
Journal of Algorithms 46 (2003) 27–53

www.elsevier.com/locate/jalgor

Interval selection:
Applications, algorithms, and lower bounds✩

Thomas Erlebacha and Frits C.R. Spieksmab,∗

a Computer Engineering and Networks Laboratory (TIK), ETH Zürich, Gloriastr. 35,
CH-8092 Zürich, Switzerland

b Quantitative Methods, Faculty of Economic and Applied Economic Sciences,
Katholieke Universiteit Leuven, Naamsestraat 69, B-3000 Leuven, Belgium

Received 4 April 2001

Abstract

Given a set of jobs, each consisting of a number of weighted intervals on the real line, and a positive
integerm, we study the problem of selecting a maximum weight subset of the intervals such that at
most one interval is selected from each job and, for any pointp on the real line, at mostm intervals
containingp are selected. We give a parameterized algorithm GREEDYα that belongs to the class of
“myopic” algorithms, which are deterministic algorithms that process the given intervals in order of
non-decreasing right endpoint and can either reject or select each interval (rejections are irrevocable).
We show that there are values of the parameterα so that GREEDYα produces a 2-approximation in
the case of unit weights, an 8-approximation in the case of arbitrary weights, and a(3 + 2

√
2)-

approximation in the case where the weights of all intervals corresponding to the same job are equal.
We also show that no deterministic myopic algorithm can achieve ratio better than 2 in the case of
unit weights, better than≈ 7.103 in the case of arbitrary weights, and better than 3+ 2

√
2 in the

case where the weights of all intervals corresponding to the same job are equal. Furthermore, we
give additional results for the case where all intervals have the same length as well as a lower bound
of e

e−1 ≈ 1.582 on the approximation ratio of randomized myopic algorithms in the case of unit
weights.
 2003 Elsevier Science (USA). All rights reserved.

Keywords:Intervals; Algorithms; Approximation; Lower bounds; Independent set

✩ A preliminary version of some of the results in this paper has appeared in [Proc. 11th Ann. Internat. Symp.
on Algorithms and Computation, ISAAC’00, in: Lecture Notes in Comput. Sci., Vol. 1969, 2000, pp. 228–240].

* Corresponding author.
E-mail addresses:erlebach@tik.ee.ethz.ch (T. Erlebach), frits.spieksma@econ.kuleuven.ac.be

(F.C.R. Spieksma).

0196-6774/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
PII: S0196-6774(02)00291-2

28 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

1. Introduction

We study aweighted job interval selection problem, called WJISP. The input consists
of jobs, each of which is given by a set of intervals on the real line, and a numberm

of available machines. (We use “WJISPm” instead of “WJISP” if we want to make an
explicit reference to the numberm of machines.) Each intervali has a positive weight
w(i). A feasible solution is a subset of the given intervals such that

(1) at most one interval is selected from each job, and
(2) for any pointp on the real line, at mostm intervals overlappingp are selected.

The goal is to find a feasible solution that maximizes the sum of the weights of the selected
intervals. We letn denote the total number of intervals in the input. We assume that a sorted
list of all interval endpoints is available; such a list can be constructed in timeO(n logn).

Notice that the requirement that any point on the real line is overlapped by at mostm

selected intervals is equivalent to the requirement that the selected intervals can be parti-
tioned intom subsets such that the intervals in each subset are pairwise disjoint. In some
applications (see Section 2) this partition (in addition to specifying the selected intervals)
is required as output. However, the subproblem of computing such a partition given the
selected intervals can be solved efficiently by coloring the corresponding interval graph. In
fact,n intervals can be colored in timeO(n) if the sorted list of interval endpoints is given.
Therefore, we concentrate here on the problem of selecting the intervals and assume that,
if required, an appropriate coloring procedure is employed to compute the partitioning.

WJISP1 can be formulated in graph-theoretic terms. By constructing a graph such that
there is a vertex for each interval, and two vertices are connected via an edge if the
corresponding intervals overlap or if they belong to the same job, WJISP1 can be viewed as
a maximum-weight independent set problem in a graph. This graph is the edge union of an
interval graph and a graph that consists of a disjoint union of cliques (cliques correspond
to jobs).

There are several restricted versions of WJISP that are interesting (see the applications
described in Section 2). We distinguish a number of variants of WJISP. Regarding the
weights we consider:

• theunweighted case(called JISP), which refers to the case where each interval has the
same weightw,

• WJISP with equal weights per job, which refers to instances of WJISP in which
intervals that belong to the same job have the same weight, but intervals that belong to
different jobs can have different weights, and finally

• WJISP with arbitrary weights.

Another interesting restriction pertains to the length of the intervals. One can distinguish in
a similar fashion:WJISP with equal lengths, which refers to the case where each interval
has the same length,WJISP with equal lengths per job, which refers to instances of WJISP
in which intervals that belong to the same job have the same length, and finallyWJISP with
arbitrary lengths.

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 29

We consider a class of simple deterministic algorithms for WJISP and investigate so-
calledworst-case ratios(or approximation ratios) that can be obtained by algorithms within
this class. Using standard terminology (see, e.g., Hochbaum [17], Ausiello et al. [1]), we
say that a deterministic algorithm for WJISP achieves (approximation) ratioρ if it always
outputs a feasible solution whose weight is at least as large as 1/ρ times the weight of
an optimal solution. A randomized algorithm achieves approximation ratioρ if, on every
instance of WJISP, the expected weight of the solution computed by the algorithm is at
least 1/ρ times the weight of an optimal solution.

A natural class of algorithms to consider for WJISP instances is the class ofsingle-pass
algorithms. Very generally stated, single-pass algorithms are algorithms in which a feasi-
ble solution is obtained by iteratively making a decision concerning an item or an object.
The first-fit decreasing algorithm for the bin packing problem and the nearest neighbor al-
gorithm for the traveling salesman problem are prime examples of single-pass algorithms.
This kind of algorithms can be useful since they need little computing time and/or little
information (i.e., they can be applied in an on-line setting). In our context, we call an al-
gorithm a single-pass algorithm when given some sequence of the intervals, each interval
is (iteratively) either rejected or accepted (selected) without considering the intervals that
will be processed later. Rejections are permanent, but an accepted interval can be rejected
(preempted) at a later time. At any time, the set of currently selected intervals must be a fea-
sible solution. After the last interval is presented, the set of currently selected intervals is
taken as the solution computed by the algorithm.

When considering a specific single-pass algorithm for WJISP, it is crucial to specify
the mechanism that determines the sequence in which the intervals will be processed.
Different choices are possible, for instance processing the intervals in order of non-
increasing weight, or processing the intervals in order of non-decreasing left endpoint or
non-decreasing right endpoint. However, it is easy to see that single-pass algorithms that
process the intervals in order of non-increasing weight or in order of non-decreasing left
endpoint do not have a finite worst-case ratio (even in the case when each job consists of
one interval only, see Woeginger [28], and even if randomization is allowed, see Canetti and
Irani [6]). Therefore, we investigate in this paper the special class of single-pass algorithms,
which we callmyopic algorithms, that arise when the intervals are processed in order
of non-decreasing right endpoint. Thus, myopic algorithms are deterministic single-pass
algorithms that process the given intervals in order of non-decreasing right endpoint. These
algorithms seem to be the simplest algorithms that achieve constant approximation ratios
for WJISP. Let us emphasize here that we are primarily interested in the approximation
ratios that can be achieved using single-pass algorithms, not in the (better) approximation
ratios that can be achieved using arbitrary polynomial-time algorithms.

Analyzing myopic algorithms for WJISP can be seen as studying an on-line problem.
We study the quality of the solutions that can be obtained by myopic algorithms. Using
competitive analysis we show that for most settings that we investigate the algorithms
proposed here are best possible, at least in the casem= 1.

In applications where the intervals correspond to time periods, an on-line scenario
in which the algorithm receives the intervals in order of non-decreasing right endpoint
may appear unnatural. Notice however that for instances where all intervals have the
same length, the order of the left endpoints and the order of the right endpoints coincide.

30 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Therefore, the concept of myopic algorithms applies to the “real” on-line problem for such
instances.

1.1. Known results

If each job consists of one interval only, WJISPm reduces to finding a maximum weight
m-colorable subgraph in an interval graph. This problem was shown to be solvable in
polynomial time by Yannakakis and Gavril [29]. If, in addition,m = 1, the problem reduces
to finding a maximum weight independent set in an interval graph, for which a polynomial
time algorithm was proposed by Frank [12].

