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Abstract

Given a set of jobs, each consisting of a number of weighted intervals on the real line, and a positive
integerm, we study the problem of selecting a maximum weight subset of the intervals such that at
most one interval is selected from each job and, for any poion the real line, at most intervals
containingp are selected. We give a parameterized algorithm GREED¥t belongs to the class of
“myopic” algorithms, which are deterministic algorithms that process the given intervals in order of
non-decreasing right endpoint and can either reject or select each interval (rejections are irrevocable).
We show that there are values of the parametso that GREEDY, produces a 2-approximation in
the case of unit weights, an 8-approximation in the case of arbitrary weights, éhd 2/2)-
approximation in the case where the weights of all intervals corresponding to the same job are equal.
We also show that no deterministic myopic algorithm can achieve ratio better than 2 in the case of
unit weights, better thar: 7.103 in the case of arbitrary weights, and better than 3,/2 in the
case where the weights of all intervals corresponding to the same job are equal. Furthermore, we
give additional results for the case where all intervals have the same length as well as a lower bound
of ﬁ ~ 1.582 on the approximation ratio of randomized myopic algorithms in the case of unit
weights.
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1. Introduction

We study aweighted job interval selection problemalled WJISP. The input consists
of jobs, each of which is given by a set of intervals on the real line, and a number
of available machines. (We use “WJl$Pinstead of “WJISP” if we want to make an
explicit reference to the number of machines.) Each intervalhas a positive weight
w(i). A feasible solution is a subset of the given intervals such that

(1) at most one interval is selected from each job, and
(2) for any pointp on the real line, at most intervals overlapping are selected.

The goal is to find a feasible solution that maximizes the sum of the weights of the selected
intervals. We lez denote the total number of intervals in the input. We assume that a sorted
list of all interval endpoints is available; such a list can be constructed inditdogn).

Notice that the requirement that any point on the real line is overlapped by atimost
selected intervals is equivalent to the requirement that the selected intervals can be parti-
tioned intom subsets such that the intervals in each subset are pairwise disjoint. In some
applications (see Section 2) this partition (in addition to specifying the selected intervals)
is required as output. However, the subproblem of computing such a partition given the
selected intervals can be solved efficiently by coloring the corresponding interval graph. In
fact,n intervals can be colored in tim@ () if the sorted list of interval endpoints is given.
Therefore, we concentrate here on the problem of selecting the intervals and assume that,
if required, an appropriate coloring procedure is employed to compute the partitioning.

WJISR can be formulated in graph-theoretic terms. By constructing a graph such that
there is a vertex for each interval, and two vertices are connected via an edge if the
corresponding intervals overlap or if they belong to the same job, Wl&fbe viewed as
a maximum-weight independent set problem in a graph. This graph is the edge union of an
interval graph and a graph that consists of a disjoint union of cliques (cliques correspond
to jobs).

There are several restricted versions of WJISP that are interesting (see the applications
described in Section 2). We distinguish a number of variants of WJISP. Regarding the
weights we consider:

o theunweighted casgalled JISP), which refers to the case where each interval has the
same weightv,

e WIISP with equal weights per jolwvhich refers to instances of WJISP in which
intervals that belong to the same job have the same weight, but intervals that belong to
different jobs can have different weights, and finally

o WJIISP with arbitrary weights

Another interesting restriction pertains to the length of the intervals. One can distinguish in
a similar fashionWJISP with equal lengthsvhich refers to the case where each interval
has the same lengti/JISP with equal lengths per jowhich refers to instances of WJISP

in which intervals that belong to the same job have the same length, and WHIBP with
arbitrary lengths
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We consider a class of simple deterministic algorithms for WJISP and investigate so-
calledworst-case ratiogor approximation ratios) that can be obtained by algorithms within
this class. Using standard terminology (see, e.g., Hochbaum [17], Ausiello et al. [1]), we
say that a deterministic algorithm for WJISP achieves (approximation)gafia always
outputs a feasible solution whose weight is at least as large @sirhes the weight of
an optimal solution. A randomized algorithm achieves approximation raiipon every
instance of WJISP, the expected weight of the solution computed by the algorithm is at
least ¥ p times the weight of an optimal solution.

A natural class of algorithms to consider for WJISP instances is the clagsybé-pass
algorithms. Very generally stated, single-pass algorithms are algorithms in which a feasi-
ble solution is obtained by iteratively making a decision concerning an item or an object.
The first-fit decreasing algorithm for the bin packing problem and the nearest neighbor al-
gorithm for the traveling salesman problem are prime examples of single-pass algorithms.
This kind of algorithms can be useful since they need little computing time and/or little
information (i.e., they can be applied in an on-line setting). In our context, we call an al-
gorithm a single-pass algorithm when given some sequence of the intervals, each interval
is (iteratively) either rejected or accepted (selected) without considering the intervals that
will be processed later. Rejections are permanent, but an accepted interval can be rejected
(preempted) at a later time. At any time, the set of currently selected intervals must be a fea-
sible solution. After the last interval is presented, the set of currently selected intervals is
taken as the solution computed by the algorithm.

When considering a specific single-pass algorithm for WJISP, it is crucial to specify
the mechanism that determines the sequence in which the intervals will be processed.
Different choices are possible, for instance processing the intervals in order of non-
increasing weight, or processing the intervals in order of non-decreasing left endpoint or
non-decreasing right endpoint. However, it is easy to see that single-pass algorithms that
process the intervals in order of non-increasing weight or in order of non-decreasing left
endpoint do not have a finite worst-case ratio (even in the case when each job consists of
one interval only, see Woeginger [28], and even if randomization is allowed, see Canetti and
Irani [6]). Therefore, we investigate in this paper the special class of single-pass algorithms,
which we callmyopic algorithmsthat arise when the intervals are processed in order
of non-decreasing right endpoint. Thus, myopic algorithms are deterministic single-pass
algorithms that process the given intervals in order of non-decreasing right endpoint. These
algorithms seem to be the simplest algorithms that achieve constant approximation ratios
for WJISP. Let us emphasize here that we are primarily interested in the approximation
ratios that can be achieved using single-pass algorithms, not in the (better) approximation
ratios that can be achieved using arbitrary polynomial-time algorithms.

Analyzing myopic algorithms for WJISP can be seen as studying an on-line problem.
We study the quality of the solutions that can be obtained by myopic algorithms. Using
competitive analysis we show that for most settings that we investigate the algorithms
proposed here are best possible, at least in therzasd..

In applications where the intervals correspond to time periods, an on-line scenario
in which the algorithm receives the intervals in order of non-decreasing right endpoint
may appear unnatural. Notice however that for instances where all intervals have the
same length, the order of the left endpoints and the order of the right endpoints coincide.
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Therefore, the concept of myopic algorithms applies to the “real” on-line problem for such
instances.

1.1. Known results

If each job consists of one interval only, WJlgReduces to finding a maximum weight
m-colorable subgraph in an interval graph. This problem was shown to be solvable in
polynomial time by Yannakakis and Gavril [29]. If, in addition = 1, the problem reduces
to finding a maximum weight independent set in an interval graph, for which a polynomial
time algorithm was proposed by Frank [12].

The unweighted version of WJIgPcalled JISP, is studied by Spieksma [24]. It is
shown that JISPis MAX SNP-hard even if every job contains only two intervals and all
intervals have the same length. Furthermore, it is shown that the value of the natural LP
relaxation of JISPis at most two times the value of an integral optimum, and a simple
greedy algorithm that achieves approximation ratio 2 is presented.

