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In the Ramsey theory of graphs F � (G, H) means that for every way of
coloring the edges of F red and blue F will contain either a red G or a blue H.
Arrowing, the problem of deciding whether F � (G, H), lies in 6p

2 =coNPNP

and it was shown to be coNP-hard by Burr [Bur90]. We prove that Arrowing
is 6p

2-complete, simultaneously settling a conjecture of Burr and providing a
rare natural example of a problem complete for a higher level of the polynomial
hierarchy. We also show that Strong Arrowing, the induced subgraph version
of Arrowing, is 6p

2 -complete, and that the complexity of not arrowing stars
is the same as that of finding a perfect matching. � 2001 Academic Press

1. INTRODUCTION

Party mathematics is an important tool in the repertoire of the socially gifted
mathematician, and one of the all-time favorite stories tells us that at a party of six
people there are at least three people who know each other, or three people who
do not know each other. When mathematicians were invited to larger parties they
began working on the general problem: How many people do you need to have at
least k people who know, each other, or l people who do not know each other? It
is not clear, a priori, that such a number even exists. Frank Ramsey [Ram30, GRS90]
showed in 1930 that the number of people needed is finite. Since then Ramsey theory
has developed into an active and rich field.

Looking at the party example again, we see that it could also have been phrased
thus: every edge-coloring of the complete graph on six vertices K6 in red and blue
contains either a red or a blue triangle. Graphs offer a generalized approach to
classical Ramsey theory which over the last twenty years has turned out to be quite
fruitful [GRS90]. The basic notion of graph Ramsey theory is arrowing: we say
that a graph F arrows (G, H) and write F � (G, H) if for every edge-coloring of F
with colors red and blue, a red G or a blue H occurs as a subgraph. We say F
strongly arrows (G, H) and write F~ (G, H) if for every edge-coloring of F with colors
red and blue, a red G or a blue H occurs as an induced subgraph of F.

doi:10.1006�jcss.2000.1729, available online at http:��www.idealibrary.com on

2900022-1729�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.



Take for example G=H=P4 , a path on four vertices. One quickly verifies that
K5 � (P4 , P4) [CH72]. In the induced case the complete graph will not do, since
K5 only has complete induced subgraphs. However, the graph obtained from the
Mo� bius ladder M8 (a C8 in which all pairs of opposite vertices are connected) by
removing one of the spokes, strongly arrows P4 [SS]. See Fig. 1 for a picture of the
graph. (Harary, Nes� etr� il, and Ro� dl [HNR83] claimed that M8 itself would do, but
this is not the case.)

Given that arrowing is the central notion of graph Ramsey theory, it is natural
to ask what its computational complexity is: How hard is it to determine whether
F � (G, H)? In the notation of Garey and Johnson we can define two problems:

ARROWING
Instance: (Finite) graphs F, G, and H.
Question: Does F � (G, H)?

STRONG ARROWING
Instance: (Finite) graphs F, G, and H.
Question: Does F ~ (G, H)?

We will show that both Arrowing and Strong Arrowing are complete for the
second level of the polynomial hierarchy, settling a conjecture of Burr's [Bur87,
Bur90], and adding to the rather small collection of problems complete for higher
levels of the polynomial hierarchy.

As a consequence of these results several other Ramsey type questions can be
reduced (by a polynomial-time algorithm) to a single question F � (G, H), includ-
ing Ramsey problems with several colors, or problems of the type F � (G, H)
(where G and H are families of graphs). On the other hand there cannot be a polyno-
mial time algorithm converting a question of the form F�% (G, H) to an equivalent
question of the form F $ � (G$, H$) unless the polynomial hierarchy collapses to the
second level.

Let us have a look at the history of the Arrowing problem. Fixing the graphs G
and H makes F � (G, H) a coNP problem in input F since checking for fixed
subgraphs can be done in polynomial time for any coloring. Stefan Burr [Bur90]

FIG. 1. A variant of the Mo� bius ladder M8 .
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showed that this problem is complete for coNP for any fixed 3-connected graphs G
and H (a graph is 3-connected if it remains connected when any two vertices are
removed from it). An earlier version of this result, also by Burr, where G=H=K3

is already mentioned by Garey and Johnson [GJ79, Problem GT6]. Compared to
this restricted version, Arrowing immediately appears stronger, since F � (P2 , Kn)
decides whether F has a clique of size n and is therefore NP-hard (P2 is the path
on two vertices, that is, a single edge).

The coNP-completeness proof of Burr for the restricted version requires the construc-
tion of particular graphs called determiners and senders. Though the constructions
are effective, they are not feasible, meaning they cannot be performed in polynomial
time given G and H as inputs (for the simple reason that the constructed graphs are
too large). To overcome this obstacle in the 6p

2 -completeness proof we will not use
two 3-connected graphs, but a tree and a complete graph.

We begin the paper with a short survey of completeness results for the second
level of the polynomial hierarchy in Section 3. In Section 4 and Section 5 we estab-
lish the completeness results for Arrowing and Strong Arrowing, respectively. In
these results the second graph H is always a complete graph. In Section 6 we
discuss completeness results for other families of graphs, and in Section 7 we study
the complexity of the diagonal case (where G=H). In Section 8 we consider arrow-
ing problems which are not 6p

2 -complete (unless the hierarchy collapses). Section 9
concludes the paper with a short summary of results, and a discussion of open problems,
and other related research.

2. PRELIMINARIES

As general references we suggest Graham, Rothschild, and Spencer on Ramsey
theory [GRS90], Diestel on graph theory [Die97], and Garey and Johnson on
complexity theory [GJ79]. We will review some of the basics of each here.

We assume that the reader is familiar with the classes L (logarithmic space), P
(polynomial time), NP (nondeterministic polynomial time), coNP, 6p

2 (=coNPNP),
and 7p

2 (=NPNP), and the polynomial (time) hierarchy PH=�i 7p
i . Our complete-

ness proofs use the standard complete problem for 6p
2 : deciding whether a formula

of the form (\x1 , ..., xn)(_y1 , ..., ym) .(x1 , ..., xn , y1 , ..., ym) is true.
Most of the reductions we consider in this paper are m-reductions (Karp-reduc-

tions). We say A m-reduces (or many-one reduces) to B if there is a function f such
that for all x, x # A if and only if f (x) # B. For most of the paper it will be under-
stood that f is computable in polynomial time. In Section 8, however, we need
logarithmic space reductions, because we are classifying problems within P. In one
instance will we see another kind of reduction: a truth-table reduction from A to B
is a function f, computable in polynomial time, where f (x) codes a Boolean formula
with atoms of the form y # B, such that x # A if and only if f (x) is true if interpreted
over B.

In this paper graphs are finite and simple (no loops or multiple edges). For a
graph G=(V, E) the order of G is |G| :=|V |. The size of G is |E|. We will use
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uppercase roman letters to denote graphs. Several letters are reserved for special
graphs:

Kn , the complete graph on n vertices,

Kn, m , the complete bipartite graph on n and m vertices,

Pn , the path on n vertices (hence of length n&1), and

Cn , the cycle on n vertices.

The graph K1, n is called a star, made up of a center vertex (of degree n) and n
outer vertices. We can multiply numbers with graphs: nG is a graph consisting of
n copies of G.

A subgraph H of G is called induced if H is the result of restricting G to the
vertices of H. By a coloring of a graph F we mean an edge-coloring of F, that is
an assignment of a color to each edge of F. In this paper we will only consider
colorings with two colors: red and blue.

Definition 2.1. F � (G, H) if every coloring of F with red and blue contains
either a red subgraph G, or a blue subgraph H.

We call a graph F Ramsey-minimal, if F � (G, H), but no proper subgraph F $ of
F fulfills F $ � (G, H).

The definition of induced arrowing is similar, but we have to be a bit careful.

Definition 2.2. F ~ (G, H) if every coloring of F with red and blue contains an
induced red subgraph G, or an induced blue subgraph H. Note that G and H have
to be induced subgraphs of F, not just of its red or blue components.

3. THE SECOND LEVEL OF PH

Compared to its downstairs neighbors NP and coNP, the second level of the
polynomial hierarchy is not rich in natural problems. However, in the twenty years
since the hierarchy was first defined, some problems have been placed there, and
several of them have been shown to be complete.

It is a widely accepted view that a complexity class is justified by its complete
problems. Both the number of problems and their naturalness play a role. The
classes P and NP excel on both accounts and have become the most popular classes
of computational complexity even outside the field. Nothing similar is true for the
higher levels of the polynomial hierarchy. Garey and Johnson [GJ79, Section 7.2]
went so far as to say that the interest of the hierarchy was mainly theoretical and
not practical: would we really care if the hierarchy collapsed to the second level as
long as P{NP? There is some evidence, however, that even 7p

2 and 6p
2 are natural

classes of more than theoretical interest, and the rest of the introduction is a short
survey of some of this evidence. There are several results in logic (non-classical
logics mostly) which we will ignore in the following discussion.

Probably the first natural problem to be shown 7p
2 -complete was Integer

Expression Inequivalence by Stockmeyer in the early seventies shortly after the
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polynomial hierarchy was defined.1 A couple of problems related to Integer
Expression Inequivalence were later shown to be 6p

2 -complete and 7p
2 -complete

by Wagner [Wag86]. (Wagner even mentions a 7p
3-complete problem.)