The unweighted version of WJISP1, called JISP1, is studied by Spieksma [24]. It is
shown that JISP1 is MAX SNP-hard even if every job contains only two intervals and all
intervals have the same length. Furthermore, it is shown that the value of the natural LP
relaxation of JISP1 is at most two times the value of an integral optimum, and a simple
greedy algorithm that achieves approximation ratio 2 is presented.

A problem that is closely related to WJISP is the Time-Constrained Scheduling Problem
(TCSP), see also Section 2. In that problem every job has a release time, a length,
a deadline, and a weight. Viewed as a special case of WJISP with equal weights per job,
every job in an instance of TCSP consists of all intervals of the required length between
the release time and the deadline of the job. On the one hand, the structure regarding the
overlap of intervals of the same job is very restricted in TCSP, but on the other hand, one
must overcome the difficulty of dealing with an infinite number of intervals of a job (in
particular, if release times, deadlines, and job lengths can be arbitrary real numbers). Bar-
Noy et al. [3] give the following results for TCSP: for the unweighted case of TCSPm,
they give an iterative greedy algorithm (that does not belong to the class of single-pass
algorithms) with approximation ratio

ρ(m)= (1+ 1/m)m

(1+ 1/m)m − 1
.

Note thatρ(1)= 2 andρ(m) tends toe/(e−1)≈ 1.582 asm→ ∞. For TCSPm with equal
weights per job a combinatorial algorithm called ADMISSION is described. ADMISSION
consists of applying a greedy procedurem times. The time complexity of ADMISSION is
O(mn2 logn), wheren is the number of jobs. An approximation ratio of 3+ 2

√
2 ≈ 5.828

is proved for ADMISSION. Finally, for TCSPm with equal weights per job, an LP-based
algorithm is given that achieves a ratio ofρ(m) (implying a 2-approximation algorithm for
TCSP1).

Some of the results described above can be generalized to WJISPm with arbitrary
weights. In particular, it is not difficult to verify that the LP-based algorithm and its analysis
go through for our case, yielding a 2-approximation algorithm for WJISP1 and aρ(m)-
approximation algorithm for WJISPm. ADMISSION can be adapted to WJISP with equal
weights per job as well, yielding a ratio of 3+ 2

√
2 ≈ 5.828 for WJISP with equal weights

per job. Notice that ADMISSION is not a myopic algorithm since it performsm passes over
the given intervals. Improving the results of [3], Berman and DasGupta [4] and Bar-Noy
et al. [2] proposed combinatorial two-phase algorithms that also achieve ratio 2 for WJISP1
and, by repeated application, ratioρ(m) for WJISPm. These algorithms do not belong to

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 31

the class of single-pass algorithms. For the case of JISP, Chuzhoy et al. [8] improved the
known ratios further and showed that for everyε > 0, there is a randomized approximation
algorithm with ratioe/(e− 1)+ ε.

The on-line variant of TCSP is studied by Goldman et al. [15] and Goldwasser [16] in
the single-machine case. The weight of a job is equal to its length and the algorithms
receive the jobs in order of non-decreasing release times. Preemption is not allowed.
In [15], a deterministic algorithm with ratio 2 if all jobs have the same length and
a randomized algorithm with expected ratioO(logc) if the ratio of the longest to the
shortest job length isc are presented. Note that “the special case of all jobs having the
same length under the arbitrary delay model is of great interest” (quoted from [15]), e.g.,
for scheduling packets in an ATM switch (where all packets have the same length). In [16],
better bounds are derived for the case that the slack of a job is at least proportional to its
length.

1.2. Our results

Before describing our results let us first make the observation that WJISPm can be
reduced to WJISP1. This can be done by creatingm disjoint copies of the original instance
(every job of the new instance consists of allm copies of all its intervals in the original
instance); this amounts toprojecting them machines onto disjoint parts of the real line.
The implication of this observation is that WJISPm instances are special WJISP1 instances
or, in other words, anyρ-approximation algorithm for WJISP1 provides aρ-approximation
algorithm for WJISPm. This partly explains the phenomenon described in [3] that it seems
that more machines allow better performance guarantees. Notice, however, that myopic
algorithms cannot profit from this reduction: indeed a myopic algorithm processing the
resulting instance of WJISP1 would correspond to an algorithm that makesm passes over
the intervals in the original instance.

The paper is organized as follows. In Section 2 we describe some applications of WJISP.
In Section 3 we propose a myopic algorithm called GREEDYα that can be implemented to
run inO(n2) time (or inO(n logm) time if all intervals have the same length). Section 4
shows that with appropriate choices for the parameterα, GREEDYα achieves the ratios
described in Table 1 for WJISP with arbitrary lengths (the ratios for WJISP with equal
lengths per job are the same) and in Table 2 for WJISP with equal lengths; each of these
ratios is tight. Observe that GREEDYα has the same ratio for WJISP with arbitrary lengths
and equal weights per job as the (non-myopic) algorithm ADMISSION from [3], while
having a lower time-complexity. Further, we prove in Section 5 that no myopic algorithm
achieves better ratios than the ones described in Tables 1 and 2 under “Lower bound.”
Our results show that GREEDYα is optimal or close to optimal in the class of myopic
algorithms. In Section 5.4 we prove that even a “randomized myopic” algorithm cannot
achieve a ratio better thane

e−1 ≈ 1.582 for JISP. This shows that the use of randomization
could at best improve the ratio for JISP from 2 to approximately 1.582. Finally, in Section 6
we state our conclusions.

In order to keep this article at an adequate length, we give detailed proofs only for
some of the variants of WJISP in Sections 4 and 5. The proofs for the other results can

32 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Table 1
The results for WJISP with arbitrary lengths

Variant of WJISP Ratio of GREEDYα Lower bound

JISP 2,∀m � 1 2,∀m� 1

WJISP with
equal weights per job 3+ 2

√
2≈ 5.828,∀m � 1 3+ 2

√
2≈ 5.828,m = 1

arbitrary weights 8,∀m � 1 ≈ 7.103,m= 1

Table 2
The results for WJISP with equal lengths

Variant of WJISP Ratio of GREEDYα Lower bound

JISP 2,∀m � 1 2,∀m� 1

WJISP with
equal weights per job 5,m= 1,2 5,m = 1
arbitrary weights ≈ 6.638,m = 1,2 3+ 2

√
2≈ 5.828,m = 1

be obtained by adapting the proofs accordingly; the basic ideas are the same. Interested
readers can find detailed proofs of all our results in the technical report [10].

2. Applications of WJISP

Interval scheduling problems have numerous applications and have been studied
intensively (see, for instance, Fischetti et al. [11] and Kroon et al. [19]). In the following,
we outline three concrete applications of WJISP.

2.1. Combinatorial auctions

(See Rothkopf et al. [22].) Due to the ongoing sale of frequencies to providers of mobile
telecommunications, and due to the ever-increasing popularity of e-commerce, the design
of (combinatorial) auctions has become a popular research item. In a combinatorial auction
different assets are for sale and bidders are allowed to bid for sets of assets. Given all bids
from the bidders, a relevant problem is to decide what bids to accept in order to maximize
total revenue (clearly, in general not all bids can be accepted since an asset can be sold at
most once). In some cases the assets for sale posses a special structure, for instance, when
they can be linearly ordered. A popular example is the case where frequencies are auctioned
(indeed frequencies can be ordered by their magnitude), but other examples exist (see [22]).
Suppose further that we allow only bids for sets of consecutive assets and allow at most one
acceptance for each bidder (see [18,22]). Then the problem of maximizing total revenue
for this setting (the interval auction problem) becomes an instance of WJISP1: a bidder is
a job, their bids are the intervals andm= 1 since one can sell an asset at most once.

Let us now proceed to argue that thedesignof an interval auction can give rise
to instances where the on-line interpretation of WJISP becomes relevant. Suppose, as
described before, that the assets can be linearly ordered, say 1,2, . . . , T . Moreover, the

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 33

auction is designed in such a way that there areT rounds, and in each roundt , assett is
added to the set of assets currently for sale (starting with the empty set). Again, as described
before, bidders are only allowed to bid for sets of consecutive assets; moreover, in round
t a bidder can only make a bid that includes assett as the largest asset of the current bid.
Of course, after each round, the bidders should receive information concerning what bids
are currently active and what bids are currently rejected. Now, in principle it is possible
to solve the resulting interval auction problem after roundt to optimality. However, there
are two arguments against such an approach. First, when playing many rounds, it may not
be computationally feasible to compute the maximal revenue after each roundt due to the
intractability of the problem (see [24]). Second, a reasonable stipulation of such an auction
would be that a bid that is rejected at some round cannot become “alive” again in later
rounds (obviously this may happen when computing an optimal solution after each round).
Thus, when designing an interval auction such that there is a round corresponding to each
asset, we are faced with the on-line version of WJISP1.