A problem that is closely related to WJISP is the Time-Constrained Scheduling Problem
(TCSP), see also Section 2. In that problem every job has a release time, a length,
a deadline, and a weight. Viewed as a special case of WJISP with equal weights per job,
every job in an instance of TCSP consists of all intervals of the required length between
the release time and the deadline of the job. On the one hand, the structure regarding the
overlap of intervals of the same job is very restricted in TCSP, but on the other hand, one
must overcome the difficulty of dealing with an infinite number of intervals of a job (in
particular, if release times, deadlines, and job lengths can be arbitrary real numbers). Bar-
Noy et al. [3] give the following results for TCSP: for the unweighted case of T,GSP
they give an iterative greedy algorithm (that does not belong to the class of single-pass
algorithms) with approximation ratio

oy = Lm)"
P = T ymym — 1

Note thato (1) = 2 andp (m) tends tee /(e — 1) ~ 1.582 asn — oco. For TCSE), with equal
weights per job a combinatorial algorithm called ADMISSION is described. ADMISSION
consists of applying a greedy procedurdimes. The time complexity of ADMISSION is

0 (mn?logn), wheren is the number of jobs. An approximation ratio 0f2+/2 ~ 5.828

is proved for ADMISSION. Finally, for TCSP with equal weights per job, an LP-based
algorithm is given that achieves a ratiogfn) (implying a 2-approximation algorithm for
TCSR).

Some of the results described above can be generalized to YWJM8R arbitrary
weights. In particular, it is not difficult to verify that the LP-based algorithm and its analysis
go through for our case, yielding a 2-approximation algorithm for Wgl&®l ap (m)-
approximation algorithm for WJISR ADMISSION can be adapted to WJISP with equal
weights per job as well, yielding a ratio 0fi32+/2 ~ 5.828 for WJISP with equal weights
per job. Notice that ADMISSION is not a myopic algorithm since it perfonnzasses over
the given intervals. Improving the results of [3], Berman and DasGupta [4] and Bar-Noy
et al. [2] proposed combinatorial two-phase algorithms that also achieve ratio 2 for WJISP
and, by repeated application, rapam) for WIJISE,,. These algorithms do not belong to
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the class of single-pass algorithms. For the case of JISP, Chuzhoy et al. [8] improved the
known ratios further and showed that for every 0, there is a randomized approximation
algorithm with ratioe /(e — 1) + &.

The on-line variant of TCSP is studied by Goldman et al. [15] and Goldwasser [16] in
the single-machine case. The weight of a job is equal to its length and the algorithms
receive the jobs in order of non-decreasing release times. Preemption is not allowed.
In [15], a deterministic algorithm with ratio 2 if all jobs have the same length and
a randomized algorithm with expected ratia(logc) if the ratio of the longest to the
shortest job length ig are presented. Note that “the special case of all jobs having the
same length under the arbitrary delay model is of great interest” (quoted from [15]), e.g.,
for scheduling packets in an ATM switch (where all packets have the same length). In [16],
better bounds are derived for the case that the slack of a job is at least proportional to its
length.

1.2. Our results

Before describing our results let us first make the observation that WJtaR be
reduced to WIJISP This can be done by creatingdisjoint copies of the original instance
(every job of the new instance consists of iallcopies of all its intervals in the original
instance); this amounts farojectingthe m machines onto disjoint parts of the real line.
The implication of this observation is that WJl$hstances are special WJISRstances
or, in other words, any-approximation algorithm for WJISPprovides go-approximation
algorithm for WJISR,. This partly explains the phenomenon described in [3] that it seems
that more machines allow better performance guarantees. Notice, however, that myopic
algorithms cannot profit from this reduction: indeed a myopic algorithm processing the
resulting instance of WJISRvould correspond to an algorithm that makepasses over
the intervals in the original instance.

The paper is organized as follows. In Section 2 we describe some applications of WJISP.
In Section 3 we propose a myopic algorithm called GREEat can be implemented to
run in O (n?) time (or in O (nlogm) time if all intervals have the same length). Section 4
shows that with appropriate choices for the parameteBREEDY,, achieves the ratios
described in Table 1 for WJISP with arbitrary lengths (the ratios for WJISP with equal
lengths per job are the same) and in Table 2 for WJISP with equal lengths; each of these
ratios is tight. Observe that GREERYas the same ratio for WJISP with arbitrary lengths
and equal weights per job as the (non-myopic) algorithm ADMISSION from [3], while
having a lower time-complexity. Further, we prove in Section 5 that no myopic algorithm
achieves better ratios than the ones described in Tables 1 and 2 under “Lower bound.”
Our results show that GREEDRYis optimal or close to optimal in the class of myopic
algorithms. In Section 5.4 we prove that even a “randomized myopic” algorithm cannot
achieve a ratio better thagy ~ 1.582 for JISP. This shows that the use of randomization
could at bestimprove the ratio for JISP from 2 to approximateé3@2. Finally, in Section 6
we state our conclusions.

In order to keep this article at an adequate length, we give detailed proofs only for
some of the variants of WJISP in Sections 4 and 5. The proofs for the other results can
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Table 1
The results for WJISP with arbitrary lengths
Variant of WJISP Ratio of GREEDY Lower bound
JISP 2Vm > 1 2,Vvm>1
WJISP with
equal weights per job 32/2~5828Vm>1 3+2/2~5828m=1
arbitrary weights 8ym >1 ~7103,m=1
Table 2
The results for WJISP with equal lengths
Variant of WJISP Ratio of GREEDY Lower bound
JISP 2Vm >1 2,Vm>1
WJISP with
equal weights per job =12 5m=1
arbitrary weights ~6.638,m=1,2 3+2/2~5828m=1

be obtained by adapting the proofs accordingly; the basic ideas are the same. Interested
readers can find detailed proofs of all our results in the technical report [10].

2. Applications of WJISP

Interval scheduling problems have numerous applications and have been studied
intensively (see, for instance, Fischetti et al. [11] and Kroon et al. [19]). In the following,
we outline three concrete applications of WJISP.

2.1. Combinatorial auctions

(See Rothkopf et al. [22].) Due to the ongoing sale of frequencies to providers of mobile
telecommunications, and due to the ever-increasing popularity of e-commerce, the design
of (combinatorial) auctions has become a popular research item. In a combinatorial auction
different assets are for sale and bidders are allowed to bid for sets of assets. Given all bids
from the bidders, a relevant problem is to decide what bids to accept in order to maximize
total revenue (clearly, in general not all bids can be accepted since an asset can be sold at
most once). In some cases the assets for sale posses a special structure, for instance, when
they can be linearly ordered. A popular example is the case where frequencies are auctioned
(indeed frequencies can be ordered by their magnitude), but other examples exist (see [22]).
Suppose further that we allow only bids for sets of consecutive assets and allow at most one
acceptance for each bidder (see [18,22]). Then the problem of maximizing total revenue
for this setting (the interval auction problem) becomes an instance of W.J&3#dder is
a job, their bids are the intervals amd= 1 since one can sell an asset at most once.