Integer Expression Inequivalence, roughly speaking, asks whether two represen-
tations denote the same object. There are at least two other completeness results for
the second level sharing this basic structure. Sagiv and Yannakakis [SY80] proved
that deciding whether two monotonic relational expressions are equivalent is 6p

2 -com-
plete (monotonic expressions contain only the operators select, project, join and
union), and Huynh [Huy84] shows that deciding whether two context-free grammars
with only one terminal letter generate the same language is 6p

2 -complete. In a similar
spirit Lin [Lin95] recently showed a problem related to pattern matching (and
program optimization) to be 7p

2 -complete.
Dependencies in a concurrent system can be described and analyzed using

pomsets, which are labeled, acyclic, directed graphs. The edges in the graph restrict
the order of events (vertices). A word on the set of labels (actions) is consistent, if
there is an allowed order of events that produces it. This associates a language L(P)
(of consistent words) with each pomset P. Feigenbaum, Kahn and Lund showed
that Pomset Language Containment, the problem of deciding whether L(P)�
L(Q) is 6p

2 -complete [LFK93].
Ko and Tzeng [KT91] exhibited three 7p

2 -complete problems that belong to the
realm of computational learning theory. The problems are: Pattern Consistency
which asks whether for two sets of words there is a pattern that matches each word
in one of the sets but no word in the other, Graph Reconstruction asking whether
for two sets of graphs there is a graph G such that all graphs in the first set are
isomorphic to a subgraph of G but none of the graphs in the second set is, and,
finally, Generalized 3-CNF Consistency which asks whether for two sets of
Boolean formulas there is a 3-CNF formula which is consistent with each formula
from the first set but with no formula from the second set. Ko and Tzeng isolate
a pattern common to these three problems, but they also show that this pattern
comprises problems not 7p

2 -complete. It would be interesting to find a generaliza-
tion of the three problems that does imply 7p

2-completeness.
Some famous problems remain candidates for 7p

2 -completeness. In the sixties and
seventies the question of size of machines and programs was investigated in detail,
and in parallel to research done in computability, Meyer and Stockmeyer defined
the sf Minimal problem of deciding whether for a given formula . there is no
formula of smaller size that is equivalent to it. Later Stockmeyer defined the refined
problem MEEDNF of deciding whether for a given DNF formula . there is a DNF
formula of size at most k which is equivalent to it. Garey and Johnson [GJ79] also
mention the variant MEE where the requirement that . be in DNF is dropped.
Both MEEDNF and MEE are in 7p

2 whereas MINIMAL is in 6p
2 . It is a trivial observa-

tion that MEEDNF and therefore MEE are 6p
1 -hard. Only recently did Hemaspaandra
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and Wechsung [HW97] show that Minimal is also 6p
1 -hard. For MEE and MEEDNF

they pushed up the lower bound to PNP
& (nonadaptive queries to NP). Recently Umans

[Uma98] showed that MEEDNF is indeed 6p
2 -complete. (Even approximating the size

of a minimal equivalent DNF formula remains 6p
2-complete [Uma99].) The other

variants remain open (although it is possible to construct artificial size measures for
which all of these problems are complete).

Finally, there is an analogue of the Graph Isomorphism problem, the Boolean
Isomorphism problem in 6p

2 which asks whether two formulas are equivalent up
to a permutation of the variables. Boolean Isomorphism is 6p

1 -hard but not
known to lie in 6p

1 . Agrawal and Thierauf [AT96] recently showed that the com-
plement of Boolean Isomorphism lies in AMNP which means that we do not expect
it to be complete for 6p

2 since this would collapse the polynomial hierarchy to 6p
3 .

4. ARROWING

Theorem 4.1. Arrowing is 6p
2 -complete.

This result will be immediate from Lemma 4.11 which shows that deciding F �
(K1, p , Kn) for any fixed p�2 is 6p

2 -complete. We will eventually strengthen this
result to show that deciding F � (T, Kn) is 6p

2 -complete for any tree T of size at
least two, but so as not to obscure the basic construction we start with the special
case. Some intermediary results will be proved in full generality, however, for later
use.

Definition 4.2. A coloring of F is called (G, H)-good if F does not contain a
red G or a blue H in this coloring.

In all of the following constructions we will use the implicit convention that if we
take several graphs and identify some of their edges or vertices, then only these
edges or vertices are identical and the remainders of the graphs still distinct.

Definition 4.3. A graph F is called a (G, H)-enforcer with signal vertex v if the
graph obtained from F by attaching a new edge to v has the property that this edge
is colored blue in all (G, H)-good colorings, and there is a (G, H)-good coloring of
the graph.

We can use enforcers to force edges leaving the signal vertex to be blue (assuming
that H is 2-connected). We will sometimes talk of a blue enforcer to make this point
explicit. Red enforcers are defined analogously.

Enforcers will be essential in the completeness proof. Let us see how to construct
them for the special case of trees. For this we need a well-known fact from the
Ramsey theory of graphs. The Ramsey number r(G, H) of two graphs is defined as
the least n such that Kn � (G, H).

Lemma 4.4 (Chva� tal [Chv77]). If T is a tree on t vertices, then r(T, Kn)=
(t&1)(n&1)+1.

The lower bound of Chva� tal's result is established by coloring a subgraph
(n&1) Kt&1 of K(t&1)(n&1) red and its complement blue. Note that in this coloring
the red degree of each vertex is t&2. This observation can be generalized.
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Lemma 4.5. The red degree of every vertex in K(t&1)(n&1) in any (T, Kn)-good
coloring is at least t&2, where t is the order of T.

Proof. Let m=(t&1)(n&1). Assume for a contradiction that there is a (T, Kn)-
good coloring of Km in which some vertex x has red degree d�t&3. Let y1 , ..., yd

be its red neighbors. Look at the graph Km&[x, y1 , ..., yd] under the induced coloring.
This graph has m&(d+1)�m&(t&2)=(t&1)(n&1)&(t&2)=(t&1)(n&2)+1
vertices and hence (by Chva� tal's result) contains a red T or a blue Kn&1 . Neither,
however, is possible, since a red T would also be contained in the original graph,
and a blue Kn&1 together with x would form a blue Kn in the original graph. K

It is a folklore fact in graph theory (a proof can be found in Chva� tal's note
[Chv77]) that a graph of minimum degree t&1 contains every tree on t points.
More precisely the tree can be embedded node by node, starting at an arbitrary
node of the tree and the graph. Hence if we remove from T an edge leading to a
leaf, then the resulting tree T $ will occur as a red subgraph in any (T, Kn)-good
coloring of K(t&1)(n&1) with any particular vertex of T $ in any particular vertex of
K(t&1)(n&1) . Hence K(t&1)(n&1) is an enforcer, and each of its vertices can act as a
signal vertex for n>2. (While the previous lemma is still true for n=2, it is no
longer possible to find a good coloring in this case.)

Lemma 4.6. For any tree T a (T, Kn)-enforcer can be constructed in polynomial
time in n>2 (in unary) (namely take a K( |T |&1)(n&1) and any of its vertices).

Before we can prove Theorem 4.1 we need to construct a particular kind of graph
that works like a switch between two edges: exactly one of the edges will be blue
in a good coloring, and either can be blue.

Definition 4.7. A graph F is called a (G, H)-switch if it contains two edges e
and f such, that for all (G, H)-good colorings exactly one of e and f is red while the
other is blue. Furthermore there has to be a (G, H)-good coloring of F where e is
red and f is blue, and a (G, H)-coloring where e is blue and f is red.

Our switches are called negative senders in the combinatorial literature. We prefer
the term switches in this paper since it better reflects the purpose of the graph.

The construction of switches requires yet another kind of graph which like the
enforcer determines the color of a particular edge.

Definition 4.8. A graph is called a (G, H)-determiner with signal edge e if e is
colored red in all (G, H)-good colorings, and there is a (G, H)-good coloring of the
graph.

For later reference note that we will sometimes call these determiners red deter-
miners to distinguish them from blue determiners (which are defined analogously).

Lemma 4.9. Suppose that G is a connected graph of size at least two and that
we can compute a (G, Kn)-enforcer in polynomial time in n (in unary). Then a
(G, Kn)-determiner can be constructed in polynomial time.

Proof. Build a graph F from a copy of Kn and n&2 copies of a (G, Kn)-enforcer
as follows: label two vertices of the Kn with u and v, and identify every other vertex
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in Kn the signal vertex of a (G, Kn)-enforcer. We claim that F is a (G, Kn)-deter-
miner. Fix a (G, Kn)-good coloring of F. The enforcers force all edges of Kn except
for uv to be blue. This forces uv be red since the coloring does not contain a blue
Kn . Furthermore, coloring all the enforcers with a good coloring and letting all the
edges in Kn be blue except for uv, which is red, shows that there is a good coloring
of F. Note that this relies on the fact that G is connected. K

The construction of switches for connected graphs in general seems to be hard,
the problem being that connected graphs that are not 2-connected (like trees) can
cause trouble when several coding devices are merged. More precisely, the graphs
might extend through several devices making a good coloring impossible. Hence we
will first concentrate on the easier case of stars (K1, p), and only later show how to
generalize the construction.

Lemma 4.10. A (K1, p , Kn)-switch can be constructed in polynomial time ( for
fixed p�2). The switch has the additional property that if we attach additional edges
in vertices incident with a signal edge of the switch, these new edges are forced to be
blue in any good coloring.

Proof. Fix p. Construct a graph F from K1, p&2 by taking a red (K1, p , Kn)-
determiner for each edge of the K1, p&2 and identifying that edge with the signal
edge of the determiner. (If p=2, then K1, p&2 is just an isolated vertex.) Let v be
the center vertex of the K1, p&2. If we attach new edges to v in F, then in any
(K1, p , Kn)-good coloring of F at most one of these edges can be red. Furthermore,
there is a good coloring with any of these edges being red, and all the others blue.
Let us call F a weak switch: it forces the number of red edges out of its signal vertex
v to be at most one.

With the weak switch we can now construct the switch. Take three copies of
a Kn , and let ui , vi , wi be a triangle in the ith copy (1�i�3). Identify v1=u2 ,
w2=v3 , and w1=u3 . (See Fig. 2; the figure only shows the triangle parts of the Kn .)

FIG. 2. A (K1, p , Kn)-switch.
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Furthermore, make each vertex in the resulting graph, with the exception of the
labeled ones, the signal vertex of a (K1, p , Kn)-enforcer. Finally identify each of u1 ,
v1=u2 , v2 , w2=v3 , w3 , and w1=u3 with the signal vertex of a weak switch. Let
e=u3w3 , and f =v3w3 . We claim that the graph we constructed with signal edges
e and f fulfills the definition of a switch.