2.2. Caching

(See Torng [26].) A cache is a small, fast memory that can temporarily store arbitrary
memory items in order to allow the CPU to access them faster than in main memory. For
the purpose of analyzing cache performance, we view the execution of a program as a
sequence of accesses to memory items. When a memory itemx is accessed and does not
yet reside in the cache, it can be (but does not have to be; we allow cache bypassing)
brought into the cache. Ifx is still in the cache when it is accessed a second time later
on, this is called acache hit. With every cache hit the cost for an expensive access to
main memory is avoided. We view the period between two accesses to the same itemx

as an interval on the real line. At the time of an access, at most one interval ends and
at most one new interval begins. Selecting an intervali means thatx is brought into (or
remains in) the cache at the access tox at the beginning ofi and stays in the cache until
the access tox at the end ofi, thus yielding a cache hit. If every memory item can go into
an arbitrary cache location (i.e., if we have a fully associative cache) and if the cache has
m locations, the problem of maximizing the cache hits can be viewed as an instance of
WJISPm where each job consists of a single interval. In this application, it seems natural to
assume that the intervals are unweighted, but there may be other factors that make it more
desirable to achieve cache hits for certain accesses, thus giving instances of WJISPm with
equal weights per job. If two consecutive intervals between accesses tox are selected, an
additional constraint is thatx must reside in the same cache location during both intervals;
otherwise, we would have to assume thatx can move from one cache location to another
at no cost. However, this additional constraint can easily be satisfied in the procedure that
colors the interval graph corresponding to the selected intervals.

Due to the high hardware cost for fully associative caches,t-way set associative caches
are often used instead in practice. Here, a cache withk locations is partitioned intot
direct mapped caches, each of sizek/t . A memory itemx is mapped to a positionp(x),
1 � p(x) � k/t , and can be stored only in locationp(x) in each of thet direct mapped
caches. Conceptually, this can be viewed as partitioning the cache intok/t sub-caches, each
of size t , such that each sub-cache is fully associative and such that every memory item

34 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

can go in only one of thek/t sub-caches. The problem of maximizing cache hits in at-way
set associative cache withk locations can thus be solved by solving the subproblems for
each of thek/t sub-caches independently. In terms of WJISP, this amounts tok/t disjoint
instances of WJISPt that can be combined into a single instance by projecting them onto
disjoint parts of the real line.

Finally, consider the case that there can be more general restrictions on the cache
locations available to a memory item (e.g., as int-way skewed associative caches [23]). For
every memory itemx, there is a number of admissible locations in the cache where the item
can be stored. The problem of maximizing cache hits can then be modeled as an instance
of WJISP1 as follows: project the timelines of all cache locations onto disjoint parts of
the real line and add, for every period between consecutive accesses tox, an interval in
those parts of the real line that correspond to cache locations that are admissible forx (all
intervals for this period belong to one job). However, it should be noted that the constraint
that items cannot move within the cache is ignored by this approach.

2.3. Time-constrained scheduling

(See Bar-Noy et al. [3].) Consider the following scheduling problem: we are givenm

machines (identical or unrelated) andn tasks, and each task has a release time, a deadline,
a processing time (that can depend, in the case of unrelated machines, on the machine
on which the task is executed), and a weight. We want to select a subset of the given
tasks and schedule them on the machines non-preemptively such that every selected task is
scheduled no earlier than its release time and finishes no later than its deadline. The goal
is to maximize the sum of the weights of the scheduled tasks.

We can view this scheduling problem form identical machines as an instance of
WJISPm with equal weights per job (tasks correspond to jobs, and every possible execution
of a task corresponds to an interval) and the problem form unrelated machines as
an instance of WJISP1 (by projecting the timelines of allm machines onto different
parts of the real line). Notice that the intervals in instances of WJISP arising from this
application display a special structure. If all release times, deadlines, and processing times
are integers that are bounded by a polynomial in the size of the input (i.e., if we have
polynomially bounded integral input), the resulting instances of WJISPm and WJISP1 have
size polynomial in the original instance (only intervals with integral starting times must be
considered).

Further applications of WJISP can be found in printed circuit board manufacturing
(see Crama et al. [9]) and in molecular biology (see Veeramachaneni et al. [27]). Other
applications are mentioned in Chuzhoy et al. [8].

3. Algorithm GREEDYα

We propose a myopic algorithm called GREEDYα , shown in Fig. 1, as an approxima-
tion algorithm for WJISP. It has a parameterα that can take (meaningful) values in the
range[0,1]. GREEDYα considers the intervals in order of non-decreasing right endpoint.
It maintains a setS of currently selected intervals. When it processes an intervali, it com-

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 35

Algorithm GREEDYα

S = ∅; {set of currently accepted intervals}
for all intervals, in order of non-decreasing right endpointdo

i = current interval;
Ci = minimum-weight subset ofS such that(S \Ci)∪ {i} is feasible;
if w(Ci)� αw(i) then

S = (S \Ci)∪ {i};
fi;

od;
return S;

Fig. 1. Algorithm GREEDYα .

putes a setCi ⊆ S such thati could be selected after preempting the intervals inCi and such
thatCi has minimum weight among all such sets.Ci is called thecheapest conflict setfor i.
The algorithm selectsi only if w(Ci)� αw(i), i.e., if the total weight of selected intervals
increases by at least(1− α)w(i) if i is selected and the intervals fromCi are preempted.

Let us briefly compare GREEDYα to the algorithm ADMISSION of [3], which was
found independently of our work. The basic spirit of the algorithms is similar: For the case
of WJISP1 with equal weights per job, the two algorithms are essentially identical, and
the parametersα of GREEDYα andβ of ADMISSION are related byα = 1/β . For the
casem > 1, however, ADMISSION passes through the intervalsm times (once for each
machine) [3], while our algorithm GREEDYα is a single-pass algorithm for any value ofm.
Furthermore, GREEDYα can deal with the case of arbitrary weights, while ADMISSION
is specified only for the case of equal weights per job.

We are interested in an efficient implementation of GREEDYα . In Section 3.1, we show
how the cheapest conflict setCi can be determined efficiently, which gives rise to a total
running time ofO(n2) of GREEDYα . As a byproduct of this subsection we show how
knowing that an interval graph ism-colorable gives you anO(n) algorithm for obtaining
a maximum-weight(m− 1)-colorable subgraph as compared toO(mS(n)) in the general
case [7], whereS(n) denotes the running time for any algorithm for finding a shortest
path in a directed graph withO(n) arcs and positive arc weights. (With an efficient
implementation of Dijkstra’s algorithm, for example,S(n) can be taken asO(n logn).
There are algorithms that are asymptotically faster (see, e.g., [13,21] and further references
given in [25]); however, these algorithms seem of theoretical interest only and do not
achieve a linear running-time. The only linear-time shortest paths algorithm known so
far is due to Thorup [25]; it works for undirected graphs.) In Section 4, we analyze the
approximation ratio achieved by GREEDYα .

3.1. Determining the cheapest conflict set

Let i be the interval that is currently processed by GREEDYα . In the special case of
m = 1, the setCi is simply the set of all intervals inS that intersecti and, possibly, an
interval i ′ ∈ S that belongs to the same job asi. Therefore,Ci can be determined easily
in this case. In the following, we show how to deal with the more complicated case of
arbitrarym.

36 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Fig. 2. Current intervali and intersecting intervals inS.

If S contains an intervali ′ that belongs to the same job asi, it is clear thatCi must
containi ′. In that case, letC′

i = Ci \ {i ′}, otherwise letC′
i = Ci . LetQi ⊆ S be the subset

of currently selected intervals that intersect the intervali and that do not belong to the same
job asi. See Fig. 2. Obviously,C′

i is a minimum-weight subset ofQi such thatQi \ C′
i

is (m − 1)-colorable. Hence, the setQi \ C′
i is a maximum-weight(m − 1)-colorable

subset ofQi . Thus, the problem of determining the cheapest conflict set is equivalent to
the problem of finding a maximum weight(m− 1)-colorable subgraph in anm-colorable
interval graph. Therefore,Qi \ C′

i andC′
i could be determined in polynomial time using

an algorithm that solves the maximum-weightk-colorable subgraph problem in interval
graphs for arbitrary values ofk. However, since our problem is more specific (we know that
Qi ism-colorable), we can compute the setC′

i in timeO(n) using a dynamic programming
approach, as witnessed by the following theorem.