Let us now proceed to argue that thesignof an interval auction can give rise
to instances where the on-line interpretation of WJISP becomes relevant. Suppose, as
described before, that the assets can be linearly ordered,, 8ay. 1 T. Moreover, the
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auction is designed in such a way that there Bn@unds, and in each roundasset is

added to the set of assets currently for sale (starting with the empty set). Again, as described
before, bidders are only allowed to bid for sets of consecutive assets; moreover, in round
¢t a bidder can only make a bid that includes ass&t the largest asset of the current bid.

Of course, after each round, the bidders should receive information concerning what bids
are currently active and what bids are currently rejected. Now, in principle it is possible
to solve the resulting interval auction problem after round optimality. However, there

are two arguments against such an approach. First, when playing many rounds, it may not
be computationally feasible to compute the maximal revenue after each ralwedo the
intractability of the problem (see [24]). Second, a reasonable stipulation of such an auction
would be that a bid that is rejected at some round cannot become “alive” again in later
rounds (obviously this may happen when computing an optimal solution after each round).
Thus, when designing an interval auction such that there is a round corresponding to each
asset, we are faced with the on-line version of WJISP

2.2. Caching

(See Torng [26].) A cache is a small, fast memory that can temporarily store arbitrary
memory items in order to allow the CPU to access them faster than in main memory. For
the purpose of analyzing cache performance, we view the execution of a program as a
sequence of accesses to memory items. When a memoryiisraccessed and does not
yet reside in the cache, it can be (but does not have to be; we allow cache bypassing)
brought into the cache. I is still in the cache when it is accessed a second time later
on, this is called aache hit With every cache hit the cost for an expensive access to
main memory is avoided. We view the period between two accesses to the same item
as an interval on the real line. At the time of an access, at most one interval ends and
at most one new interval begins. Selecting an intefvakans that is brought into (or
remains in) the cache at the access tat the beginning of and stays in the cache until
the access to at the end of, thus yielding a cache hit. If every memory item can go into
an arbitrary cache location (i.e., if we have a fully associative cache) and if the cache has
m locations, the problem of maximizing the cache hits can be viewed as an instance of
WJISB, where each job consists of a single interval. In this application, it seems natural to
assume that the intervals are unweighted, but there may be other factors that make it more
desirable to achieve cache hits for certain accesses, thus giving instances of, Witis P
equal weights per job. If two consecutive intervals between accesseartoselected, an
additional constraint is that must reside in the same cache location during both intervals;
otherwise, we would have to assume thatan move from one cache location to another
at no cost. However, this additional constraint can easily be satisfied in the procedure that
colors the interval graph corresponding to the selected intervals.

Due to the high hardware cost for fully associative cach@my set associative caches
are often used instead in practice. Here, a cache wilkbcations is partitioned into
direct mapped caches, each of size. A memory itemx is mapped to a positiop(x),
1< p(x) < k/t, and can be stored only in locatigr(x) in each of ther direct mapped
caches. Conceptually, this can be viewed as partitioning the cachg/imsab-caches, each
of sizet, such that each sub-cache is fully associative and such that every memory item
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can go in only one of the/¢ sub-caches. The problem of maximizing cache hitstiwmay

set associative cache withlocations can thus be solved by solving the subproblems for
each of thec/t sub-caches independently. In terms of WJISP, this amourit& tdisjoint
instances of WJISPthat can be combined into a single instance by projecting them onto
disjoint parts of the real line.

Finally, consider the case that there can be more general restrictions on the cache
locations available to a memory item (e.g., as-imay skewed associative caches [23]). For
every memory item, there is a number of admissible locations in the cache where the item
can be stored. The problem of maximizing cache hits can then be modeled as an instance
of WJISR as follows: project the timelines of all cache locations onto disjoint parts of
the real line and add, for every period between consecutive accessegandnterval in
those parts of the real line that correspond to cache locations that are admissib(alfor
intervals for this period belong to one job). However, it should be noted that the constraint
that items cannot move within the cache is ignored by this approach.

2.3. Time-constrained scheduling

(See Bar-Noy et al. [3].) Consider the following scheduling problem: we are given
machines (identical or unrelated) amdlasks, and each task has a release time, a deadline,

a processing time (that can depend, in the case of unrelated machines, on the machine
on which the task is executed), and a weight. We want to select a subset of the given
tasks and schedule them on the machines non-preemptively such that every selected task is
scheduled no earlier than its release time and finishes no later than its deadline. The goal
is to maximize the sum of the weights of the scheduled tasks.

We can view this scheduling problem fer identical machines as an instance of
WJISE,, with equal weights per job (tasks correspond to jobs, and every possible execution
of a task corresponds to an interval) and the problemriounrelated machines as
an instance of WJISP(by projecting the timelines of allz machines onto different
parts of the real line). Notice that the intervals in instances of WJISP arising from this
application display a special structure. If all release times, deadlines, and processing times
are integers that are bounded by a polynomial in the size of the input (i.e., if we have
polynomially bounded integral inpytthe resulting instances of WJlgRnd WJISR have
size polynomial in the original instance (only intervals with integral starting times must be
considered).

Further applications of WJISP can be found in printed circuit board manufacturing
(see Crama et al. [9]) and in molecular biology (see Veeramachaneni et al. [27]). Other
applications are mentioned in Chuzhoy et al. [8].

3. Algorithm GREEDY

We propose a myopic algorithm called GREERYhown in Fig. 1, as an approxima-
tion algorithm for WJISP. It has a parametethat can take (meaningful) values in the
range[0, 1]. GREEDY,, considers the intervals in order of hon-decreasing right endpoint.
It maintains a sef of currently selected intervals. When it processes an intéyviatom-



T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27-53 35

Algorithm GREEDY

S = ; {set of currently accepted intervals}
for all intervals, in order of non-decreasing right endpaiat
i = current interval;
C; = minimum-weight subset of such that S \ C;) U {i} is feasible;
if w(C;) <aw(@) then
S=(S\CHU{i};
fi;
od;
return S;

Fig. 1. Algorithm GREEDY, .

putes a se€; C S such thai could be selected after preempting the intervaltS;iand such
thatC; has minimum weight among all such safsis called thecheapest conflict sébr ;.
The algorithm selectsonly if w(C;) < aw(i), i.e., if the total weight of selected intervals
increases by at leagt — o)w(i) if i is selected and the intervals fraf are preempted.

Let us briefly compare GREEDQYto the algorithm ADMISSION of [3], which was
found independently of our work. The basic spirit of the algorithms is similar: For the case
of WJISR with equal weights per job, the two algorithms are essentially identical, and
the parameteras of GREEDY, andpg of ADMISSION are related by = 1/8. For the
casem > 1, however, ADMISSION passes through the intervalimes (once for each
machine) [3], while our algorithm GREERQMs a single-pass algorithm for any valuenof
Furthermore, GREEDY can deal with the case of arbitrary weights, while ADMISSION
is specified only for the case of equal weights per job.