To this end we remark that in a good coloring it is true that:

(i) Each triangle ui , vi , wi contains a red edge (otherwise it would complete
a blue Kn);

(ii) a, b, and c are blue (assume for example b was red, then d, a, c and g
are forced to be blue by the weak switches in w1 and w2 ; Hence both i and h are
forced to be red by (i), forcing the weak switch in v1 to fail);

(iii) The edges d, e, f, g, h, i are alternatingly colored red and blue in this
order with d either red or blue (by (i), (ii), and the properties of the weak switches).

Furthermore, e can be either red or blue in a good coloring. For the verification
of this last claim we combine good colorings of the devices that were used in the
construction of the switch. Note that the devices are merged by identifying at most
one vertex, or at most one edge, in two different devices. In both cases, parts of
different components cannot add up to a blue Kn since it is 3-connected for n�4.
It is also easy to check that we do not add any red stars when we build the weak
switches from determiners, or attach the weak determiners to the triangles. Hence
we get a good coloring of the devices, which we extend by coloring a, b, and c blue,
and the other edges alternatingly red and blue (starting with d being either red or
blue).

We note that additional edges out of the endpoints of e or f will be forced to be
blue in any good coloring, because all of the signal vertices of the weak switches
attached to u3 , v3 , and w3 are incident with one red edge (e, f, g or d ).

Finally, we should observe that the construction can be performed in polynomial
time. K

With this special switch we can complete the construction.

Lemma 4.11. Let p�2. For any 62 sentence � we can construct a graph F and
compute a number n in polynomial time such that � is true if and only if F � (K1, p , Kn).

Proof. Let �=(\x1 , ..., xk)(_y1 , ..., yk)[.(x1 , ..., xk , y1 , ..., yk)] be the formula
to be coded with its 2k variables ranging over [0, 1] with . in conjunctive normal
form. We will refer to the xi as the x-variables and the yi as the y-variables.

If we have a formula \(x, x� ) which has occurrences of a variable x both positively
and negatively, then the following is true: (\x) [\(x, x� )] # (\x)(_y) [ (x� 6 y) 7

(x 6 y� ) 7 \( y, y� ).] We apply this equivalence to ., and can therefore assume that
each x-variable occurs only twice, once positively and once negatively with one y
variable each (and no other variables). Applying the usual transformations allows
us to assume that . contains at most three literals per clause and each literal occurs
at most twice in the whole formula. We can also assume that each variable occurs
at most once per clause. Let .(a, b) consist of m clauses C1 , ..., Cm .
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We will now mimic a reduction from SAT to CLIQUE (see for example (Pap94,
Theorem 9.41).

Construct the graph F as follows. For each clause C that does not contain an
x-variable take as many vertices as there are literals in the clause, and label the
vertices by the literals in the clause. Call this a y-gadget. For each pair of clauses
(x� i 6 yj) and (xi 6 y� j) take a (K1, p , Km)-switch with adjacent signal edges ei and
fi . Since these two edges are different there is a vertex u of ei which does not belong
to fi and a vertex v of fi which does not belong to ei . Label u with yj and v with
y� j and the common vertex of ei and fi with xi . Call this an x-gadget.

Include all edges between labeled vertices that belong to different gadgets and are
not labeled by contradictory literals. Furthermore make each vertex of a y-gadget
the signal vertex of a (K1, p , Km)-enforcer.

This completes the construction of F (for an example see Fig. 3). We claim that
F � (K1, p , Km) if and only if � is true.

Assume first that � is true. Suppose for a contradiction that there is a (K1, p , Km)-
good coloring of F. Fix that coloring. In this coloring all the enforcers and switches
work, namely all the edges between the gadgets are blue. The edges between a y-gadget
and another gadget are blue because of the enforcers in the y-gadget. The edges
between different x-gadgets are blue because of the special nature of the switch we
constructed (see Lemma 4.10). Furthermore, within each xi-gadget at least one of
ei and fi is blue. (Indeed exactly one is blue, but we do not need that for the proof.)
Call xi true if ei is blue, and false otherwise. For this truth assignment to the
x-variables there is a truth assignment to the y variables such that .(x1 , ..., xk ,
y1 , ..., yk) is true. Fix this assignment. For each y-gadget pick a vertex whose label
is assigned true. In each x-gadget choose the two vertices belonging to ei if xi is true

FIG. 3. F for (\x)(_y)[x W% y]#(\x)(_y1 , y2)[(x 6y� 1) 7 (x� 6 y1) 7 ( y1 6 y2) 7 ( y� 1 6 y� 2)].
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and fi otherwise. By the construction of F these m vertices form a blue clique
contradicting the assumption.

To show the other direction assume that � is false, that is, there is an assignment
of truth-values to x1 , ..., xk such that for all assignments of truth-values to y1 , ..., y&k
the formula .(x1 , xk , y1 , ..., yk) is false. Fix such x1 , ..., xk . The enforcers and switches
were constructed in such a way that they have good colorings. Fix a good coloring
for each enforcer. For the xi -gadget we choose a coloring of the switch in which ei

is blue and fi is red if xi is true and vice versa otherwise. Finally, color all edges
between gadgets blue. We claim that this coloring is a (K1, p , Km)-good coloring. It
obviously does not contain a red K1, p since none of the components contains a red
K1, p , and all the edges between gadgets are blue (here we use that K1, p is connected).
Suppose, for a contradiction, that there is a blue Km . Each y-gadget can share at
most one vertex with this Km and each x-gadget at most two. Hence every y-gadget
has exactly one vertex in common with Km and every xi-gadget exactly two. The
two vertices in the x i gadget could be yj and y� j (there is a blue edge between them),
but since the set of vertices reached from xi by a blue edge is a superset of the set
of vertices reached from either yj or y� j by a blue edge, and one of ei , f i is blue, we
can assume that one of the two vertices is xi . Call a y-literal true if one of the Km

vertices is labeled with that literal. By the construction (and the preceding remark)
this yields a well-defined partial assignment of truth-values to y-variables such that
.(x1 , ..., xk , y1 , ..., yk) is true, contradicting the choice of the assignment to the x
variables. K

We will now generalize the result to the case of trees against cliques.

Theorem 4.12. Deciding F � (T, Kn) is 6p
2 -complete for any fixed tree T of size

at least two.

Proof. We already know how to build (T, Kn)-enforcers, the task left for the
proof of the theorem is the construction of a switch which fulfills the extra condi-
tion mentioned in Lemma 4.10, that is, additional edges out of the signal vertices
must be forced to be blue. We distinguish two cases.

Case 1. T contains a vertex of degree two which has exactly one leaf as a
neighbor.

Let v be the other neighbor of that vertex, and T $ be the subtree of T which is
obtained by removing the leaf and its common neighbor with v. Take two copies
T1 and T2 of T $ and add an edge between v1 and v2 , the copies of v in T1 and T2 .
The resulting graph T* contains T as a subtree: take T1 , the edge v1 v2 , and any
edge incident with v2 in T2 (there has to be such an edge, otherwise v would be a
leaf in T ).

Construct a new graph G from T $ by making each of its edges the signal edge
of a red determiner. The resulting graph G has the following property: if we attach
a path of length two to v in G, then one of the two edges of that path has to be
blue in every good coloring. (G corresponds to the weak switch we used in the case
T=K1, p .)
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FIG. 4. A (T, Kn)-switch (Case 1).

Take a copy of a Kn let u, v, w be three vertices in that copy. Add n&3 copies
of a (T, Kn)-enforcer and two copies of G. Identify the signal vertices of the enforcers
with the unlabeled vertices, and the signal vertices of the two copies of G with u and
v respectively (as in Fig. 4).

We claim that this graph works as a switch. In any good coloring of this graph:

(i) g is colored blue (Since T* contains T as a subtree, a red g would
complete a red T );

(ii) Exactly one of e and f is red (at least one because the triangle contains
at least one red edge, and at most one because of the copies of G):

(iii) Additional edges out of w are forced to be blue (one of the two copies
of G forced this through the red edge to w).

Moreover, there are good colorings in which either of e or f is red (merge good
colorings of devices, make g blue, and either of e or f red and the other blue). With
this switch we can repeat the completeness construction of Lemma 4.11. The only
thing to notice is that edges between x-gadgets are forced to be blue in a good
coloring. They must be blue between w vertices because of (iii) above, and between
u and v vertices because edges between copies of G are forced to be blue (as in (i)
above).

Case 2. T contains a vertex that is adjacent to at least two leaves.

Let v be a vertex of T adjacent to at least two leaves, and T $ be the subtree of
T obtained by removing exactly two leaves adjacent to v. As above let T* be two
copies of T $ with their v-vertices connected by an edge. T will not occur as a subtree
of T* (as proved in the next lemma).

Again construct a graph G from T $ by making each of its edges the signal edge
of a red determiner. The resulting graph G has the following property: if we attach
at least two edges to v in G, then at most one of those edges can be red in any good
coloring. (We called such a graph a weak switch in the proof of Lemma 4.11.)

We construct the switch as follows:
Take three copies of a Kn , and let ui , vi , wi be a triangle in the ith copy

(1�i�3). Identify v1=u2 , w2=v&3, and w1=u3 (as an illustration the earlier
Fig. 2 will serve). Furthermore, make each vertex in the resulting graph, with the
exception of the labeled ones, the signal vertex of a (T, Kn)-enforcer. Finally identify
each of u1 , v1=u2 , v2 , w2=v3 , w3 , and w1=u3 with the signal vertex of a copy of
G. Let e=u3w3 , and f =v3w3 . We claim that the graph we constructed with signal
edges e and f fulfills the definition of a switch.
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In a good coloring:

(i) Each triangle ui , vi , wi contains a red edge (otherwise it would complete
a blue Kn);

(ii) a, b, and c are blue (Assume for example that b was red. Then d, a, c and
g are forced to be blue by the copies of G in w1 and w2 . Hence both i and h are
forced to be red by (i), contradicting the fact that there is a copy of G in v1);

(iii) Exactly one of e and f is red (at least one of them is red by (i) and (ii),
and at most one of them is red because of the copy of G in w3), and similarly for
d, i and g, h;

(iv) Exactly one edge in each pair [e, d] and [ f, g] is red.