Theorem 1. The cheapest conflict set can be computed inO(n) time.

Proof. For every intervalj ∈ Qi , consider a pointp just before the right endpoint ofj .
If p is contained inm intervals ofQi , at least one of these intervals must be inC′

i . Let
p1, . . . , pr be all such points (i.e., points just before the right endpoint of an interval in
Qi) that are contained inm intervals ofQi . It is clear thatC′

i is a minimum-weight subset
of Qi such that every pointph, 1� h � r, is covered by that subset. (We say that a set of
intervalscoversa point if the point is contained in at least one interval of that set.)

Let j1, j2, . . . , js denote the intervals inQi in order of non-decreasing right endpoint.
For every intervalj� ∈ Qi , let first(j�) and last(j�) be the smallest (respectively largest)
index of a pointph that is contained inj�. (If j� does not contain any pointph, first(j�) and
last(j�) are undefined.) In Fig. 2, we havefirst(j13)= 4 andlast(j13)= 7, for example. The
pointsp1, . . . , pr , the intervalsj1, . . . , js , and the tablesfirst andlastcan all be constructed
in time O(n). We use the dynamic programming procedure shown in Fig. 3 to compute
valuesC(h), 1� h� r.

Claim 1. After � iterations of the outer for-loop, it holds for1 � h � r that C(h) is the
weight of a minimum-weight subset of{j1, . . . , j�} that coversp1, . . . , ph (or ∞ if no such
subset exists).

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 37

C(0) = 0;
for h = 1 to r do C(h)= ∞; od;
for � = 1 to s do

if first(j�) is not undefinedthen
for h = first(j�) to last(j�) do

C(h)= min{C(h),C(first(j�)− 1)+w(j�)};
od;

fi;
od;

Fig. 3. Dynamic programming algorithm.

Obviously, Claim 1 implies thatC(r) = w(C′
i) at the end of the execution of the

procedure, and additional bookkeeping will allow to constructC′
i at no extra cost. Thus, the

correctness of the algorithm follows from Claim 1, which can be proved easily by induction
on�. The running-time of the procedure sketched in Fig. 3 isO(s+rm)=O(nm), because
the body of the inner for-loop is executed exactlyrm times. (For each of ther pointsph,
the body of the inner for-loop is executed only for them intervals containingph.)

Let us now describe an implementation of the algorithm in Fig. 3 that runs inO(n)

time. To begin with, notice that the costsC(h), 0 � h � r, are non-decreasing withh at
any stage of the algorithm. We will maintain disjoint consecutive subsets of{0,1, . . . , r}
with the property that for each subsetX, the valueC(h) is the same for allh ∈ X. Elements
with C(h) = ∞ are kept in singleton subsets. For maintaining the subsets, we use the data
structure due to Gabow and Tarjan [14]. We may assume that this data structure provides
the following operations:

INITIALIZE (r): initialize the data structure withr + 1 singleton sets{0}, {1}, . . . , {r}.
FIND(x): return the first and last element of the subset that currently containsx, i.e., if x

is currently in the set{a, a + 1, . . . , b}, then return the pair(a, b).
UNION(x, y): merge the sets containingx andy. Precondition:x andy are in different

sets,x is the largest element in the set containingx, andy is the smallest element
in the set containingy.

The precondition of the UNION operation ensures that the structure of all potential UNION

operations is a chain and thus the data structure of [14] is applicable (that data structure
requires that the potential UNION operations form a tree). The total running-time for the
initialization of the data structure and a sequence consisting ofO(s) operations FIND(x)

and up tor operations UNION(x, y) is thenO(r + s).
For a subsetX maintained by the data structure, we store the common valueC(h) for

all h ∈ X with the largest element inX (the second component of the pair returned by
FIND(h) for anyh ∈ X). For an elementh that is not the largest element of its subset, the
value of the variableC(h) can be arbitrary.

The pseudo-code of the resulting implementation is shown in Fig. 4. For each interval
j�, the algorithm first determines the valueC(first(j�) − 1) by executing(a, b) =
FIND(first(j�) − 1) and then accessingC(b). This allows to compute the valuew =
C(b)+w(j�), which is the cost of the new candidate set that covers allpi with i � last(j�)
and hasj� as its rightmost interval. If the elements in the set containinglast(j�) have a cost

38 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

INITIALIZE (r);
C(0) = 0;
for h = 1 to r do C(h)= ∞; od;
for � = 1 to s do

if first(j�) is not undefinedthen
(a, b) = FIND(first(j�)− 1);
w =C(b)+w(j�);
(c, d) = FIND(last(j�)); /* will give d = last(j�) */
if C(d) >w then

C(d)= w;
(e,f)= FIND(c − 1); /* will give f = c− 1 */
while C(f) > w do

UNION(f, c);
c = e;
(e,f)= FIND(c − 1); /* will give f = c − 1 */

od;
fi;

fi;
od;

Fig. 4. Linear-time implementation of the dynamic programming algorithm.

larger thanw, their cost is updated tow by settingC(d) =w. (Note that the set containing
last(j�) must havelast(j�) as its largest element, because all elementsh > last(j�) still
have costC(h) = ∞.) In this case, the algorithm then checks repeatedly whether the
elements in the set that is just before the set containinglast(j�) have a cost larger thanw
and, if so, merges that set with the set containinglast(j�). The effect of each such UNION

operation is that the elementsh in the set with smaller elements implicitly receive the same
valueC(h) =w as the elements in the set containinglast(j�).

It is not difficult to see that this is a correct implementation of the dynamic programming
algorithm of Fig. 3. It remains to analyze the running-time. For each intervalj�, the number
of FIND operations executed in the body of the loop is 3+ k, wherek is the number of
iterations of the inner while loop. Since each iteration of the inner while loop executes
a UNION operation and there can be at mostr such operations, the total number of FIND

operations can be bounded by 3s + r. Hence, the total running-time of the algorithm is
O(s + r) = O(n). Moreover, the cheapest conflict set itself can again be computed easily
in the same running-time by storing with each valueC(h) also the index of the rightmost
interval of the solution coveringp1, . . . , ph that has costC(h). ✷

Theorem 1 leads to the following corollaries.

Corollary 2. A maximum weight(m − 1)-colorable subgraph in anm-colorable interval
graph, given by the sorted list of interval endpoints, can be obtained inO(n) time.

Corollary 3. GREEDYα runs inO(n2) time.

For WJISP with equal lengths, computing the cheapest conflict set is much easier, since
at mostm intervals inS can overlap the current intervali. The cheapest conflict setCi

contains the interval inS that belongs to the same job asi (if such an interval exists)

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 39

as well as the cheapest interval overlappingi (if there arem intervals inS that overlap
i and belong to a different job). We maintain a balanced search treeT such that, if the
current interval has left endpointp, T stores all intervals inS overlappingp, sorted by
their weights. Determining the cheapest conflict set and updatingT takes timeO(logm),
giving a total running time ofO(n logm) for GREEDYα in the case of WJISP with equal
lengths.

4. Analysis of approximation ratio

In this section, we give tight bounds on the approximation ratio of GREEDYα for
the different variants of WJISP. The section is divided into two parts: in Section 4.1 we
investigate the case where intervals have arbitrary lengths, and in Section 4.2 we deal with
the case where all intervals have the same length. Each subsection deals with the three
possibilities concerning the weights of the intervals: equal weights, equal weights per job,
and arbitrary weights.

Let us now introduce some notation. We useA to denote the set of intervals that is
returned by GREEDYα , we useT for the set of intervals that were selected at least at
some time by GREEDYα , and we useOPT for some set of intervals that constitutes an
optimal solution. Their values are referred to asw(A),w(T), andw(OPT), respectively.
Further, as mentioned before, the setS is the set of selected intervals at some point during
the execution of the algorithm. The basic idea of the analysis is to charge the weight of the
intervals in an optimal solution to the intervals selected by GREEDYα (the setT) and next
to derive bounds on the amount of charge received by intervals inA. An inequality that is
fundamental in the analysis is

w(A) � (1− α)w(T). (1)

This inequality holds because GREEDYα selects a new intervali only if the total weight of
currently selected intervals increases by at least(1−α)w(i). Thus, first we boundw(OPT)
in terms ofw(T) and, using (1), in terms ofw(A).

4.1. WJISP with arbitrary lengths

Here, we analyze the approximation ratio of GREEDYα in the case that the given
intervals have arbitrary lengths. For the case of arbitrary weights, we have the following
theorem.