We are interested in an efficient implementation of GREEDY Section 3.1, we show
how the cheapest conflict s€f can be determined efficiently, which gives rise to a total
running time of O (n?) of GREEDY,. As a byproduct of this subsection we show how
knowing that an interval graph is-colorable gives you a® (n) algorithm for obtaining
a maximum-weightm — 1)-colorable subgraph as compared@m S(n)) in the general
case [7], whereS(n) denotes the running time for any algorithm for finding a shortest
path in a directed graph witl® (r) arcs and positive arc weights. (With an efficient
implementation of Dijkstra’s algorithm, for exampl&(n) can be taken a® (nlogn).
There are algorithms that are asymptotically faster (see, e.g., [13,21] and further references
given in [25]); however, these algorithms seem of theoretical interest only and do not
achieve a linear running-time. The only linear-time shortest paths algorithm known so
far is due to Thorup [25]; it works for undirected graphs.) In Section 4, we analyze the
approximation ratio achieved by GREERY

3.1. Determining the cheapest conflict set

Leti be the interval that is currently processed by GREEDM the special case of
m =1, the setC; is simply the set of all intervals i§ that interseci and, possibly, an
intervali’ € S that belongs to the same job asTherefore,C; can be determined easily
in this case. In the following, we show how to deal with the more complicated case of
arbitrarym.
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Fig. 2. Current interval and intersecting intervals if.

If S contains an interval’ that belongs to the same job asit is clear thatC; must
containi’. In that case, le€; = C; \ {i’}, otherwise leCC; = C;. Let Q; C S be the subset
of currently selected intervals that intersect the inteinaald that do not belong to the same
job asi. See Fig. 2. Obvioushy(; is a minimum-weight subset @; such thatQ; \ C;
is (m — 1)-colorable. Hence, the s&®; \ C; is a maximum-weightm — 1)-colorable
subset ofQ;. Thus, the problem of determining the cheapest conflict set is equivalent to
the problem of finding a maximum weight: — 1)-colorable subgraph in an-colorable
interval graph. Thereforg; \ C; andC; could be determined in polynomial time using
an algorithm that solves the maximum-weightolorable subgraph problem in interval
graphs for arbitrary values &f However, since our problem is more specific (we know that
Q; ism-colorable), we can compute the ggtin time O (n) using a dynamic programming
approach, as witnessed by the following theorem.

Theorem 1. The cheapest conflict set can be compute@ {n) time.

Proof. For every intervalj € Q;, consider a poinp just before the right endpoint gf.

If p is contained inm intervals of Q;, at least one of these intervals must beCin Let

p1, ..., pr be all such points (i.e., points just before the right endpoint of an interval in
Q;) that are contained im intervals ofQ;. It is clear thaiC; is a minimum-weight subset

of Q; such that every poing,, 1< h < r, is covered by that subset. (We say that a set of
intervalscoversa point if the point is contained in at least one interval of that set.)

Let j1, jo, ..., js denote the intervals i@; in order of non-decreasing right endpoint.
For every intervalj, € Q;, letfirst(j,) andlast(j,;) be the smallest (respectively largest)
index of a pointp;, that is contained irj,. (If j, does not contain any poipt,, first(j,) and
last(j,) are undefined.) In Fig. 2, we hafiest(j13) = 4 andlast(j13) = 7, for example. The
pointsps, ..., pr, the intervalsj, ... ., js, and the tableBrst andlastcan all be constructed
in time O (n). We use the dynamic programming procedure shown in Fig. 3 to compute
valuesC(h), 1< h<r.

Claim 1. After ¢ iterations of the outer for-loop, it holds fdk < & < r that C(h) is the
weight of a minimum-weight subset{gf, ..., j¢} that coversps, ..., py (or o if no such
subset exis}s
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C(0)=0;
for h=1tor do C(h) = o0; od;
for £=1tos do
if first(j,) is not undefinedhen
for h =first(j,) tolast(jy) do
C(h) =min{C (h), C(first(je) — 1) + w(jo)}:
od;
fi;
od;

Fig. 3. Dynamic programming algorithm.

Obviously, Claim 1 implies thaC(r) = w(C;) at the end of the execution of the
procedure, and additional bookkeeping will allow to const(tfcat no extra cost. Thus, the
correctness of the algorithm follows from Claim 1, which can be proved easily by induction
on¢. The running-time of the procedure sketched in Fig.@{s+rm) = O (nm), because
the body of the inner for-loop is executed exactly times. (For each of the points p,
the body of the inner for-loop is executed only for théntervals containing;,.)

Let us now describe an implementation of the algorithm in Fig. 3 that rur@(in
time. To begin with, notice that the cost§h), 0 < & < r, are non-decreasing with at
any stage of the algorithm. We will maintain disjoint consecutive subsef8, af. . ., r}
with the property that for each subsétthe valueC (k) is the same for alt € X. Elements
with C(h) = oo are kept in singleton subsets. For maintaining the subsets, we use the data
structure due to Gabow and Tarjan [14]. We may assume that this data structure provides
the following operations:

INITIALIZE (r): initialize the data structure with+ 1 singleton set$0}, {1}, ..., {r}.

FIND(x): return the first and last element of the subset that currently contaires, if x
is currently in the sefa,a + 1, .. ., b}, then return the paita, b).

UNION(x, y): merge the sets containingandy. Preconditionx andy are in different
sets,x is the largest element in the set containin@ndy is the smallest element
in the set containing.

The precondition of the NION operation ensures that the structure of all potentildn
operations is a chain and thus the data structure of [14] is applicable (that data structure
requires that the potentialNUON operations form a tree). The total running-time for the
initialization of the data structure and a sequence consistir@(ef operations FD (x)
and up tor operations WION(x, y) is thenO (r + s).

For a subseX maintained by the data structure, we store the common \@{tg for
all h € X with the largest element iX (the second component of the pair returned by
FIND (k) for anyh € X). For an element that is not the largest element of its subset, the
value of the variabl€ (k) can be arbitrary.

The pseudo-code of the resulting implementation is shown in Fig. 4. For each interval
je, the algorithm first determines the valug(first(j;) — 1) by executing(a, b) =
FIND (first(j;) — 1) and then accessing(b). This allows to compute the value =
C(b) +w(je¢), which is the cost of the new candidate set that coverg;allith i < last(j;)
and hag; as its rightmost interval. If the elements in the set contaitastj j;) have a cost
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INITIALIZE (r);
C(0)=0;
for h=1tor do C(h) = o0; od;
for ¢=1tos do
if first(j¢) is not undefinedhen
(a, b) = FIND(first(jp) — 1);
w=C(®)+w(je);
(c,d) = FIND(last(jp)); I* will give d = last(jy) */
if C(d) > w then
C(d) =w;
(e, f)=FIND(c — 1); I*willgive f =c— 1%
while C(f) > w do
UNION(f, ¢);
c=e,
(e, f)=FIND(c — 1); *willgive f =c—1%*
od;
fi;
fi;
od;

Fig. 4. Linear-time implementation of the dynamic programming algorithm.

larger thanw, their cost is updated to by settingC (d) = w. (Note that the set containing
last(j,) must havdast(j,) as its largest element, because all eleméntslast(j,) still
have costC (k) = o0.) In this case, the algorithm then checks repeatedly whether the
elements in the set that is just before the set contailaisifjj,) have a cost larger than
and, if so, merges that set with the set contair@si j,). The effect of each suchNUoN
operation is that the elemeritsn the set with smaller elements implicitly receive the same
valueC (h) = w as the elements in the set containiast(j,).

Itis not difficult to see that this is a correct implementation of the dynamic programming
algorithm of Fig. 3. It remains to analyze the running-time. For each intgyyveiie number
of FIND operations executed in the body of the loop i B, wherek is the number of
iterations of the inner while loop. Since each iteration of the inner while loop executes
a UNION operation and there can be at mestuch operations, the total number afNB
operations can be bounded by -B r. Hence, the total running-time of the algorithm is
O(s +r) = O(n). Moreover, the cheapest conflict set itself can again be computed easily
in the same running-time by storing with each vallig:) also the index of the rightmost
interval of the solution coverings, ..., p, that has cos€ (k). O

Theorem 1 leads to the following corollaries.