We note that there is a good coloring of the graph in which e is red, and one in
which f is red. For this we need the assumption that T is not a subgraph of T*.
This assumption implies that there is a good coloring of two copies of G whose
signal vertices are connected by a red edge. Note that the switch will force addi-
tional edges attached to u3 , v3 or w3 to be blue. (For example, one of e or d is
always red in a good coloring, so the copy of G in w1 will force further edges
attached to w1 to be blue.)

With this new switch the remainder of the construction is the same as in Lemma 4.11.
K

For the following lemma let T, T $, and T* be as in the proof above, namely T $
has a vertex v such that T is isomorphic to T $ with two edges attached to v, and
T* is isomorphic to two copies of T $ whose v-vertices are connected by an edge.

Lemma 4.13. T does not occur as a subgraph of T*.

Proof. Let T be a smallest counterexample to the claim of the lemma. Assume
that T $ has n edges [e1 , ..., en]. Let T1 and T2 be the two copies of T $ in T* and
ei, j be the edges of Ti such that e1, j and e2, j correspond to ej in isomorphisms from
T1 and T2 to T $, respectively. Fix an embedding of T into T*. Suppose there is a
j such that neither e1, j nor e2, j are part of the embedding of T. Remove the edge
ej from T $ splitting it into two components. Let S$ be the component which con-
tains the vertex v of T $. From S$ construct S by attaching two new edges to the
copy of v in S$. Then S* contains T as a subgraph, and therefore S itself (since S
is a subgraph of T ). Hence S would be a smaller counterexample than T, contradic-
ting the choice of T.

Consider the embedding of the n+2 edges of T in T*. One edge of T is taken
care of by the edge connecting T1 and T2 . That leaves n+1 edges. Since at least
one edge from each of the n pairs [e1, j , e2, j] has to belong to the embedding it
follows that for n&1 pairs exactly one edge belongs to the embedding of T, and for
one pair both edges belong to the embedding. Without loss of generality that one
pair is e1, 1 and e2, 1 . Now e1, 1 has to be incident with v1 (the vertex corresponding
to v in T1), since otherwise all the edges between e1, 1 and v1 and the edges between
e2, 1 and v2 would be part of the embedding of T. This would contradict the fact
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FIG. 5. Partitioning the embedding of T.

that there is only one pair for which both edges are part of the embedding. Let A
be the component of T1 that is part of the embedding of T and is separated from
v1 by e1, 1 . Let C be the remaining edges in T1 belonging to the embedding of T.
Similarly define B and D as subsets of edges in T2 . See Fig. 5 for an illustration.

Via the isomorphisms we can look at all these sets as subsets of the edges of T $
and we note that A, B, C, D and e1 form a partition of T $ into subtrees. This gives
us a new way to look at T illustrated on the right side in Fig. 6. On the left side
is the view of T as embedded in T* (from the previous figure).

We conclude the proof by counting the number of leaves in each representation
of T. We consider A, B, C, and D as rooted subtrees of T with roots a, b, c, and
d respectively. For these four sets let l(A), l(B), l(C), and l(D) denote the number
of leaves in A, B, C, and D respectively. We do not count the root as a leaf.

The left drawing of T shows that T has max[l(A), 1)]+max[l(B), 1]+l(C)+
l(D) leaves, in the right drawing, however T has 2+max[l(A)+l(B), 1]+l(C)+
l(D) leaves. It is easy to see that these two numbers cannot be equal. K

Stronger versions of the lemma can be found in [SS99].

FIG. 6. Two views of T.
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5. STRONG ARROWING

Theorem 5.1. Strong Arrowing is 6p
2 -complete.

Determining the complexity of strong arrowing can be done using the same
approach as in the non-induced case. The result, however, will be weaker: we are only
able to show the 6p

2 -completeness of F ~ (K1, p , Kn). The problem is that the com-
binatorics are more involved. At the heart of the completeness proof for Arrowing
was the construction of enforcers, building on the computation of r(T, Kn) by
Chva� tal. Exact induced Ramsey numbers are only known for small graphs. Even
finding any F with F ~ (G, H) for a given G and H is hard. The existence of such
an F for every pair (G, H) was only shown in 1973, independently, by Deuber, by
Erdo� s, Hajnal, and Po� sa, and by Ro� dl [Die97]. Though two of these proofs are
constructive, the graph F they construct will be at least of doubly exponential size
in the input graphs. Since we are only allowed polynomial time we cannot use
them. Though there are better bounds for induced Ramsey numbers in the literature
(see for example the recent paper by Kohayakawa, Pro� mel, and Ro� dl [KPR98])
these bounds are obtained by the use of random graphs, and therefore of no help
in polynomial-time constructions.

We are able to solve the special case of stars versus cliques, and we give a further
example in which we show how to determine the complexity of F ~ (P4 , Kn).
(Recall that P4 is a path on four vertices.)

Since we are now dealing with induced graphs we redefine the basic notion of a
good coloring for the rest of this section.

Convention. In this section a coloring of a graph F is called (G, H)-good if it
contains neither a red G nor a blue H as an induced subgraph of F.

This, of course, changes the notions of enforcers and determiners as defined
above, and to avoid confusion we will call the gadgets we construct for the induced
case strong enforcers and strong determiners.

The goal of this section is to show to what extent the ideas of the completeness
proof for Arrowing work for the induced case. The main observation is that the
proof of Lemma 4.11 goes through for the induced case as well. The only changes
necessary are the use of strong enforcers instead of enforcers and a modification to
the construction of the switch.

Lemma 5.2. If we can build strong (T, Kn)-enforcers in polynomial time (in T
and Kn), then deciding F ~ (T, Kn) is 6p

2 -complete for any fixed tree T of size at
least two.

Proof. We will follow the proof of Theorem 4.12, pointing out the necessary
changes.

Let G be the strong (T, Kn)-enforcer with signal vertex v from the assumption of
the lemma (we assume n>2). We need the enforcer to have some additional
properties for the proof. We will achieve this by rebuilding it. In Lemma 4.9 we
showed how to construct a (H, Kn)-determiner from a (H, Kn)-enforcer. The same
construction yields a strong (T, Kn)-determiner if we start with the strong (T, Kn)-
enforcer G.
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Let T $ be isomorphic to T with one leaf (and its corresponding edge) removed.
Let u be the vertex in T $ that was incident (in T ) with the removed edge. From T $
we construct the strong (T, Kn)-enforcer G$ by making each edge of T $ the signal
edge of a (new) (T, Kn)-determiner. Then u in G$ is the signal vertex of a strong
(T, Kn)-enforcer. Namely if we attach a new vertex v to u via edge e, then e is forced
to be blue in all good colorings of G$ _ [e], and there is a good coloring of that
graph. Consider what happens to this graph we add edges from v to all neighbors
of u in T $ (as a subgraph of G$). In a good coloring of that graph e is no longer
forced to be blue. We claim there is a good coloring in which e is red, and there
is a good coloring in which a is blue. For these colorings fix a good coloring of G$.
Color all edges from v to neighbors of u in T $ blue, and e blue or red, as required.
We claim that the resulting colorings are good. The reason is that u and v cannot
both be part of an induced red subtree, since they are connected by at least one
common neighbor, forming a triangle. Furthermore, we are not creating any new
blue cliques with the blue edges we are adding, since none of the neighbors of u in
T $ are adjacent (since T $ is a tree).

Figure 7 shows as an example the case T=K1, 2 . In this case T $ consists of a
single edge f which is forced by a determiner to be red. Hence e is forced to be blue,
but e$, on the other hand, is not. It can be either red or blue in a good coloring.
We say that the determiner is disabled for e$.

In this fashion we can disable the enforcer G$ for any number of edges out of the
signal vertex. Note that the construction will still work if we add two strong enforcers
G$, one to each end of an edge e=uv, and disable both of them on edge e. The
additional edges from the strong enforcer attached to v to the vertex u are colored
blue in the good coloring described above, and since there are no other connections
between the enforcers, these edges do not complete a new blue clique in the enforcer
in u.

We can now construct a weak (T, Kn)-switch as follows. Take a copy of T and
let e=uv and f =vw be two adjacent edges in T. Make each of u, v, and w a signal
vertex of a copy of G$, and disable the forcing of all edges in T (with regard to any
of these three enforcers). Finally, make all edges of T with the exception of e and
f signal edges of (T, Kn)-determiners. This completes the weak switch. In a good
coloring of the weak switch all edges of T, with the exception of e and f, are forced
to be red. Hence either e or f has to be blue (otherwise they would complete a red

FIG. 7. G$ forcing e and disabled for e$ where T=K1, 2 .
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induced T ). Furthermore, there is a good coloring in which e is red and there is a
good coloring in which f is red. We obtain these by combining good colorings of
the components. Also note that the weak switch fulfills the requirement that all
additional edges out of u, v, and w are forced to be blue.

With the weak switch we can now repeat the construction from Lemma 4.11. In
the non-induced case we constructed a switch from the weak switch. The reason for
this was not that the proof required that exactly one of e and f is blue, but instead
that we needed to force the color of additional outgoing edges. The completeness
proof remains unchanged. This is because the only place where we argue with the
absence of a red T (a red induced T, respectively) is in guaranteeing that the
gadgets work as expected. The remainder of the construction and the proof only
works with blue cliques for which non-induced and induced have the same
meaning. K

We can now apply the theorem.

Corollary 5.3. Deciding whether F ~ (K1, p , Kn) is 6p
2 -complete.