Theorem 2 (arbitrary lengths).For WJISPm with arbitrary weights, GREEDYα achieves
approximation ratio 2

α(1−α)
.

Proof. Consider an intervali ∈ OPT. If i ∈ T , we chargew(i) to i. If i ∈ OPT \ T ,
consider the instant when GREEDYα processed intervali. Let Ci denote the minimum-
weight set of intervals whose removal fromS would have allowed to accepti. If S contains
an interval from the same job asi, denote that interval byi ′; otherwise, leti ′ be an
imaginary interval with zero weight (just to simplify the formulas).

40 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Let Qi denote the set of all intervals inS that intersecti and that do not belong to the
same job asi. AsS is feasible,Qi can be partitioned intom setsQi1, . . . ,Qim of intervals
such that the intervals in each setQi� are pairwise disjoint. Note that

w(i ′)+w(Qi�) > αw(i) for 1 � � �m, (2)

because of the definition ofCi and because GREEDYα did not accepti.
We charge min{w(i), (1/α)w(i ′)} to i ′. If the remaining weightw(i) − min{w(i),

(1/α)w(i ′)} is positive, we divide it intom equal parts and distribute each part among
the intervals in one setQi� such that an intervalj ∈ Qi� is charged

w(i)− min{w(i), 1
α
w(i ′)}

m
· w(j)

w(Qi�)
.

(2) implies that every intervalj ∈ Qi is charged byi for at most(1/αm)w(j) in this way.
Altogether, every intervalj ∈ T can receive charge at most(2/α)w(j) (charge at most
(1/α)w(j) from an interval belonging to the same job and charge at most(1/α)w(j) from
intervals inOPT that overlap the right endpoint ofj), implying that

w(OPT)� 2

α
w(T)� 2

α(1− α)
w(A). ✷

It is not difficult to see that the ratio in Theorem 2 is tight (even in the case of equal
lengths per job). Hence, we get the following corollary.

Corollary 4 (arbitrary lengths).For WJISPm with arbitrary weights, GREEDYα performs
best forα = 1/2, in which case it achieves approximation ratio8.

In the cases of unit weights and of equal weights per job, the proof technique of
Theorem 2 can be adapted to obtain the following results (see [10] for details).

Theorem 3 (arbitrary lengths).For JISPm, GREEDYα achieves approximation ratio2 for
anyα in the range[0,1).

Theorem 4 (arbitrary lengths).For WJISPm with equal weights per job, GREEDYα
achieves approximation ratio(1+ α)/(α(1− α)).

Again, it is not difficult to construct examples showing that the ratios in Theorems 3
and 4 are tight, even in the case of equal lengths per job (see [10] for details).

Corollary 5 (arbitrary lengths).For WJISPm with equal weights per job, GREEDYα
performs best forα = √

2− 1 ≈ 0.414, in which case it achieves approximation ratio3+
2
√

2≈ 5.828.

Note that this result is consistent with the result of Bar-Noy et al. [3], who proved
independently that ADMISSION performs best for TCSP with parameterβ = 1+ √

2 and
achieves ratio 3+ 2

√
2 in this case (their parameterβ corresponds to 1/α in our setting).

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 41

4.2. WJISP with equal lengths

Now we consider WJISP in the case where all intervals of all jobs have the same length.
In applications where the intervals correspond to time intervals, myopic algorithms are
“real” on-line algorithms in this case, as the order of left endpoints and the order of right
endpoints coincide.

For JISP with equal lengths, the approximation ratio of GREEDYα is 2, the same as
in the case of arbitrary lengths (Theorem 3), and this is again tight. Therefore, we need
to consider here only WJISP with arbitrary weights (Section 4.2.1) and WJISP with equal
weights per job (Section 4.2.2). It turns out that for these cases GREEDYα achieves better
ratios for equal lengths than for arbitrary lengths. The analysis, however, gets a bit more
complicated, and we do not have tight results for all values ofm.

4.2.1. Arbitrary weights
We consider WJISP with equal lengths and arbitrary weights. First, we consider the case

m= 1.

Theorem 5 (equal lengths).For WJISP1 with arbitrary weights, GREEDYα achieves
approximation ratio(2+ α)/(α(1− α2)).

Proof. We distinguishjob chargeandoverlap charge. Consider an intervali ∈ OPT and
the instant when GREEDYα processed that interval. Ifi ∈ T , chargew(i) to i and call
this chargeoverlap charge. Now assume thati /∈ T . Let Qi be the set of intervals inS
that are in conflict withi when GREEDYα processesi. Note thatQi contains at most
one interval intersectingi (because all intervals have the same length) and at most one
additional interval belonging to the same job asi. Therefore, we have|Qi | � 2. Each
intervalj ∈ Qi is charged

w(j)

w(Qi)
·w(i).

As GREEDYα did not selecti, we havew(Qi) > αw(i), so each intervalj ∈ Qi receives
charge at mostw(j)/α from i. If j intersectsi, we call the charge thatj receives fromi
overlap charge, otherwisejob charge.

In order to facilitate a tight analysis, we redistribute some of the job charge. Consider
an intervalj ∈ T that receives job charge from an intervali ∈ OPT belonging to the same
job. If j ∈A, we do nothing. Ifj ∈ T \A, this means thatj was preempted by GREEDYα
at some later time in favor of an intervalk belonging to the same job asj . Observe thatk
cannot have received any job charge, as the intervali ∈ OPT that belongs to the same job
asj andk was processed by GREEDYα beforek. Now we redistribute the total charge that
j andk have received, which is bounded from above by2

α
w(j) + 1

α
w(k), proportionally

among these two intervals. Sincew(k) � w(j)/α, we can bound the resulting chargecj
for intervalj as follows:

cj � w(j)

w(j)+w(k)

(
2

α
w(j)+ 1

α
w(k)

)
=w(j)

(
1

α
+

1
α
w(j)

w(j)+w(k)

)

42 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

� w(j)

(
1

α
+ 1

α
(
1+ 1

α

)
)

=w(j)

(
1

α
+ 1

α + 1

)
.

In the same way, we obtain that the resulting chargeck for intervalk is bounded by

ck � w(k)

(
1

α
+ 1

α + 1

)
.

Putting everything together, we get that every intervalj ∈ A receives charge at most
2
α
w(j), while every intervalk ∈ T \A receives charge at most(

1

α
+ 1

α + 1

)
w(k).

We obtain:

w(OPT) � w(A) · 2

α
+w(T \A)

(
1

α
+ 1

α + 1

)

= w(T)

(
1

α
+ 1

α + 1

)
+w(A)

(
1

α
− 1

α + 1

)

� w(A)
1

1− α

(
1

α
+ 1

α + 1

)
+w(A)

(
1

α
− 1

α + 1

)

= w(A)
2+ α

α(1− α2)
. ✷

Furthermore, for everym � 1, one can construct examples showing that the approxi-
mation ratio of GREEDYα for WJISPm with arbitrary weights is not better than(2 + α)/

(α(1− α2)) (see [10]). Therefore, Theorem 5 is tight for WJISP1.

Corollary 6 (equal lengths).For WJISP1 with arbitrary weights, GREEDYα performs best
for α = 2 cos(2π/9)− 1 ≈ 0.5321, in which case it achieves approximation ratio

1+ 2 cos
(2

9π
)

7+ 6 cos
(4

9π
)− 10 cos

(2
9π
) ≈ 6.638.

By a very detailed and extensive analysis, we can extend Theorem 5 to the casem= 2,
giving the following theorem (the long proof can be found in [10]).

Theorem 6 (equal lengths).For WJISP2 with arbitrary weights, GREEDYα achieves ap-
proximation ratio(2+ α)/(α(1− α2)) and thus performs best forα = 2 cos(2π/9)− 1 ≈
0.5321, in which case it achieves approximation ratio

1+ 2 cos
(2

9π
)

7+ 6 cos
(4

9π
)− 10 cos

(2
9π
) ≈ 6.638.

Now we consider the case of arbitrarym> 1.

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 43

Theorem 7 (equal lengths).For WJISPm,m� 2, with arbitrary weights, the approximation
ratio of GREEDYα is at most(2m− α)/(mα(1− α)).

Proof. Charge the weight of intervals inOPT to intervals in T as in the proof of
Theorem 2. We know that an intervalj ∈ T receives charge at most2

α
w(j). Assume that

an intervalj ∈ T \A receives a charge of more than(
m− 1

m
+ 1

)
1

α
w(j).