Corollary 2. A maximum weightm — 1)-colorable subgraph in am-colorable interval
graph, given by the sorted list of interval endpoints, can be obtain€x(in time.

Corollary 3. GREEDY, runs in O (n?) time.
For WJISP with equal lengths, computing the cheapest conflict set is much easier, since

at mostm intervals inS can overlap the current interval The cheapest conflict s€t;
contains the interval ir§ that belongs to the same job agif such an interval exists)



T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27-53 39

as well as the cheapest interval overlappin@f there arem intervals inS that overlap
i and belong to a different job). We maintain a balanced searchitreech that, if the
current interval has left endpoipt, 7 stores all intervals ir§ overlappingp, sorted by
their weights. Determining the cheapest conflict set and updatitakes timeO (logm),
giving a total running time oD (n logm) for GREEDY,, in the case of WJISP with equal
lengths.

4. Analysisof approximation ratio

In this section, we give tight bounds on the approximation ratio of GREERY
the different variants of WJISP. The section is divided into two parts: in Section 4.1 we
investigate the case where intervals have arbitrary lengths, and in Section 4.2 we deal with
the case where all intervals have the same length. Each subsection deals with the three
possibilities concerning the weights of the intervals: equal weights, equal weights per job,
and arbitrary weights.

Let us now introduce some notation. We usdo denote the set of intervals that is
returned by GREEDY, we useT for the set of intervals that were selected at least at
some time by GREEDY, and we uséPT for some set of intervals that constitutes an
optimal solution. Their values are referred tow&A), w(T), andw(OPT), respectively.
Further, as mentioned before, the §d¢ the set of selected intervals at some point during
the execution of the algorithm. The basic idea of the analysis is to charge the weight of the
intervals in an optimal solution to the intervals selected by GREEDRNe setl’) and next
to derive bounds on the amount of charge received by intervals An inequality that is
fundamental in the analysis is

w(A) = 1 —a)w(T). 1)

This inequality holds because GREEP¥elects a new intervalonly if the total weight of
currently selected intervals increases by at l€bsta)w(i). Thus, first we bound (OPT)
in terms ofw(7T) and, using (1), in terms ab (A).

4.1. WJISP with arbitrary lengths

Here, we analyze the approximation ratio of GREEDM the case that the given
intervals have arbitrary lengths. For the case of arbitrary weights, we have the following
theorem.

Theorem 2 (arbitrary lengths)For WJISR, with arbitrary weights, GREEDy achieves
approximation ratioz=.

Proof. Consider an interval € OPT. If i € T, we chargew(i) to i. If i € OPT\ T,
consider the instant when GREERYrocessed interval Let C; denote the minimum-
weight set of intervals whose removal frghwould have allowed to acceptlf S contains
an interval from the same job ds denote that interval by’; otherwise, leti’ be an
imaginary interval with zero weight (just to simplify the formulas).
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Let Q; denote the set of all intervals $ithat intersect and that do not belong to the
same job as. As S is feasible,Q; can be partitioned inta setsQ;1, ..., Qin Of intervals
such that the intervals in each g@f, are pairwise disjoint. Note that

w(@) +w(Q;) > aw(@) forl<e<m, (2)

because of the definition @f; and because GREERYdid not accept.

We charge mifw(i), (1/a)w(i’)} to i’. If the remaining weightw (i) — min{w(i),
(1/a)w(i’)} is positive, we divide it inton equal parts and distribute each part among
the intervals in one sa®;, such that an intervgl € Q;, is charged

w(i) — minfw(@), 2w} w())
m w(Qie)
(2) implies that every intervgl € Q; is charged by for at most(1/am)w(j) in this way.
Altogether, every intervaj € T can receive charge at mo&/«)w(j) (charge at most

(1/a)w(j) from an interval belonging to the same job and charge at idgatw () from
intervals inOPT that overlap the right endpoint g§), implying that

w(OPT) < zw(T) < (4. O
o

a(l—ow) v
It is not difficult to see that the ratio in Theorem 2 is tight (even in the case of equal
lengths per job). Hence, we get the following corollary.

Corollary 4 (arbitrary lengths)For WJISR, with arbitrary weights, GREEDy performs
best fore = 1/2, in which case it achieves approximation rao

In the cases of unit weights and of equal weights per job, the proof technique of
Theorem 2 can be adapted to obtain the following results (see [10] for details).

Theorem 3 (arbitrary lengths)For JISR,,, GREEDY, achieves approximation ratia for
anya in the rang€0, 1).

Theorem 4 (arbitrary lengths).For WJISR, with equal weights per job, GREERY
achieves approximation ratitl + «) /(¢(1 — «)).

Again, it is not difficult to construct examples showing that the ratios in Theorems 3
and 4 are tight, even in the case of equal lengths per job (see [10] for details).

Corollary 5 (arbitrary lengths).For WIJISR, with equal weights per job, GREERY
performs best fow = v/2 — 1~ 0.414, in which case it achieves approximation rafie-
2.2~ 5.828

Note that this result is consistent with the result of Bar-Noy et al. [3], who proved
independently that ADMISSION performs best for TCSP with paramgterl + +/2 and
achieves ratio 3 2+/2 in this case (their parametgrcorresponds to /x in our setting).
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4.2. WJISP with equal lengths

Now we consider WJISP in the case where all intervals of all jobs have the same length.
In applications where the intervals correspond to time intervals, myopic algorithms are
“real” on-line algorithms in this case, as the order of left endpoints and the order of right
endpoints coincide.

For JISP with equal lengths, the approximation ratio of GREE®¥ 2, the same as
in the case of arbitrary lengths (Theorem 3), and this is again tight. Therefore, we need
to consider here only WJISP with arbitrary weights (Section 4.2.1) and WJISP with equal
weights per job (Section 4.2.2). It turns out that for these cases GREBEMeves better
ratios for equal lengths than for arbitrary lengths. The analysis, however, gets a bit more
complicated, and we do not have tight results for all values of

4.2.1. Arbitrary weights
We consider WJISP with equal lengths and arbitrary weights. First, we consider the case
m=1.

Theorem 5 (equal lengths)For WJISR with arbitrary weights, GREEDY achieves
approximation ratio(2 + o) /(a(1 — ?)).