The proof of the corollary is completed with the construction of a strong (K1, p , Kn)
enforcer in the next lemma. As in the non-induced case there is a connection to the
construction of graphs F for which F ~ (K1, p , Kn). We already mentioned above
the bounds on the size of such an F given by the induced Ramsey theorem are not
good enough and the polynomial bounds in the literature are achieved by using
random graphs. Hence we have to prove our own induced subgraph result. The
paper Induced Graph Ramsey Theory [SS] collects several such constructive results.
For the special case at hand we use a construction based on an idea of Thomas
Hayes [Hay]. The idea is to use a complete n-partite graph with ip vertices in the
i th partition class.

Lemma 5.4. We can construct a strong (K1, p , Kn)-enforcer in polynomial time in
p and n (in unary).

Proof. We will show how to construct F such that F ~% (K1, p , Kn), and F has
a vertex v such that in any (K1, p , Kn)-good coloring v is at the center of a red
induced K1, p&1 . Let F=K1, p&1, 2p, 3p, ..., (n&1) p , a complete n-partite graph where
the ith partition class contains max[1, (i&1) p] vertices, with the exception of the
second partition which contains only p&1 vertices. Let v be the unique vertex in
the first partition. Coloring the p&1 edges between the first and second partition
red and all the other edges blue shows that F ~% (K1, p , Kn). Fix any (K1, p , Kn)-
good coloring of F. Suppose there is a blue edge from v to a vertex in the second
partition. Using the fact that there is no red K1, p one easily shows by induction that
the first i partition classes contain a blue Ki , finishing the proof. K

How can we build enforcers for graphs other than stars? The constructions of
determiners and senders in the literature rely on Ramsey-minimal graphs [BNR85].
Remember that a graph is Ramsey-minimal for (G, H) if it arrows (G, H) but no proper
subgraph does. Another look at the (T, Kn)-enforcer and the strong (K1, p , Kn)-enforcer
will convince the reader that these constructions contain a trace of the minimality idea.
The question is whether this idea can be used more generally. There are two problems
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with this approach. The first is that we do not know how to find Ramsey-minimal
graphs, and the second that there is no known way to turn them into enforcers or
senders without an exponential increase in size.

Randomized reductions might help solve the first problem. Most of the ran-
domized constructions in [KPR98] only depend on a polynomial amount of
randomness. Hence a randomized polynomial-time algorithm can find F such that
F ~ (G, H) for a large class of graphs G and H. Then a randomized truth-table
reduction can easily find a Ramsey-minimal F for G and H. At this point, however,
we do not know how to solve the second problem, even allowing randomness.

We will sketch one example in which we solve these two problems by using a
weakened version of Ramsey-minimal graphs. Our modest goal is to show that
F ~ (P4 , Kn) is 6p

2-complete. We do not quite achieve this goal. The best we can
do at present is to show completeness for 6p

2 under truth-table reductions; this is
the price we have to pay for our ignorance of Ramsey-minimal graphs. A truth-table
reduction is a reduction that works in three steps: it first determines which queries
it wants to make, then it makes the queries, and finally decides whether to accept
or not (without making any further queries).

We can in polynomial time compute a graph F such that F ~ (P4 , Kn) (for a
proof see [SS]). Fix an ordering of the edges of F and remove the edges in order
one by one until finding a graph F $ for which F $ ~% (P4 , Kn). (We use the oracle to
do this.) The search terminates since 03 ~% (P4 , Kn). Let the last edge that was
removed be between vertices v and w. That is, F $ _ [[u, w]] ~% (P4 , Kn) and
F $ ~% (P4 , Kn).

Consider any good coloring of F $. If we add a red edge vw to F $ we obtain a
graph F $ _ [[v, w]] which either contains a red induced P4 or a blue Kn (because
vw was the last edge to be removed in the construction of F $). Since the coloring
of F $ did not contain a blue Kn , and the red vw cannot complete a blue Kn , the
edge vw must be part of a red P4 in F $ _ [[v, w]]. Hence in any good coloring of
F $ either v and w are both incident with a red edge, or one of them is incident with
a red induced P3 . We distinguish two cases:

(i) There is a good coloring of F $ in which neither v nor w is incident to the
endpoint of a red induced P3 , and hence they are both incident to a red edge in
this good coloring; or

(ii) At least one of v or w is incident to the endpoint of a red induced P3 in
every good coloring.

In the first case we take two copies F1 and F2 of F $ and identify v :=v1=v2 and
w :=w1=w2 to get a new graph G. We can obtain a good coloring of G by choos-
ing for each Fi the coloring of F $ described in case (i). Consider any good coloring
of G. We claim that both v and w are incident to a red edge. Suppose for a con-
tradiction that v, for example, is not incident to a red edge. Then the observation
before the case distinction implies that w is incident to a red induced P3 in both F1

and F2 which would complete a red induced P5 which is not possible. Hence both
v and w are always incident to a red edge in any good coloring of G. Take two
copies of G and connect their v vertices. This graph will function as a blue-deter-
miner. The signal edge is the edge connecting the two copies of G. (There is a good
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coloring of the blue-determiner, because according to (i) there is a good coloring
of G in which both v and w are incident to a red edge, but not a red induced P3 .)
As a weak switch we take a copy of G in which we connect v and w by a path of
length two (via a new vertex). The two edges of the path are the signal edges e and
f. We can use this simple weak switch (instead of a real switch) in the completeness
construction, since it will force edges between switches to be blue in good colorings
(because we are excluding a red P4).

In the second case we take two copies F1 , F2 of F $ and identify v :=v1=w2 and
v2=w1 . If there is a good coloring of the resulting graph G, then G is a strong
enforcer with signal vertex v. (Note that both v and w have to be incident with the
endpoint of a red induced P3 .) If there is no good coloring, both v and w are always
incident to a red edge in every good coloring. Take two copies F1 , F2 of F $. Try
all four combinations of identifying one vertex from v1 , w1 with one vertex from v2 ,
w2 . If any of the resulting graphs has a good coloring it is a strong enforcer with
any of the two non-identified vertices from [v1 , w1 , v2 , w2] as a signal vertex. In
case none of these graphs has a good coloring, both v and w are always incident
to the endpoint of a red induced P3 in any good coloring, so we can simply take
F $ with v as a signal vertex to be the strong enforcer.

Note that we can effectively decide which case we are in. Case (i) applies if and
only if G ~% (P4 , Kn), and the subcases of case (ii) similarly depend on whether a
graph strongly arrows (P4 , Kn).

For the remainder of the proof we can apply Lemma 5.2 in the second case. For
the first case we have to carefully check the construction to see that the blue deter-
miners can be used instead of the enforcers, and that they do not interfere with each
other.

What have we shown? For the construction of the enforcer we had to make
several queries of the form H ~ (P4 , Kn). Note, however, that we made only poly-
nomially many queries, and that the queries can be determined before making any
of them (since we remove the edges in a fixed order). This yields a truth-table
reduction as follows: fix a sequence of graphs 03 =F0 /F1 / } } } /Fk=F such that
each graph in the sequence has exactly one more edge than the previous one. Above
we showed how to construct for a formula � and from a (P4 , Kn)-Ramsey-minimal
graph H a graph H$ such that � is true if and only if H$ ~ (P4 , Kn). Then � is true
if and only if for some 0�i<k it is true that Fi ~ (P4 , Kn), and F i+1 ~% (P4 , Kn),
and F $i ~ (P4 , Kn). This condition is a Boolean formula, showing that we have a
truth-table reduction. Hence we have established the following result.

Theorem 5.5. Deciding F ~ (P4 , Kn) is truth-table complete for 6p
2 .

This example is meant to illustrate the use of ideas related to Ramsey-minimal
graphs. These ideas might also be fruitful in the non-induced case.

6. OTHER GRAPHS

In the previous sections we have presented a technique to show that F � (G, Kn)
and F ~ (G, Kn) are 6p

2 -complete. This technique works as long as G belongs to a
particular class of graphs, namely trees of size at least two.
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Since complete graphs are not trees (for n�3) this leaves us in the slightly-
paradoxical situation of being able to show F � (K1, 2 , Kn) complete for 6p

2 , but
not the seemingly much harder problem F � (K3 , Kn). One reason, of course, is
that we do not know the Ramsey numbers r(K3 , Kn). We address this problem in
the first part of this section by presenting a general result for 3-connected graphs
(graphs from which any two vertices can be removed without disconnecting it).

Another question to be asked is whether the complete graph can be substituted
by other families of graphs. As we transformed Clique into Arrowing it should be
possible to lift similar NP-completeness results to 6p

2 . A good candidate would be
the complete bipartite graphs Kn, n [GJ79, Problem GT24]. The use of complete
bipartite graphs would significantly simplify the constructions: we could remove the
parts that are only concerned with forcing blue edges between x-gadgets. The
challenge is the construction of enforcers. In the induced case the results from [SS]
might prove helpful in this regard.

In the second part of this section we sketch a proof that F ~ (P3 , Pn) is 6p
2 -com-

plete, where Pn is a path on n vertices. This result could be viewed as a lifting of
Yannakakis's (unpublished) result that finding induced paths is NP-complete
[GJ79, Problem GT23]. In our terminology he showed that F ~ (P2 , Pn) is
NP-complete.

6.1. Complete Graphs against Triangles and 3-Connected Graphs

In this section we establish conditions under which F � (G, Kn) is 6p
2 -complete,

if G is a K3 or a 3-connected graph. For these graphs enforcers cannot exist. Deter-
miners seem to be the natural substitute.

The literature contains constructions of determiners, and negative senders (our
switches). See for example Burr's paper [Bur90] which is based on work by Burr,
Erdo� s, and Lova� sz [BEL76], Burr, Nes� etr� il, and Ro� dl [BNR85], and Burr, Faudree,
and Schelp [BFS77]. These constructions, however, use exponentially sized hyper-
graphs, making them unusable for polynomial time.