This implies thatj receives charge fromm intervals overlapping the right endpoint ofj
(each of these charges at most1

αm
w(j)) and from an intervali ∈ OPT that belongs to the

same job asj , that lies strictly to the right ofj , and that is disjoint fromj . As j ∈ T \ A
andj was inS when GREEDYα processed intervali, this means that GREEDYα selected
an intervalk that was processed afteri and that belongs to the same job asj . Note that we
must havew(k) � w(j)/α. Distributing the total charge received byj andk proportionally
among these two intervals, we can bound the resulting chargecj andck for intervalj and
intervalk, respectively, as in the proof of Theorem 5:

cj � w(j)

(
1

α
+ 1

α + 1

)
, ck � w(k)

(
1

α
+ 1

α + 1

)
.

So every intervalj ∈ T \ A that is not involved in the redistribution of charge receives
charge at most(

m− 1

m
+ 1

)
1

α
w(j),

while an intervalj ∈ T \A that is involved in redistribution receives charge at most

w(j)

(
1

α
+ 1

α + 1

)
.

Form� 2 the former bound is larger, so that we can boundw(OPT) as follows:

w(OPT) � w(A) · 2

α
+w(T \A)2m− 1

mα
=w(A) · 1

mα
+w(T)

2m− 1

mα

� w(A) · 1

mα
+w(A)

2m− 1

mα(1− α)
=w(A) · 2m− α

mα(1− α)
. ✷

We do not now whether our analysis of Theorem 7 is tight. Nevertheless, we can
determine the value ofα that optimizes the obtained bound and get the following corollary.

Corollary 7 (equal lengths).For WJISPm, m � 3, with arbitrary weights, our analysis of
GREEDYα gives the best ratio forα = 2m− √

4m2 − 2m, in which case the bound on the
approximation ratio of GREEDYα is

4m− 1+ 2
√

4m2 − 2m

m
.

44 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Some bounds on the ratio of GREEDYα resulting from Corollary 6, Theorem 6, and
Corollary 7 are as follows:

m 1 2 3 4 5 6 7 8 9 10

ratio 6.638 6.638 7.318 7.491 7.594 7.663 7.712 7.748 7.776 7.799

Note that for everym� 1 these bounds are better than the ratio 8 that GREEDYα achieves
for WJISPm with arbitrary weights and arbitrary lengths. Furthermore, our bounds for the
equal-lengths case converge to 8 asm goes to infinity.

4.2.2. Equal weights per job
The analysis for the case of WJISPm with equal lengths and equal weights per job is

similar to the previous section. The key observation that leads to improved results is that
an intervalk ∈ T can receive job charge only ifk ∈ A and that the job charge received by
k is either 0 orw(k). No redistribution of charge is necessary. Form = 1, this yields the
following theorem.

Theorem 8 (equal lengths).For WJISP1 with equal weights per job, GREEDYα achieves
approximation ratio(1+ α(1 − α))/(α(1− α)).

It is not difficult to construct examples showing that for everym� 1, the approximation
ratio of GREEDYα for WJISPm with equal weights per job and equal lengths is not better
than(1+ α(1− α))/(α(1− α)) (see [10] for details). This shows that Theorem 8 is tight.

Corollary 8 (equal lengths).For WJISP1 with equal weights per job, GREEDYα performs
best forα = 1/2, in which case it achieves approximation ratio5.

We will prove in Theorem 11 that no deterministic myopic algorithm for WJISP1
with equal weights per job and arbitrary lengths can have approximation ratio better than
approximately 5.828. This shows that the case of WJISP1 with equal lengths is provably
easier to approximate for myopic algorithms than the case of arbitrary lengths.

Now we consider the casem > 1. By adapting the proof of Theorem 7, the following
theorem is obtained. The main observation is that an intervalj ∈ T that receives a charge
of more than

w(j) · max

{
1

α
, 1+ m− 1

mα

}
must receive charge from an intervali ∈ OPT that belongs to the same job, is disjoint
from j , and lies strictly to the right ofj (which in turn implies thatj ∈ A). Redistribution
of charges is not necessary.

Theorem 9 (equal lengths).For WJISPm, m � 2, with equal weights per job, the
approximation ratio of GREEDYα is not worse than

1+ α(1− α)

α(1 − α)
for α � 1

m
and

mα +m− α

mα(1− α)
for α � 1

m
.

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 45

We do not know whether our analysis of Theorem 9 is tight. Nevertheless, we can
determine the value ofα that optimizes the obtained bound and get the following corollary.

Corollary 9 (equal lengths).For WJISPm with equal weights per job, the following bounds
for the ratio of GREEDYα are the best bounds obtainable from our analysis:

• m= 2: ratio 5, obtained forα = 1/2 (derived from Theorem9).
• 3 � m� 67: ratio

5m3 − 3m2 − 6m+ 2+ √
5m2 − 4m(3m2 +m− 2)

2m(m2 − 1)

for α = 3m− √
5m2 − 4m

2m+ 2

(derived from Theorem9).
• m� 68: ratio 3+ 2

√
2 for α = √

2− 1 (derived from Corollary5).

Some bounds on the ratio of GREEDYα resulting from Corollaries 8 and 9 are as
follows:

m 1 2 3 4 5 6 7 8 9 10

ratio 5 5 5.268 5.417 5.505 5.564 5.606 5.637 5.661 5.681

Note that our bounds for the equal-lengths case are better than the ratio 3+ 2
√

2 ≈ 5.828
that GREEDYα achieves for WJISPm with arbitrary lengths and equal weights per job for
1 � m� 67.

5. Competitive lower bounds

In this section, we are interested in lower bounds on the best approximation ratio
that can be achieved by any myopic algorithm for WJISP, and we use competitive
analysis [5] to answer this question. We phrase our arguments in terms of an adversary
who constructs worst-case instances for a myopic algorithm incrementally, depending on
previous decisions made by the algorithm. In our illustrations, intervals belonging to the
same job are always drawn in the same row. In Section 5.1 we deal with the unweighted
case, Section 5.2 treats the case of equal weights per job, Section 5.3 investigates the case of
arbitrary weights, and Section 5.4 gives a lower bound for randomized myopic algorithms
for JISP.

5.1. The unweighted version of WJISP (JISP)

In the case of equal weights, it is easy to show that no myopic algorithm for WJISPm

can achieve approximation ratio better than 2.

46 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Theorem 10. No myopic algorithm for JISPm can achieve an approximation ratio better
than2, even if all intervals have equal length.

Proof. Initially, the adversary presents a setQ of 2m intervals that belong to different jobs
and that have the same right endpointp. Let S be the set of at mostm intervals that are
selected by the algorithm at this time. LetS′ be a subset ofQ that contains all intervals in
S and that has cardinalitym. For every interval inS′, the adversary presents an interval that
belongs to the same job and that is to the right ofp. All these new intervals have the same
right endpoint. The optimal solution contains 2m intervals, while the algorithm accepts
at mostm intervals. Notice that the lengths of all intervals in this construction can be set
equal. ✷
5.2. WJISP1 with equal weights per job

Consider WJISP1 with equal weights per job. In the following, we prove tight bounds on
the best approximation ratio that can be achieved by any (deterministic) myopic algorithm
for the case of arbitrary lengths or equal lengths per job and for the case of equal lengths.
We view the construction of worst-case examples for a myopic algorithm as a game played
by the algorithm with an adversary. In a move, the adversary presents a new interval, and
in response the algorithm accepts this interval or rejects.

We begin with the case of equal lengths per job. For everyε > 0 that is sufficiently
small (e.g., take 1/8 � ε > 0), the adversary has a strategy that forces the algorithm to
create a solution of weight(3+ 2

√
2)/(1+ ε)2 times smaller than the optimum.

The strategy of the adversary has the following properties (some of them hold after the
first two moves).

• The right endpoints of intervals presented by the adversary are strictly increasing.
• The tentative solution of the algorithm consists of exactly one interval calledc (the

current one).
• A set of intervals,P , forms a part of the eventual solution of the adversary, all elements

of P have right endpoint smaller than the right endpoint ofc and none belongs to the
same job asc.

• Whenever the algorithm accepts a new interval, the ratiow(P)/w(c) increases at least
by a 1+ ε factor.

• If the algorithm rejects intervals sufficiently many times, the adversary wins by
exhibiting a solutionR such that(1+ ε)2w(R)/w(c) � 3+ 2

√
2.

The strategy of the adversary can be described as a set of prescriptions how to move in
different states.

State 0: initial . In the first move the adversary presents intervali0 with weight 1, and the
algorithm has to accepti0. In the second move, the adversary presents interval
i1 that belongs to a new job, intersectsi0 and has a larger right endpoint;
w(i1) = 3 + 2

√
2. If the algorithm does not accepti1, the adversary exhibits

R = {i1} and wins. Otherwise, we havec = i1 andP = {i0}.

