricted maximal depth, SIAM J. Comput. 3 (2) (1974)
101-110.

[2] E.N. Gilbert, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory IT-17 (3) (1971)
304-314.

[3] T.C. Hu, D.J. Kleitman, J.K. Tamaki, Binary trees optimum under various criteria, SIAM J. Appl. Math. 37
(1979) 246-256.

[4] T.C. Hu, A.C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Appl.
Math. 21 (4) (1971) 514-532.

[5] D.A. Huffman, A method for the construction of minimum-redundancy codes, Proc. IRE 40 (9) (1952)
1098-1101.

[6] A. Itai, Optimal alphabetic trees, SIAM J. Comput. 5 (1) (1976) 9-18.

[7] D.G. Kirkpatrick, M.M. Klawe, Alphabetic minimax trees, SIAM J. Comput. 14 (3) (1985) 514-526.

[8] D. Knuth, The Art of Computer Programming, vol. 3. Sorting and Searching, Addison-Wesley, 1973.

[9] L.L. Larmore, Height restricted optimal alphabetic trees, SIAM J. Comput. 16 (1987) 1115-1123.

[10] L.L. Larmore, D.S. Hirschberg, A fast algorithm for optimal length-limited Huffman codes, J. ACM 37 (3)

(1990) 464-473.

W. Evans, D. Kirkpatrick / Journal of Algorithms 50 (2004) 168-193 193

[11] L.L. Larmore, T.M. Przytycka, A fast algorithm for optimal height-limited alphabetic binary trees, SIAM J.
Comput. 23 (6) (1994) 1283-1312.

[12] K. Mehlhorn, Best possible bounds on the weighted path length of optimal binary search trees, SIAM J.
Comput. 6 (2) (1977) 235-239.

[13] K. Mehlhorn, Data Structures and Algorithms, vol. 1: Sorting and Searching, in: EATCS Monographs,
Springer-Verlag, 1984.

[14] R.L. Milidia, E.S. Laber, Improved bounds on the inefficiency of length-restricted prefix codes, Monografias
em Ciénciada Computagéo 33, Departamento de Informatica, PUC-Rio, 1997.

[15] D.D. Sleator, R.E. Tarjan, Self-adjusting binary search trees, J. ACM 32 (3) (1985) 652—-686.

[16] R.L. Wessner, Optimal alphabetic search trees with restricted maximal height, Inform. Process. Lett. 4 (4)
(1976) 90-94.