Perhaps, however, there is a way to build smaller determiners and switches for
particular graphs. K3 would be an obvious first candidate to investigate. Hence we
propose the following conjecture:

Conjecture 6.1. Deciding whether F � (K3 , Kn) is 6p
2-complete.

We will support this conjecture by proving a theorem that reduces the whole
problem to the effective construction of determiners.

Let us review the completeness proof of Theorem 4.12. Suppose we have blue
determiners (that means the signal edge is forced to be blue). There were two places
where we needed blue enforcers: to build switches and to force edges to be blue.
The second task can be accomplished by blue determiners now. We just take one
such determiner for each edge we want to be forced to be blue. Since we restrict
ourselves to 3-connected graphs the determiners work as expected as the graphs
cannot extend over a single edge.
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We are left with the construction of switches. Lemma 2.3 in Burr, Nes� etr� il, and
Ro� dl [BNR85] shows how to build a switch in polynomial time given a (G, H)-
determiner and a (H, G)-determiner for some 3-connected G and H. Hence all we
are left with is the construction of a (H, G)-determiner from a (G, H)-determiner.
Take a copy of G and make each edge except for one (call it e) the signal edge of
a separate (G, H)-determiner. In any (H, G)-good coloring all the signal edges have
to be blue and hence e is forced to be red. Since G and H are 3-connected it is clear
that a monochromatic copy of G or H cannot extend beyond the identified edges.
This means that a monochromatic copy of G or H is either contained in one of the
determiners or in the copy of G. (The same is true for a K3 .) Hence a (H, G)-good
coloring will result from merging the (H, G)-good colorings of the determiners and
making e red.

Note that these switches are much simpler than the ones we used in the first
sections. This is because there we had to spend some ingenuity on forcing the edges
between x-gadgets to be blue. Now that we are dealing with 3-connected graphs, we
can simply use blue determiners to achieve that task.

The above discussion can be summed up in a conditional result.

Theorem 6.2. Let G be a fixed 3-connected graph or a K3 . If a (strong) (G, Kn)-
determiner can be constructed in polynomial time, then deciding F � (G, Kn) (F ~

(G, Kn)) is 6p
2 -complete.

Building a determiner for (K3 , Kn) is probably a hard task. As a first approach
one could try to apply the ideas related to Ramsey-minimal graphs presented in the
preceding section.

6.2. Induced Paths

So far all the completeness results were for pairs of graphs including the complete
graph. The reason is that this allows us to look at arrowing as coding any uniform
family of clique problems. Since the clique problem is NP-complete this gives us the
completeness result on the second level. In this section we show that we can
similarly lift the NP-complete problem of testing for an induced Pn to the second
level.

We believe that the problem F ~ (Pk , Pn) is 6p
2-complete for any fixed k. We

settle for the modest goal of proving this statement for k=3.

Theorem 6. Deciding F ~ (P3 , Pn) is 6p
2 -complete.

We will show the theorem in two steps. We first prove the existence of a strong
enforcer, and then show how to use the gadget in the completeness construction.

Lemma 6.4. We can build a strong (P3 , Pn)-enforcer in polynomial time in n.

Proof. We will show how to build a strong (P3 , P2n)-enforcer, the other case is
similar. Take a K2, 3 and let a and b be its two vertices of degree 3. Then in any
coloring of the K2, 3 that does not contain a red P3 , there is a blue (induced) path
of length 2 from a to b. Take n&1 such K2, 3 's and line them up by identifying the
b vertex of one K2, 3 with the a vertex of the next. Add a vertex v and connect it
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to the a vertex of the first K2, 3 . Call the resulting graph G. It is easy to see that if
G does not contain a red induced P3 it will contain a blue induced P2n&1 starting
with the a vertex of the first K2, 3 . Hence the edge incident with v is forced to be
red, which makes v a signal vertex of G. A (P3 , P2n)-good coloring is obtained by
coloring the edge incident with v red, and the remainder of G blue. K

Lemma 6.5. For a given 62 sentence � we can construct a graph F and compute
a number n in polynomial time such that � is true if and only if F ~ (P3 , Pn).

Proof. Let �=(\x1 , ..., xl)(_y1 , ..., yk)[.(x1 , ..., xl , y1 , ..., yk)] be the formula
to be coded with its l+k variables ranging over [0, 1]. We will refer to the xi as
the x-variables and the yi as the y-variables. We make the usual assumptions on .,
that is that it is in conjunctive normal form with at most three literals per clause,
and each literal occurs at most twice in the whole formula. As before x-variables
occur in exactly two clauses: (x 6 y� ) and (x� 6 y). Let the total number of clauses
be c.

The basic coding device for y-variables is built from a K3, 3 by identifying its
vertices in order with every other vertex of a C12 . Call this graph Sy . We call the
two vertices of Sy which are in a triangle and have degree two Iy and Oy . Number
the vertices of Sy which belong to C12 in order such that Iy is number one and Oy

is number 7 (see Fig. 8).
For every clause C we take a new edge eC , and for every x-variable, two vertices

ux and vx . From these build a graph F $ as follows. We start with ux1
and connect

it to one vertex of eC by a P3 where C is the clause that x1 appears in. Connect the
other vertex of eC to vx1

by another P3 . Do the same for the clause C$ in which x� 1

appears. Now connect vx1
by an edge to ux2

and repeat the procedure until we have
reached vxl

which we will then connect by an edge to Iy1
. Identify Oyi

with Iyi+1
for

all i<k. For each yi that occurs in a clause C we take two vertices from Syi
(either

number 2 and 4, or number 4 and 6) and connect one of the vertices to one end
of eC by a P3 and the other vertex to the other end by another P3 . For y� we can
take either number 8 and 10 or number 10 and 12. Since each literal occurs at most
twice this is sufficient.

FIG. 8. A y-gadget.
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Finally, from F $ we get the graph F by attaching blue (P3 , P3l+6k+c)-enforcers
to every vertex in an Sy , every vx , and every vertex belonging to some eC . (These
are all the vertices in F except for the ux vertices, and the middle vertices of the
paths of lengths two leading to some eC .)

For an example of what F $ looks like (that is, F without the enforcers) see Fig. 9.
We claim that F ~ (P3 , P3l+6k+3c) if and only if � is true.
Suppose that � is true, but there is a coloring of F which contains no induced

red P3 and no induced blue P3l+6k+3c . Fix such a coloring. In particular all the
enforcers work as they should and force all the edges in F $ that are incident with
an enforcer to be blue. In particular, for all x-variables there will be a blue path of
length five from ux to vx (since ux can have at most one outgoing red edge), and
hence there will be a blue path of length six from each uxi

to uxi+1
(or Iy1

). Depend-
ing on whether the path runs through the x clause or the x� clause, call x true or
false, respectively. With this assignment to the x-variables there is an assignment to
the y-variables such that .(x1 , ..., xl , y1 , ..., yk) is true. Fix such an assignment. For
each clause C choose a y-variable that makes it true, unless the clause is already
made true by the assignment to the x-variables. There are c&l such clauses. We
can now extend the blue path of length 6l from ux1

to Iy1
through the y-variable

coding devices and the c&l clauses that remain to be satisfied. This will add
6k+3(c&l ) edges to the path (since every detour through a clause that has to be
satisfied adds three edges to the total length). This gives us an induced blue path
of length 3l+6k+3c contradicting the assumption.

FIG. 9. F $ for (\x)(_y)[x W% y]#(\x)(_y1 , y2)[(x 6 y� 1) 7 (x� 6 y1) 7 ( y1 6 y2) 7 ( y� 1 6 y� 2)].
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Suppose now that F ~ (P3 , P3l+6k+3c), but � is false, that is, there is a truth-
assignment to the x-variables (which we fix) such that .(x1 , ..., xl , y1 , ..., yk) is false
for all assignments to the y-variables. Pick a coloring of F as follows. Choose a
good coloring for each enforcer and color all edges of F $ which are incident to the
signal vertices blue. For each x-variable, color blue the edge from ux which is on
the path to the clause containing the x-literal that is true, and red the edge from
ux leading to the other clause containing an x-literal.

By assumption there is an induced blue path of length 3l+6k+3c. The path
cannot go through any of the enforcers, since they are linked to F $ by a red edge
(and the enforcers themselves do not contain paths of length 3l+6k+3c). Each Sy

can contain at most six edges of an induced blue path, and each x coding device
(with the corresponding clauses) at most six edges. Hence there are at least
(3l+6k+3c)&(6k+6l )=3(c&l ) blue edges of the path left which therefore have
to correspond to the edges in the remaining c&l clauses that are not already
satisfied by the assignment to the x-variables. For each of these c&l clauses pick
a y-variable which is directly connected to it on the blue path, and call that y-variable
true or false according to whether it is connected to the positive or negative side of the
y-coding device. The way F $ was constructed assures that this gives us a consistent
assignment of truth-values to some y-variables. (The assignment is consistent because
the K3, 3 makes it impossible for an induced path to run through both the positive
and negative side of a y-coding device.) Furthermore, this assignment makes all
clauses true for the particular values of x chosen, which contradicts the assumption.

K

7. THE DIAGONAL CASE

If we restrict the questions F � (G, H) and F ~ (G, H) to identical G and H we
get a problem of independent interest, called the diagonal case. In Ramsey theory
one usually writes F � G for F � (G, G) and F ~ G for F ~ (G, G). We will,
however, adhere to our binary notation.

What then is the complexity of the diagonal case, namely deciding F � (G, G)
and F ~ (G, G)? We are confronted with two phenomena that we did not encounter
in the more general problem. Consider. for example, the complexity of F � (Kn , Kn).
If n�2 log |F |, then F � (Kn , Kn) is false, since F is too small to contain a mono-
chromatic Kn in every coloring (remember that r(n)�2n�2). Hence the complexity
of F � (Kn , Kn) sits in CoNPLogclique where Logclique is the problem of deciding
whether a graph F has a clique of size at least log |F |. We expect CoNPLogclique to
be smaller than 6p

2 . The second observation is that we cannot make use of deter-
miners anymore, as they require asymmetry.