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 47

Fig. 5. Illustration of intervalsai , ci , andai+1 played by the adversary.

The remaining states depend on the algorithm’s response in the previous move. Intervals
of the formai belong to new jobs, have weightw(ai)=w(c)(1+ ε)i , and everyai has the
same left endpoint such thatai intersectsc but none of the intervals inP . An interval of
the formci belongs to the same job asc (thus it has the same weight and length) and is to
the right ofai (so that it does not intersectai). See Fig. 5 for an illustration.

State 1: the algorithm accepted a new interval. The adversary presents an interval of
a new job,a−1. If the algorithm acceptsa−1, thenc becomesa−1, P remains
unchanged andw(P)/w(c) increases by the factor ofw(c)/w(a−1)= 1+ ε.

State 2: the algorithm rejectedai . The adversary presentsci . Even if the algorithm
acceptsci , its solution still consists of only one interval, of the same weight
as before. The adversary checksRi = P ∪ {ai, ci}. If (1 + ε)2w(Ri)/w(c) �
3 + 2

√
2, it wins. Otherwise, one can see thatw(P)/w(c) < 4. If the algorithm

acceptsci , the adversary insertsai into P and the ratiow(P)/w(c) increases by
a factor larger than 6/5.

State 3: the algorithm rejectedci . The adversary presentsai+1. If the algorithm accepts
ai+1, the adversary replacesP with Ri .

The adversary wins in State 2 under the condition thatw(Ri) = w(P) + w(c) +
w(c)(1+ ε)i is sufficiently large in comparison withw(c), or, more precisely,

(1+ ε)2
w(P) +w(c)(1+ ε)i +w(c)

w(c)
� 3+ 2

√
2.

We can note that asi grows, the left-hand side increases and eventually the adversary has
to win if the algorithm keeps rejecting intervalsai . Let y =w(P)/w(c) andz = (1+ ε)i .
If the adversary did not win, we have(1+ ε)2(y + z+ 1) < 3+ 2

√
2.

Now suppose that the algorithm acceptedai+1 in State 3. Then the ratiow(P)/w(c)

increases by

w(Ri)

w(c)(1+ ε)i+1
· w(c)

w(P)
= y + z+ 1

(1+ ε)zy
� 4(y + z+ 1)

(1+ ε)(y + z)2
= 4(x + 1)

(1+ ε)x2

wherex = y + z. Note that the last expression is a decreasing function ofx. Because the
adversary did not win when the algorithm was rejectingci , we had(1 + ε)2(x + 1) <
3 + 2

√
2 and thus our estimate for the increase ofw(P)/w(c) is the smallest forx + 1 =

(3+ 2
√

2)(1+ ε)−2:

4(x + 1)

(1+ ε)x2
� 4(3+ 2

√
2)(1+ ε)−2

(1+ ε)((3+ 2
√

2)(1+ ε)−2 − 1)2

48 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Fig. 6. Illustration of the intervals used by the adversary in the case of equal lengths.

= 4(3+ 2
√

2)(1+ ε)

(3+ 2
√

2− (1+ ε)2)2
= 4(3+ 2

√
2)(1+ ε)

(2+ 2
√

2− 2ε − ε2)2

>
4(3+ 2

√
2)(1+ ε)

(2+ 2
√

2)2
= 1+ ε.

As we can chooseε arbitrarily small, we obtain the following theorem.

Theorem 11. No myopic algorithm for WJISP1 with equal weights per job can achieve
approximation ratio better than3+ 2

√
2 ≈ 5.828. This lower bound applies in the case of

arbitrary lengths and in the case of equal lengths per job.

Now consider WJISP1 with equal weights per job and equal lengths. We can prove
that no myopic algorithm can achieve approximation ratio better than 5. The adversary’s
strategy and its analysis is analogous to the one used to obtain Theorem 11. The only
difference is that an interval of typeci is played only at the end of the game. This means
that, after the algorithm has rejectedai , the adversary playsci only if (w(P) + w(ai) +
w(ci))/w(c) is large enough to win the game; otherwise, it playsai+1. Fig. 6 gives an
illustration. This yields the following theorem (see [10] for a detailed proof).

Theorem 12. No myopic algorithm for WJISP1 with equal weights per job and equal
lengths can achieve approximation ratio better than5.

Corollary 8 showed that the myopic algorithm GREEDYα with α = 1/2 achieves
approximation ratio 5 for WJISP1 with equal weights per job and equal lengths. Thus,
Theorem 12 implies that GREEDYα is optimal within the class of myopic algorithms in
this case. Note that GREEDYα decides whether it accepts a new interval without taking
into account the amount of overlap between a currently accepted interval and the new
interval. Intuitively, one might think that considering the amount of overlap would give an
advantage to a myopic algorithm, but our tight lower bound shows that this is not true in
the worst case.

5.3. WJISP1 with arbitrary weights

To obtain lower bounds in the case of WJISP1 with arbitrary weights, we can employ
essentially the same adversary strategy as in the previous section. The only difference
is that the intervalci , which belongs to the same job asc, is now played with weight

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 49

w(ci)=w(c)(1+w(ai)/w(P))/(1+ ε). This ensures that, if the algorithm acceptsci , the
ratio increases fromw(P)/w(c) tow(P ∪ {ai})/w(ci)= (1+ ε)w(P)/w(c). The detailed
calculations (see [10]) lead to the following theorems.

Theorem 13. No myopic algorithm for WJISP1 with arbitrary weights can achieve
approximation ratio better than7.103. This lower bound applies in the case of arbitrary
lengths and in the case of equal lengths per job.

The value 7.103 is obtained by minimizing the function

f (x)= x2 + x

x − 1
x

− 1

in the range((1+ √
5)/2,∞). The minimum is attained at

x = x̂ = 2

3
+ 3

√
71

27
+
√

35

27
+ 16

9 3

√
71
27 +

√
35
27

≈ 3.365

with f (x̂)� 7.103.
In the case of equal lengths, intervalci is played only at the end of the game, i.e., if

(w(P)+w(ai)+w(ci))/w(c) is large enough for the adversary to win. This modification
leads to the following theorem.

Theorem 14. No myopic algorithm for WJISP1 with arbitrary weights and equal lengths
can achieve approximation ratio better than3+ 2

√
2 ≈ 5.828.

5.4. A randomized lower bound

In Section 5.1 we have shown that no (deterministic) myopic algorithm for JISP can
have approximation ratio better than 2. Here we derive a bound on the best approximation
ratio that can possibly be achieved by arandomized myopicalgorithm against an oblivious
adversary [5]. The randomized lower bound that we obtain is weaker than the deterministic
bound, and it remains an open problem whether randomized myopic algorithms can in fact
beat deterministic myopic algorithms for JISP. The following theorem shows that the use
of randomization could at best improve the approximation ratio from 2 to approximately
1.582.

Theorem 15. No randomized myopic algorithm for JISP can achieve an approximation
ratio better than e

e−1 ≈ 1.582.

Proof. We specify a probability distribution on instances withn jobs and show that the
expected number of intervals accepted by a deterministic myopic algorithm is at most
e−1
e
n + 1, while an optimal solution consists ofn intervals. By Yao’s principle (see,

e.g., [20, Sections 2.2.2 and 13.3]), this implies the lower bound for randomized myopic
algorithms against an oblivious adversary.

50 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Fig. 7. Example of JISP instance used in randomized lower bound.

We consider a very restricted subset of instances of JISP, defined as follows. If such an
instance consists ofn jobs, then all its intervals have unit length and any two intervals either
have identical endpoints or are disjoint. Initially, one interval with left endpoint 0 and right
endpoint 1 is presented from each of then jobs. Further intervals have left endpoints 2, 4,
6, . . . , 2n − 2. We refer to the presentation of intervals with left endpoint 2i asround i.
Let Ji denote the set of jobs from which intervals are presented in roundi. The instances
we construct always satisfyJi+1 ⊆ Ji and|Ji+1| = |Ji | − 1. We say that the unique job in
Ji \ Ji+1 diesafter roundi. An example of such an instance is shown in Fig. 7. Note that
an optimal solution to such an instance always containsn intervals.

The probability distribution is defined by choosing the job that dies after roundi

uniformly at random among then− i jobs from which an interval was presented in roundi.
Consider any deterministic myopic algorithmA. If the set of intervals that are currently

selected byA does not contain an interval from jobj , we say that jobj is availableto A.
We can assume without loss of generality thatA always selects an interval in roundi if at
least one interval from an available job is presented in that round.