Proof. We distinguishjob chargeandoverlap chargeConsider an interval € OPT and
the instant when GREEDQY processed that interval. Ife T, chargew(i) to i and call
this chargeoverlap charge Now assume that¢ 7. Let Q; be the set of intervals i8
that are in conflict withi when GREEDY, processe$. Note thatQ; contains at most
one interval intersecting (because all intervals have the same length) and at most one
additional interval belonging to the same jobiasTherefore, we havéQ;| < 2. Each
interval j € Q; is charged
w(j)
w(Qi)

As GREEDY, did not select, we havew(Q;) > aw(i), SO each intervaj € Q; receives
charge at mosi(j)/« fromi. If j intersects, we call the charge that receives from
overlap chargeotherwisgob charge

In order to facilitate a tight analysis, we redistribute some of the job charge. Consider
an intervalj € T that receives job charge from an interval OPT belonging to the same
job. If j € A, we do nothing. Ifj € T \ A, this means that was preempted by GREERY
at some later time in favor of an interviabelonging to the same job gs Observe that
cannot have received any job charge, as the intérgaDPT that belongs to the same job
as;j andk was processed by GREERYeforek. Now we redistribute the total charge that
j andk have received, which is bounded from abovegny(j) + %w(k), proportionally
among these two intervals. Sinagk) > w(j)/a, we can bound the resulting charge
forinterval j as follows:

, w(j) (2 o4 L k)_ (1, 2w
S B rwi\a?P T gr® ) =wD\ O F e e m

w(i).
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In the same way, we obtain that the resulting chayg®r intervalk is bounded by

<w(k) 1+ 1
g <w -+ —.
k o a+1l

Putting everything together, we get that every interyad A receives charge at most
gw(j), while every intervak € T \ A receives charge at most

1 1 X
<&+ot+1)w( )

We obtain:

W(OPT) < w(A)- = +u(T \ A)(% N L)

N

a+1
w(T)<£+i)+w(A)<i— L )
o a4+l o o+l
1 1 1 1 1
w(A)l—a(E+a—+1>+w(A)(E_a+1>

24+«
a(l—a?)

N

= w(A)

Furthermore, for everyn > 1, one can construct examples showing that the approxi-
mation ratio of GREEDY, for WJISB,, with arbitrary weights is not better tha@ + «)/
(a(1— &?)) (see [10]). Therefore, Theorem 5 is tight for WJISP

Corollary 6 (equal lengths)or WJISR with arbitrary weights, GREEDyperforms best
for @ =2cog2r/9) — 1~ 0.5321 in which case it achieves approximation ratio
1+ 2cog%n)

~ 6.638
7+6coggr) — 10cog3n)

By a very detailed and extensive analysis, we can extend Theorem 5 to the ea2e
giving the following theorem (the long proof can be found in [10]).

Theorem 6 (equal lengths)For WJISE with arbitrary weights, GREEDY achieves ap-
proximation ratio(2 4+ «)/(«(1 — «?)) and thus performs best for= 2 cog27/9) — 1~
0.5321, in which case it achieves approximation ratio

1+2cog%r)

~ 6.638
7+ 6coggr) — 10cog3)

Now we consider the case of arbitrany> 1.
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Theorem 7 (equal lengths¥or WIISR,, m > 2, with arbitrary weights, the approximation
ratio of GREEDY, is at most(2m — ) /(ma (1 — a)).

Proof. Charge the weight of intervals i©OPT to intervals in7 as in the proof of
Theorem 2. We know that an intervake T receives charge at moétw(j). Assume that
anintervalj € T \ A receives a charge of more than

m—1 1
<— +1)—w(]).
m o

This implies that;j receives charge fromu intervals overlapping the right endpoint pf
(each of these charges at mg%tw(j)) and from an interval € OPT that belongs to the
same job ag, that lies strictly to the right of, and that is disjoint fromy. As j e T\ A
and; was inS when GREEDY, processed interval this means that GREEDR)Yselected
an intervak that was processed afteand that belongs to the same jobjadNote that we
must havew (k) > w(j)/«. Distributing the total charge received pyandk proportionally
among these two intervals, we can bound the resulting chgrgadc; for interval j and
intervalk, respectively, as in the proof of Theorem 5:

1 1
), CkﬁU)(k)(;"'a_'_l)

So every intervalj € T \ A that is not involved in the redistribution of charge receives
charge at most

m—1 1
<— + 1)—w(1),
m o

while an intervalj € T \ A that is involved in redistribution receives charge at most

/11
w(])<;+ Ol+1).

Form > 2 the former bound is larger, so that we can bouri®PT) as follows:

1
€ < wU)(a Tarl

WOPT) < w(d)- 2 +w @\ XL mua) a2
< wid 1 A 2m—1 — wiA 2m—«
s w )'%—i—w( )moc(l—oc)_w( )'ma(l—a)'

We do not now whether our analysis of Theorem 7 is tight. Nevertheless, we can
determine the value af that optimizes the obtained bound and get the following corollary.

Corollary 7 (equal lengths)For WIISR,, m > 3, with arbitrary weights, our analysis of
GREEDY, gives the best ratio fa = 2m — ~/4m? — 2m, in which case the bound on the
approximation ratio of GREEDyis

din — 1+ 2/4m? — 2m

m
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Some bounds on the ratio of GREERYesulting from Corollary 6, Theorem 6, and
Corollary 7 are as follows:

m 1 2 3 4 5 6 7 8 9 10
ratio 6.638 6.638 7.318 7.491 7.594 7.663 7.712 7.748 7.776 7.799

Note that for everyn > 1 these bounds are better than the ratio 8 that GREEARhieves
for WJISE,, with arbitrary weights and arbitrary lengths. Furthermore, our bounds for the
equal-lengths case converge to 8agoes to infinity.

4.2.2. Equal weights per job

The analysis for the case of WJIgRvith equal lengths and equal weights per job is
similar to the previous section. The key observation that leads to improved results is that
an intervalk € T can receive job charge onlykfe A and that the job charge received by
k is either O orw(k). No redistribution of charge is necessary. ko= 1, this yields the
following theorem.

Theorem 8 (equal lengths)For WJISR with equal weights per job, GREERYchieves
approximation ratio(1 4+ «(1 — «)) /(¢ (1 — @)).

Itis not difficult to construct examples showing that for every: 1, the approximation
ratio of GREEDY, for WJISR,, with equal weights per job and equal lengths is not better
than(1+ o (1 — @))/(a(1— a)) (see [10] for details). This shows that Theorem 8 is tight.

Corollary 8 (equal lengths)For WJISR with equal weights per job, GREERYerforms
best fora = 1/2, in which case it achieves approximation rafio

We will prove in Theorem 11 that no deterministic myopic algorithm for WJISP
with equal weights per job and arbitrary lengths can have approximation ratio better than
approximately 828. This shows that the case of WJiSKth equal lengths is provably
easier to approximate for myopic algorithms than the case of arbitrary lengths.

Now we consider the case > 1. By adapting the proof of Theorem 7, the following
theorem is obtained. The main observation is that an intgreal” that receives a charge
of more than

. 1 m-—1
w(j) - max{—, 1+ }
o

mo

must receive charge from an intervak OPT that belongs to the same job, is disjoint
from j, and lies strictly to the right of (which in turn implies thaj € A). Redistribution
of charges is not necessary.

Theorem 9 (equal lengths)For WJISR,, m > 2, with equal weights per job, the
approximation ratio of GREEDyYis not worse than
1+a(l—w) 1 moe+m—a«

1
fora<— and ——— fora> —.
o(l—ow) m ma(l— o) m
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We do not know whether our analysis of Theorem 9 is tight. Nevertheless, we can
determine the value af that optimizes the obtained bound and get the following corollary.

Corollary 9 (equal lengths)ror WJISR, with equal weights per job, the following bounds
for the ratio of GREEDY are the best bounds obtainable from our analysis

e m = 2:ratio 5, obtained fore = 1/2 (derived from Theorer8).
e 3<m < 67:ratio

5m3 — 3m2 — 6m + 2+ V5m2 — dm(3m?% +m — 2)
2m(m2 — 1)
3m — +/5m?2 — 4m
2m+2

(derived from Theorerf).
e m > 68:ratio 3+ 24/2 for o = /2 — 1 (derived from Corollarys).

fora =

Some bounds on the ratio of GREERYesulting from Corollaries 8 and 9 are as
follows:

m 12 3 4 5 6 7 8 9 10
raio 5 5 5.268 5.417 5505 5564 5.606 5.637 5.661 5.681

Note that our bounds for the equal-lengths case are better than the #afle/3 ~ 5.828
that GREEDY, achieves for WJISP with arbitrary lengths and equal weights per job for
1<m <67.