There is not much we can say about the complexity of the non-induced diagonal
case at this point. It is at least as hard as CoNP (remember that F � (K3 , K3) is
coNP-complete). Since we showed that F � (P3 , Pn) is 6p

2 -complete, paths might
be a good candidate for a 6p

2 -completeness proof.

Conjecture 7.1. F � (Pn , Pn) is 6p
2-complete.
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Let us have a closer look at F � (Kn , Kn) before we study the induced case. As
mentioned above the problem lies in coNPLogclique. F � (Kn , Kn) if and only if for
all subgraphs F $ of F either F $ or F&F $ contains a clique of size n. This is equiv-
alent to saying that for all subgraphs F $ of F the disjoint union of F $ and F&F $
contains a clique of size n. Hence we need only one query, and the problem lies in
coNPLogclique [1], that is, one many-one access to the Logclique problem along each
computation path of a coNP machine (checking all subgraphs of F ). Assuming that
switches (negative senders) for Kn can be constructed in exponential time (the con-
struction of negative senders in [BNR85] does not even seem to be primitive recur-
sive), the problem can be shown to be complete for problems of the following form:
for all x either f (x) or F& f (x) contains a clique of size at least n, where f computes
a graph in polynomial time from x, and F is a graph. As we saw above this class
of problems is a subclass of coNPLogclique [1], and likely a proper subclass. It is not
clear whether it has a natural characterization in terms of complexity classes.

How about the induced case? Interestingly, here stars will work. Remember that
the non-induced version F � (K1, n , K1, m) can be decided in polynomial time
[Bur90]. Yannakakis and Lewis [GJ79, Problem GT21] showed that deciding
whether a graph has a K1, n induced subgraph is NP-complete (they actually proved
a more general result). This implies that F ~ (K1, 1 , K1, n) is NP-complete. It is easy
to see this directly: a graph G has an independent set of size at least n if and only
if the graph obtained from G by adding a vertex and connecting it to all vertices
of G contains an induced K1, n (for n>4, remember that we can assume that G has
maximal degree 3). Hence F ~ (K1, n , K1, 1) is NP-complete.

Theorem 7.2. F ~ (K1, n , K1, n) is 6p
2-complete.

Proof. Let �=(\x1 , ..., xk)(_y1 , ..., yk)[.(x1 , ..., xk , y1 , ..., yk)]. We are making
the same assumptions as in the earlier proofs. In particular, each x variable will
appear in exactly two clauses, namely (x 6 y� ) and (x� 6 y).

Let C1 , ..., Cn be the clauses of .. Construct a graph G as follows. For each
clause Ci take as many vertices as there are literals in the clause, connect them, and
label them with the corresponding literals. Connect two vertices belonging to different
clauses if and only if their labels are contradictory. Then G will contain an independent
set of size n if and only if (_x1 , ..., xk)(_y1 , ..., yk)[.(x1 , ..., xk , y1 , ..., yk)] is true.
Note that G will have maximum degree at most 4.

Let G$ be the graph constructed from G by taking a new vertex w and connecting
it to all vertices in G. Then G$ will contain an induced K1, n if and only if
(_x1 , ..., xk)(_y1 , ..., yk)[.(x1 , ..., xk , y1 , ..., yk)] is true (assuming n>4).

Construct a graph Bn as follows. Start with a copy of K2, 2n&3 and call the two
vertices in the smaller partition u and v (we assume that n�3). Insert an edge
between u and v, and for each vertex of the 2n&3 nodes of the larger partition of
the K2, 2n&3 , take a copy of a K1, 2n&3 , and identify the node with the center of that
star. See Fig. 10.

We claim that Bn acts as a positive sender with signal vertices u and v in the
following sense: in any (K1, n , K1, n)-good coloring of Bn additional edges out of u
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FIG. 10. A positive sender for stars.

and v are all forced to have the same color, and there is a good coloring in which
edges out of u and v are forced to be red, and one in which they are forced to be
blue.

For the first half of the claim consider a good coloring of Bn . Each of the 2n&3
stars K1, 2n&3 we added to the bipartite graph will have n&1 red edges and n&2
blue edges, or vice versa. This forces the pair of edges out of each center to u and
v to have the same color. Hence there must be n&1 red pairs and n&2 blue pairs,
or vice versa. Suppose the first. Then u and v are each at the center of a red induced
K1, n&1 , and hence all additional edges out of u and v (even if adjacent) are forced
to be blue. We can construct a good coloring as follows. Suppose we want to force
all edges out of u and v to be blue. Look at the 2n&3 vertices in the second parti-
tion of the K2, 2n&3 , and the pairs of edges leaving them towards u and v. Color
n&1 of these pairs of edges red, and the other n&2 pairs blue. Fix corresponding
colorings of the 2n&3 stars centered in the vertices of the second partition: if the
center of a K1, 2n&3 is incident with a red pair, make n&2 of the edges of the star
red, and the remaining n&1 blue, and vice versa. Note that the edge between u and
v assures that this is a good coloring since an induced K1, n cannot include both u
and v as outer vertices.

From Bn we construct a family of graphs Dn, m as follows. Start with a Km and
m copies of Bn . Identify each vertex of Km with a signal vertex of a Bn . By construc-
tion the m non-identified signal vertices will force all additional edges leaving these
m signal vertices to have the same color. We can use Dn, m to construct a switch-like
graph which we will call a reverser for the purposes of this proof. Reversers relate
to switches as enforcers do to determiners. Start with a copy of a Dn, n(n&1) , and
n copies of K1, n&1. Identify the non-identified signal vertices of Dn, n(n&1) with
the n(n&1) outer vertices of the n stars. Add another K1, n&1 and identify its outer
vertices with n&1 of the n center vertices from the stars added earlier. Call the two
non-identified center vertices u and v. This graph acts as a reverser with signal
vertices u and v in the following sense. Edges out of u will be forced to have the
opposite color of edges out of v, and there are good colorings in which edges out
of u are red, and edges out of v blue, and vice versa.
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The idea used in the construction of the reverser we can also use to force edges
in G to have the same color. Construct a graph Dn as follows. Take a copy of
Dn, 3n(2n&3) . Add 3n copies of K1, n&1 and 3n copies of K1, n&2 . Identify the
3n(2n&3) signal vertices of Dn, 3n(2n&3) with the outer vertices of the stars. The
center vertices of the stars fall into two categories depending on whether they are
at the center of a K1, n&1 or a K1, n&2 . Call the former y-signal vertices, and the
latter x-signal vertices of Dn .

We are now ready to construct F. Take G$ and a copy of Dn . Consider the
vertices of G (as a subgraph of G$): make those labeled with a y-literal y-signal
vertices of Dn , and those labeled with an x-literal x-signal vertices of Dn . Since
there are at least 3n signal vertices of each type, there will be sufficiently many
signal vertices to accomplish this. Finally, for each x-variable add a reverser, and
two edges connecting the two vertices in G corresponding to the x-variable to the
two signal vertices of the reverser. This completes the construction of F.

Note that in a good coloring all edges in G are forced to have the same color,
say blue. This is immediate for edges incident with a y-signal vertex. The only other
case is an edge uv labeled with contradictory x-literals. If uv were red, it would
complete a red induced K1, n&1 with center in u. Hence all other edges leaving u
are forced to be blue, in particular the one to the reverser, which forces the edge
connecting the reverser to v to be red, completing a red induced K1, n&1 in v, forcing
all other edges out of v, and in particular uv, to be blue, which is a contradiction.
Hence all edges in G are forced to have the same color.

Furthermore, a very similar argument shows that if u and v are two vertices in
G labeled with contradictory x-literals, then at least one of uw or vw is blue (where
w is the vertex of G$ which is adjacent to every vertex in G). A red uw, say, would
complete a red induced K1, n&1 with center in u forcing all other edges leaving u to
be blue, including the one to the reverser. This in turn forces the edge connecting
the reverser to v to be red, completing a red induced K1, n&1 in v, forcing all other
edges out of v, and in particular vw, to be blue.

We claim that F ~ (K1, n , K1, n) if and only if � is true.
Suppose that � is true, but F ~% (K1, n , K1, n). Fix a (K1, n , K1, n) good coloring

of F. Since the coloring is good, all the gadgets work as expected. This means all
edges in G have the same color (without loss of generality this color is blue), edges
out of w to vertices in G which do not correspond to x-literals are also blue, and
out of the two edges from w to contradictory x-literals at least one is blue. For each
x variable xi say it is true if the edge from w to the vertex labeled xi is blue, and
false otherwise (in which case there is a blue edge from w to the vertex labeled with
the negation of xi). For this particular assignment choose an assignment of truth-
values to the y variables such that .(x1 , ..., xk , y1 , ..., yk) is true. By the construc-
tion of G there are n vertices in G which form an independent set, and all of them
are connected to w by blue edges, hence F contains a blue induced K1, n contra-
dicting the assumption.

To show the other direction assume that F ~ (K1, n , K1, n) and � is false. Fix a
truth-assignment to the x variables such that .(x1 , ..., xk , y1 , ..., yk) is false for all
truth-assignments to the y-variables. We have to construct a good coloring for F.
Make all edges in G blue, and extend this with a good coloring of Dn in which its
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underlying complete graph is red. Then the x-signal vertices are at the center of a
red induced K1, n&2 , and the y-signal vertices are at the center of a red induced K1, n&1 .

Color an edge from w to a y-vertex blue, and edges from w to a vertex labeled
with an x literal blue if that literal is true, and red otherwise. Extend this with a
good coloring of the reversers and the edges connecting them to G.