Let Ek,� denote the expected number of intervals added to the solution by algorithmA

until the end of the game provided that the current round consists ofk intervals and� of
thesek intervals belong to available jobs. Note thatEn,n is just the expected number of
intervals in the solution computed byA.

The following equations hold:

Ek,0 = 0, (3)

Ek,1 = 1, (4)

Ek,� = 1+ �− 1

k
Ek−1,�−2 + k − �+ 1

k
Ek−1,�−1 for 1< � � k. (5)

We need to explain why (5) holds. If� > 0, the algorithm always selects an interval in
the current round. After that, among thek intervals of the current round there are� − 1
remaining intervals belonging to available jobs. With probability(�− 1)/k, one of these
�− 1 jobs dies, and with probability(k − �+ 1)/k, one of the other jobs dies.

One can prove by induction that (3)–(5) imply

Ek,� � k
(
1− e−�/k

)+ �

k
(6)

for all 0 � � � k (detailed calculations can be found in [10]). Fork = � = n, (6)
becomesEn,n � e−1

e
n + 1. This shows that the expected number of intervals in the

solution computed byA cannot be greater thanγ n for any γ > e−1
e

, thus establishing
the theorem. ✷

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 51

By considering only instances of JISP like the ones constructed in the proof of
Theorem 15 we obtain a restricted version of JISP. An application of this restricted version
could be as follows. A shop sellsn different items. After each week, one of the items
becomes unavailable, i.e., afteri weeks onlyn − i of the original items can be bought.
Assume that you can afford to buy at most one item per week and that you would like to
buy as many different items as possible. This problem is just the restricted version of JISP.

Note that no deterministic myopic algorithm can buy more thann/2 items in the worst
case: every week, the adversary decides that one of the items that was not yet bought
by the algorithm becomes unavailable. Aftern/2 weeks, no items are left to buy for the
algorithm. So the deterministic lower bound of 2 from Theorem 10 applies even to this
restricted version of JISP.

6. Conclusions

The weighted job interval selection problem has applications in diverse areas. We have
studied several variants of this problem: we distinguished the case of arbitrary lengths and
the case of equal lengths, and for each of these cases we investigated the setting with all
weights equal, equal weights per job, and arbitrary weights. The case of equal lengths
can be seen as a natural online scheduling problem. We showed that a simple algorithm
called GREEDYα , which belongs to the class of so-called myopic algorithms, outputs
a solution with a value that is within a constant factor of the value of an optimal solution.
Together with our lower bound results, this implies that for the case of arbitrary lengths no
myopic algorithm can do better than GREEDYα (with respect to approximation ratio) in
the unweighted case (for allm) and in the case of equal weights per job (form= 1). In case
of arbitrary weights a (small) gap remains. For the case of equal lengths, our results show
that GREEDYα is best possible among the myopic algorithms in case of equal weights per
job (form= 1).

An interesting question for future research is whether the use of randomization in
myopic algorithms for WJISP can lead to improved approximation ratios. For the case
of JISP1, we showed that randomization could at best improve the approximation ratio
from 2 to e/(e − 1) ≈ 1.582. For the weighted versions of WJISP, we do not have any
strong randomized lower bounds. However, we can remark that all our lower bounds for
deterministic myopic algorithms hold also for randomized algorithms against anadaptive
adversary (i.e., an adversary that can react to the random choices of the algorithm).

Acknowledgments

We are deeply indebted to the anonymous referees for numerous comments and
suggestions that helped to improve the paper. In particular, the first referee proposed the
use of a union-find data structure to speed up our algorithm for computing the cheapest
conflict set (Theorem 1) and found a substantial simplification for the proofs of our lower
bound results in Section 5.2.

52 T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53

Furthermore, we thank Eric Torng for bringing the caching application to our attention.
We also thank Baruch Schieber and Seffi Naor for discussions regarding the relationship
between WJISP and TCSP. Finally, we thank Piotr Berman for supplying preliminary
versions of the papers [4,27].

This research was partially supported by EU Thematic Network APPOL II, IST-2001-
32007, with funding for the Swiss partners provided by the Swiss Federal Office for
Education and Science (BBW).

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and
Approximation. Combinatorial Optimization Problems and their Approximability Properties, Springer,
Berlin, 1999.

[2] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J.S. Naor, B. Schieber, A unified approach to approximating
resource allocation and scheduling, J. ACM 48 (5) (2001) 1069–1090.

[3] A. Bar-Noy, S. Guha, J.S. Naor, B. Schieber, Approximating the throughput of multiple machines in real-
time scheduling, SIAM J. Comput. 31 (2) (2001) 331–352.

[4] P. Berman, B. DasGupta, Multi-phase algorithms for throughput maximization for real-time scheduling,
J. Comb. Optim. 4 (2000) 307–323.

[5] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press, 1998.
[6] R. Canetti, S. Irani, Bounding the power of preemption in randomized scheduling, SIAM J. Comput. 27 (4)

(1998) 993–1015.
[7] M.C. Carlisle, E.L. Lloyd, On thek-coloring of intervals, Discrete Appl. Math. 59 (1995) 225–235.
[8] J. Chuzhoy, R. Ostrovsky, Y. Rabani, Approximation algorithms for the job interval selection problem and

related scheduling problems, in: Proc. 42nd Ann. Symp. on Foundations of Computer Science, FOCS’01,
2001.

[9] Y. Crama, O. Flippo, J. van de Klundert, F. Spieksma, The assembly of printed circuit boards: a case with
multiple machines and multiple board types, Eur. J. Oper. Res. 98 (1997) 457–472.

[10] T. Erlebach, F. Spieksma, Interval selection: Applications, algorithms, and lower bounds, TIK-Report 152,
Computer Engineering and Networks Laboratory, ETH Zurich, October 2002.

[11] M. Fischetti, S. Martello, P. Toth, Approximation algorithms for fixed job schedule problems, Oper. Res. 40
(1992) S96–S108.

[12] A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, in: Proc. 5th British
Combinatorial Conference, 1975, pp. 211–226.

[13] M.L. Fredman, D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees and shortest paths,
J. Comput. System Sci. 48 (3) (1994) 533–551.

[14] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. System
Sci. 30 (1985) 209–221.

[15] S.A. Goldman, J. Parwatikar, S. Suri, Online scheduling with hard deadlines, J. Algorithms 34 (2) (2000)
370–389.

[16] M.H. Goldwasser, Patience is a virtue: The effect of slack on competitiveness for admission control, in:
Proc. 10th Ann. ACM–SIAM Symp. on Discrete Algorithms, SODA’99, 1999, pp. 396–405.

[17] D. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS, Boston, 1997.
[18] S.v. Hoesel, R. Müller, Optimization in electronic markets: Examples in combinatorial auctions, Net-

nomics 3 (1) (2001) 23–33.
[19] L. Kroon, M. Salomon, L. van Wassenhove, Exact and approximation algorithms for the tactical fixed

interval scheduling problem, Oper. Res. 45 (1997) 624–638.
[20] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[21] R. Raman, Priority queues: Small, monotone and trans-dichotomous, in: Proc. 4th Ann. European Symp. on

Algorithms, ESA’96, in: Lecture Notes in Comput. Sci., Vol. 1136, 1996, pp. 121–137.

T. Erlebach, F.C.R. Spieksma / Journal of Algorithms 46 (2003) 27–53 53

[22] M.H. Rothkopf, A. Pekěc, R.M. Harstad, Computationally manageable combinational auctions, Manag.
Sci. 44 (1998) 1131–1147.

[23] A. Seznec, A new case for skewed-associativity, Technical Report RR-3208, INRIA, Rennes, France, July
1997.

[24] F. Spieksma, On the approximability of an interval scheduling problem, J. Sched. 2 (1999) 215–227.
[25] M. Thorup, Undirected single-source shortest paths with positive integer weights in linear time, J. ACM 46

(1999) 362–394.
[26] E. Torng, A unified analysis of paging and caching, Algorithmica 20 (1) (1998) 175–200.
[27] V. Veeramachaneni, P. Berman, W. Miller, Aligning two fragmented sequences, Discrete Appl. Math. (2002),

to appear.
[28] G. Woeginger, On-line scheduling of jobs with fixed start and end times, Theoret. Comput. Sci. 130 (1994)

5–16.
[29] M. Yannakakis, F. Gavril, The maximumk-colorable subgraph problem for chordal graphs, Inform. Process.

Lett. 24 (1987) 133–137.