5. Competitive lower bounds

In this section, we are interested in lower bounds on the best approximation ratio
that can be achieved by any myopic algorithm for WJISP, and we use competitive
analysis [5] to answer this question. We phrase our arguments in terms of an adversary
who constructs worst-case instances for a myopic algorithm incrementally, depending on
previous decisions made by the algorithm. In our illustrations, intervals belonging to the
same job are always drawn in the same row. In Section 5.1 we deal with the unweighted
case, Section 5.2 treats the case of equal weights per job, Section 5.3 investigates the case of
arbitrary weights, and Section 5.4 gives a lower bound for randomized myopic algorithms
for JISP.

5.1. The unweighted version of WJISP (JISP)

In the case of equal weights, it is easy to show that no myopic algorithm for WJISP
can achieve approximation ratio better than 2.



46 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27-53

Theorem 10. No myopic algorithm for JISR can achieve an approximation ratio better
than2, even if all intervals have equal length.

Proof. Initially, the adversary presents a g2bf 2m intervals that belong to different jobs
and that have the same right endpgintLet S be the set of at most intervals that are
selected by the algorithm at this time. L&tbe a subset of that contains all intervals in

S and that has cardinality. For every interval ir§’, the adversary presents an interval that
belongs to the same job and that is to the righp oAll these new intervals have the same
right endpoint. The optimal solution contains: 2ntervals, while the algorithm accepts

at mostm intervals. Notice that the lengths of all intervals in this construction can be set
equal. O

5.2. WJISR with equal weights per job

Consider WJISPwith equal weights per job. In the following, we prove tight bounds on
the best approximation ratio that can be achieved by any (deterministic) myopic algorithm
for the case of arbitrary lengths or equal lengths per job and for the case of equal lengths.
We view the construction of worst-case examples for a myopic algorithm as a game played
by the algorithm with an adversary. In a move, the adversary presents a new interval, and
in response the algorithm accepts this interval or rejects.

We begin with the case of equal lengths per job. For ewery0 that is sufficiently
small (e.g., take A8 > ¢ > 0), the adversary has a strategy that forces the algorithm to
create a solution of weigh8 + 2+/2)/(1 + ¢)? times smaller than the optimum.

The strategy of the adversary has the following properties (some of them hold after the
first two moves).

e The right endpoints of intervals presented by the adversary are strictly increasing.

e The tentative solution of the algorithm consists of exactly one interval callgke
current one).

e AsetofintervalsP, forms a part of the eventual solution of the adversary, all elements
of P have right endpoint smaller than the right endpoint @ihd none belongs to the
same job as.

e Whenever the algorithm accepts a new interval, the ratiB) /w(c) increases at least
by a 1+ ¢ factor.

o If the algorithm rejects intervals sufficiently many times, the adversary wins by
exhibiting a solutionR such that(1 + ¢)?w(R)/w(c) > 3+ 2v/2.

The strategy of the adversary can be described as a set of prescriptions how to move in
different states.

StateO: initial. In the first move the adversary presents intefyabith weight 1, and the
algorithm has to accepp. In the second move, the adversary presents interval
i1 that belongs to a new job, intersedts and has a larger right endpoint;
w(i1) = 3+ 2+/2. If the algorithm does not accept, the adversary exhibits
R = {i1} and wins. Otherwise, we have= i1 and P = {ip}.
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Fig. 5. lllustration of intervalg; , c¢;, anda; 1 played by the adversary.

The remaining states depend on the algorithm’s response in the previous move. Intervals
of the forma; belong to new jobs, have weight(a;) = w(c)(1+¢), and every; has the
same left endpoint such that intersects: but none of the intervals i®. An interval of
the formc; belongs to the same job agthus it has the same weight and length) and is to
the right ofa; (so that it does not intersegt). See Fig. 5 for an illustration.

State 1: the algorithm accepted a new intervalhe adversary presents an interval of
a new job,a_1. If the algorithm accepta_j, thenc becomes:_1, P remains
unchanged and (P)/w(c) increases by the factor af(c)/w(a—1) =1+ ¢.

State2: the algorithm rejecteds;. The adversary presents. Even if the algorithm
acceptse;, its solution still consists of only one interval, of the same weight
as before. The adversary checks= P U {g;, c;i}. If (1 + &)2w(R;)/w(c) >
3+ 24/2, it wins. Otherwise, one can see thatP)/w(c) < 4. If the algorithm
accepts;, the adversary inserts into P and the ratiow(P)/w(c) increases by
a factor larger than 6.

State 3: the algorithm rejected;. The adversary presenig, ;. If the algorithm accepts
ai+1, the adversary replacdswith R;.

The adversary wins in State 2 under the condition théR;) = w(P) + w(c) +
w(c)(1+¢)' is sufficiently large in comparison with (c), or, more precisely,

1_H:)zw(P) +w(c;((1;i—8)’ + w(c) 234_2\/2
c

(

We can note that aisgrows, the left-hand side increases and eventually the adversary has
to win if the algorithm keeps rejecting intervals Let y = w(P)/w(c) andz = (1 + ¢)’.
If the adversary did not win, we havé + £)2(y + z + 1) < 3+ 2v/2.

Now suppose that the algorithm accepted; in State 3. Then the rati@(P)/w(c)
increases by

w(R;) wo _y+z+l A +z+D A+ D)
wEO@+e)* wP)  A+e)zy - A+ +22  (L+e)x?
wherex = y + z. Note that the last expression is a decreasing function 8ecause the
adversary did not win when the algorithm was rejectingwe had(1 + ¢)2(x + 1) <
3+ 24/2 and thus our estimate for the increasews®) /w(c) is the smallest fox + 1 =
B+2V2)1+e)72

Ax+1) 4B+2v2(A+)72
A+e)x% 7 (1+e)((3+2vD(A+e)2—1)2
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Fig. 6. lllustration of the intervals used by the adversary in the case of equal lengths.

_AB+2VD(A+e) _ 4B+2VD)(A+e)
B+ 2V2—(1+)2)2 (24242 —2¢ —£2)2
A3+ 2vV2)(1+e) Cite
(24 2/2)?

As we can choose arbitrarily small, we obtain the following theorem.

Theorem 11. No myopic algorithm for WJISPwith equal weights per job can achieve
approximation ratio better thaB + 2./2 ~ 5.828. This lower bound applies in the case of
arbitrary lengths and in the case of equal lengths per job.

Now consider WJISPwith equal weights per job and equal lengths. We can prove
that no myopic algorithm can achieve approximation ratio better than 5. The adversary’s
strategy and its analysis is analogous to the one used to obtain Theorem 11. The only
difference is that an interval of type is played only at the end of the game. This means
that, after the algorithm has rejected the adversary plays only if (w(P) + w(a;) +
w(ci))/w(c) is large enough to win the game; otherwise, it plays;. Fig. 6 gives an
illustration. This yields the following theorem (see [10] for a detailed proof).

Theorem 12. No myopic algorithm for WJISPwith equal weights per job and equal
lengths can achieve approximation ratio better ttan

Corollary 8 showed that the myopic algorithm GREEDWith « = 1/2 achieves
approximation ratio 5 for WJISPwith equal weights per job and equal lengths. Thus,
Theorem 12 implies that GREEDRYis optimal within the class of myopic algorithms in
this case. Note that GREEDRQYdecides whether it accepts a new interval without taking
into account the amount of overlap between a currently accepted interval and the new
interval. Intuitively, one might think that considering the amount of overlap would give an
advantage to a myopic algorithm, but our tight lower bound shows that this is not true in
the worst case.

5.3. WJISR with arbitrary weights
To obtain lower bounds in the case of WJ{SHKith arbitrary weights, we can employ

essentially the same adversary strategy as in the previous section. The only difference
is that the intervak;, which belongs to the same job asis now played with weight
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w(c;) =w(c)(L+w(a;)/w(P))/(1+ ¢). This ensures that, if the algorithm accegtsthe
ratio increases fromv (P)/w(c) to w(P U{a;})/w(c;) = (L4 &)w(P)/w(c). The detailed
calculations (see [10]) lead to the following theorems.

Theorem 13. No myopic algorithm for WJISPwith arbitrary weights can achieve
approximation ratio better tha.103 This lower bound applies in the case of arbitrary
lengths and in the case of equal lengths per job.

The value 7103 is obtained by minimizing the function

2
X +x
fo)=—7—
x—;—l

in the range((1 + +/5)/2, c0). The minimum is attained at

2 471 [35 16
X=X=— 3—+ — 4+ ————— ~3.365
3 Var ' Vart T =
927tV

with f(x) > 7.103.

In the case of equal lengths, intervalis played only at the end of the game, i.e., if
(w(P) +w(a;) +w(c;))/w(c) is large enough for the adversary to win. This modification
leads to the following theorem.

Theorem 14. No myopic algorithm for WJISPwith arbitrary weights and equal lengths
can achieve approximation ratio better thaa- 2¢/2 ~ 5.828,

5.4. Arandomized lower bound

In Section 5.1 we have shown that no (deterministic) myopic algorithm for JISP can
have approximation ratio better than 2. Here we derive a bound on the best approximation
ratio that can possibly be achieved bsaadomized myopialgorithm against an oblivious
adversary [5]. The randomized lower bound that we obtain is weaker than the deterministic
bound, and it remains an open problem whether randomized myopic algorithms can in fact
beat deterministic myopic algorithms for JISP. The following theorem shows that the use
of randomization could at best improve the approximation ratio from 2 to approximately
1.582.

Theorem 15. No randomized myopic algorithm for JISP can achieve an approximation
ratio better than_4; ~ 1.582

Proof. We specify a probability distribution on instances withjobs and show that the
expected number of intervals accepted by a deterministic myopic algorithm is at most
%n + 1, while an optimal solution consists af intervals. By Yao's principle (see,
e.g., [20, Sections 2.2.2 and 13.3]), this implies the lower bound for randomized myopic
algorithms against an oblivious adversary.
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Fig. 7. Example of JISP instance used in randomized lower bound.

We consider a very restricted subset of instances of JISP, defined as follows. If such an
instance consists afjobs, then all its intervals have unit length and any two intervals either
have identical endpoints or are disjoint. Initially, one interval with left endpoint 0 and right
endpoint 1 is presented from each of thbs. Further intervals have left endpoints 2, 4,
6, ..., 21 — 2. We refer to the presentation of intervals with left endpoinaround .

Let J; denote the set of jobs from which intervals are presented in rouflde instances
we construct always satisti1 € J; and|J;+1| = |J;| — 1. We say that the unique job in

Ji \ Ji+1 diesafter roundi. An example of such an instance is shown in Fig. 7. Note that
an optimal solution to such an instance always contaimservals.

The probability distribution is defined by choosing the job that dies after raund
uniformly at random among the— i jobs from which an interval was presented in round

Consider any deterministic myopic algorithin If the set of intervals that are currently
selected byd does not contain an interval from jgh we say that joly is availableto A.

We can assume without loss of generality tAadlways selects an interval in roundf at
least one interval from an available job is presented in that round.

Let Ei ¢ denote the expected number of intervals added to the solution by algotithm
until the end of the game provided that the current round consistsrdaérvals and of
thesek intervals belong to available jobs. Note thgt , is just the expected number of
intervals in the solution computed by

The following equations hold:

Ero =0, 3)

Ex1=1 (4)
-1 k—¢+1

Ere =1+ — Ek-ve-2+ ————Er-10-1 forl1<¢<k. (5)

We need to explain why (5) holds. # > 0, the algorithm always selects an interval in
the current round. After that, among thentervals of the current round there ate- 1
remaining intervals belonging to available jobs. With probability- 1)/ k, one of these
¢ — 1 jobs dies, and with probabilitk — £ + 1)/k, one of the other jobs dies.
One can prove by induction that (3)—(5) imply
£

Exe<k(l—e %)+ T (6)

for all 0 < ¢ < k (detailed calculations can be found in [10]). Fbor= ¢ = n, (6)
becomesE, , < %1n + 1. This shows that the expected number of intervals in the
solution computed byl cannot be greater thapm for any y > % thus establishing
the theorem. O
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By considering only instances of JISP like the ones constructed in the proof of
Theorem 15 we obtain a restricted version of JISP. An application of this restricted version
could be as follows. A shop sells different items. After each week, one of the items
becomes unavailable, i.e., afteweeks onlyn — i of the original items can be bought.
Assume that you can afford to buy at most one item per week and that you would like to
buy as many different items as possible. This problem is just the restricted version of JISP.

Note that no deterministic myopic algorithm can buy more thghitems in the worst
case: every week, the adversary decides that one of the items that was not yet bought
by the algorithm becomes unavailable. Aftetf2 weeks, no items are left to buy for the
algorithm. So the deterministic lower bound of 2 from Theorem 10 applies even to this
restricted version of JISP.

6. Conclusions

The weighted job interval selection problem has applications in diverse areas. We have
studied several variants of this problem: we distinguished the case of arbitrary lengths and
the case of equal lengths, and for each of these cases we investigated the setting with all
weights equal, equal weights per job, and arbitrary weights. The case of equal lengths
can be seen as a natural online scheduling problem. We showed that a simple algorithm
called GREEDY,, which belongs to the class of so-called myopic algorithms, outputs
a solution with a value that is within a constant factor of the value of an optimal solution.
Together with our lower bound results, this implies that for the case of arbitrary lengths no
myopic algorithm can do better than GREEP¥with respect to approximation ratio) in
the unweighted case (for ail) and in the case of equal weights per job @oe= 1). In case
of arbitrary weights a (small) gap remains. For the case of equal lengths, our results show
that GREEDY, is best possible among the myopic algorithms in case of equal weights per
job (form =1).

An interesting question for future research is whether the use of randomization in
myopic algorithms for WJISP can lead to improved approximation ratios. For the case
of JISR, we showed that randomization could at best improve the approximation ratio
from 2 toe/(e — 1) ~ 1.582. For the weighted versions of WJISP, we do not have any
strong randomized lower bounds. However, we can remark that all our lower bounds for
deterministic myopic algorithms hold also for randomized algorithms agairestiaptive
adversary (i.e., an adversary that can react to the random choices of the algorithm).
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