We claim that an induced monochromatic K1, n can only occur with w as the
center. Since we chose good colorings of all the gadgets (Dn , and the reversers),
none of them will contain an induced monochromatic K1, n . The two signal vertices
of a reverser are incident with a red K1, n&1 and one blue edge, or a blue K1, n&1 ,
and a red edge, hence they are not at the center of an induced monochromatic K1, n .
By choice of the coloring both the x-vertices and the y-vertices in G are incident
with n&1 red edges, and at most five blue edges (since G has maximum degree
four, at most four edges from G, and one to w). Hence if n>5 they cannot be at
the center of a red induced K1, n . This leaves only w.

If there is an induced monochromatic K1, n centered in w it cannot be red, since
there is at most one red edge from w to each clause, and there is a clause to which
there is no red edge from w. Hence there must be a blue induced K1, n with center
in w with its outer vertices in G. Since the K1, n is induced its outer vertices form
an independent set in G of size n. By the construction of G this set corresponds to
an assignment to the x and y variables that makes . true. Moreover the way we
chose the coloring ensured that this assignment is consistent with the given assign-
ment to the x-variables. Therefore .(x1 , ..., xk , y1 , ..., yk) is true contradicting the
choice of the assignment of truth values to the x-variables. K

8. OTHER COMPLEXITIES

In the preceding section we discussed the complexity of F � (Kn , Kn) and why we
do not expect it to be 6p

2 -complete. The simplest examples of arrowing problems
that are not 6p

2 -complete (unless PH collapses) occur if G (or H) is a single edge.
F � (P2 , H) is equivalent to H being a subgraph of F (if F contains at least one
edge). Similarly F ~ (P2 , H) is equivalent to H being an induced subgraph of F (if
F contains at least one edge). Hence these problems lie in NP, and several are
NP-complete, since the subgraph problems are. F � (P2 , Kn), F � (P2 , Kn, n), F �
(P2 , Pn), and F � (P2 , Cn) correspond to the clique problem, complete balanced
bipartite subgraph, the longest path problem, and Hamiltonian cycle, and are
therefore NP-complete. Similarly in the case of induced arrowing F ~ (P2 , Pn), and
F ~ (P2 , K1, n) are NP-complete. The first problem corresponds to finding induced
subpaths [GJ79, Problem GT23], and the second problem is NP-complete by the
first paragraphs in the proof of Theorem 7.2.

If both G and H are fixed graphs, then the problem lies in NP, and can indeed
be NP-complete, as witnessed by F � (K3 , K3) [GJ79, Problem GT6]. There are
cases, however, in which the problem lies in P, as observed by Burr [Bur90]. If the
set of Ramsey-minimal graphs of G and H is finite, then F � (G, H) can be solved
in polynomial time, since we only have to check F for a finite number of subgraphs.
As an example Burr mentions F � (nK2 , H), where both n and H are fixed. It is not
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clear, however, whether we can determine all the Ramsey-minimal graphs effectively,
even if we know that there are only finitely many. (On a smaller scale this seems
to mirror the situation in the graph minor theorem.)

For our final example we look at stars: F � (K1, n , K1, m). Burr showed that the
problem F�% (K1, n , K1, m) m-reduces to Perfect Matching [Bur90] in logarithmic
space. A perfect matching of a graph G is a subset of the edges of G such that every
vertex of G is incident to exactly one edge of the subset. Perfect Matching is the
corresponding decision problem asking whether a graph G has a perfect matching.
We will show that Perfect Matching log-space m-reduces to F�% (K1, n , K1, m) which
means that these two problems have the same complexity (up to log-space m-reduc-
tions). This implies that determining the precise complexity of the arrowing
problem is going to be difficult, since little is known about the matching problem. We
do know that it lies in both P and RNC (randomized circuits of polylogarithmic depth
and polynomial size). Since RNC and P are expected to be incomparable (see
[GHR95]), it is unlikely that the arrowing problem will turn out to be complete
for either.

Theorem 8.1. F�% (K1, n , K1, m) and Perfect Matching are logarithmic-space
m-equivalent.

Proof. Burr [Bur90] showed that the arrowing problem reduces to a matching
problem. which in turn reduces to Perfect Matching. Hence it will be sufficient to
show that Perfect Matching m-reduces to F�% (K1, 2 , K1, m).

Given an integer d>2 construct a graph E$d as follows. Take a copy of Kd&1, d&1

and three vertices u, v, and w. Connect u by single edges to the d&1 vertices in first
partition of Kd&1, d&1 , and w to the d&1 vertices in the second partition. Finally,
add edges uv and wv to get Ed . We claim that in a (K1, 2 , K1, d)-good coloring of
Ed both uv and wv are forced to be blue. For a contradiction suppose there was a
good coloring in which uv, say, was red. Then the d&1 edges out of v to the first
partition are forced to be blue. Since every vertex in the first partition is connected
to the d&1 vertices in the second partition, at least one of these edges has to be
red (to avoid a blue K&1, d with the edge to u). Furthermore, at most one edge
is red, since we have to avoid red K1, 2s. Hence the red edges between the first and
second partition form a matching of the vertices in the two partition. Hence all the
edges from the second partition to w are forced to be blue, forcing wv to be red.
This, however, completes a red K1, 2 with center in v.

On the other hand E$d does have a good coloring: make uv and wv blue, make
one of the edges from u to the first partition red, the others blue, do the same thing
for v and the second partition, connect the red neighbors of u and v by a blue edge,
fix a perfect red matching for the 2d&2 blue neighbors of u and v, and color the
remaining edges blue.

Assume that d is odd. We construct Ed from E$d . Take (d&1)�2 copies of E$d and
identify their v-vertices. Add two new vertices s and t, and edges st and tv. In any
good coloring tv will be forced to be red (since v is incident with 2(d&1)�2=d&1
blue edges), and hence st is forced to be blue.

With Ed we can now describe the reduction. Let G be the graph for which we
want to decide whether it has a perfect matching. Let d be the smallest odd integer

318 MARCUS SCHAEFER



larger than the maximum degree of G. For each vertex v of G take d&degree(v)
copies of Ed , and identify v with the s-vertices of the Ed . Call the resulting graph
F. We claim that G has a perfect matching if and only if F�% (K1, 2 , K1, d). If there
is a good coloring of F, then all the gadgets work, and every vertex of G in F is
incident with d edges, exactly one of which must be red. This red edge must lie in
G, since the additional edges we added to vertices in G are all forced blue. Hence
the red edges form a perfect matching of G. If we are given a perfect matching of
G, we color the edges of G which belong to the matching red (in F ), the edges in
G not in the matching blue (in F ), and fix good colorings for all gadgets. K

9. CONCLUSION

We have presented several completeness results for both the induced and the
non-induced case, and derived some general results that reduce the problem to the
effective construction of graphs like (strong) enforcers and (strong) determiners.
These constructions are combinatorial problems of some trickiness. In a first step
the paper [SS] collects effective constructions of graphs that strongly arrow other
graphs, but more work is to be done.

The most interesting task left by this paper is the construction of a (K3 , Kn)-
determiner (with or without oracle help). By Theorem 6.2 this would imply the
6p

2 -completeness of F � (K3 , Kn). Another question we would like to settle is the
complexity of diagonal arrowing. It seems that F � (Pn , Pn) should be a good
candidate for further investigation.

Tables 1 and 2 collect the results known (to me) on arrowing and strong arrowing,
excluding the conditional results proved in this paper, and the trivial NP-completeness
results (where G=P2).

A combinatorial problem related to F � (K1, n , K1, m) is finding a characterization
of graphs F for which F � (K1, n , K1, m). Such a characterization is known for the
diagonal case (n=m), but even the case F � (K1, 2 , K1, 3) is open and seems difficult
[BEL76].

Another combinatorial challenge is hidden in the completeness result of the induced
diagonal case. The result implies that there are polynomial-time computable functions
f and g such that F � (G, H) if and only if f (F, G, H) ~ (g(F, G, H), g(F, G, H)),

TABLE 1

Complexity of Arrowing

Relation Fixed parameters Computational complexity Reference

F � (T, Kn) tree T, |T |�3 complete for 6p
2 Theorem 4.1

Kn � (G, H) hard for NP Burr [Bur84a]
F � (K3 , K3) complete for NP Burr [GJ79]
F � (nK2 , H) n, H in P Burr [Bur90]

F�% (K1, n , K1, m) Perfect Matching Burr [Bur90], Theorem 8.1
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TABLE 2

Complexity of Strong Arrowing

Relation Fixed parameters Computational complexity Reference

F ~ (K1, p , Kn) p�2 complete for 6p
2 Theorem 5.1

F ~ (K1, n , K1, n) complete for 6p
2 Theorem 7.2

F ~ (P3 , Pn) complete for 6p
2 Theorem 6.3

F ~ (P4 , Kn) tt-complete for 6p
2 Theorem 4.1

that is, the general case can effectively be reduced to the diagonal case. Can f and
g be substituted by (effective) combinatorial constructions?

The result for stars suggests a generalization. Is it true that F � (G, H) lies in P,
if G and H are trees of bounded diameter? Obviously we cannot relax the condition
that G and H be trees, since F � (K3 , K3) is already NP-complete.

The effectiveness of general Ramsey theory (as opposed to graph Ramsey theory)
is covered in a survey by Bill Gasarch [Gas98]. Most of the results in this area
belong to computability rather than complexity. There is, however, one exception
which moreover establishes a link to graph Ramsey theory, and that is the com-
putation of Ramsey numbers. Remember the definition of the generalized Ramsey
number of two graphs G and H as r(G, H)=min[n: Kn � (G, H)]. The usual
Ramsey numbers can be defined from this as r(k, l )=r(Kk , Kl). The question of
how hard it is to compute r(k, l ) is probably not a good one, since r(k, l ) might be
exponentially large compared to k and l, so that an algorithm in the polynomial
hierarchy might fail just because of the size of the output, whereas we would not
expect the problem to be hard for exponential time. This anomaly disappears if we
consider the graph variant: Km � (G, H). Burr [Bur84a] considered this problem
and showed that it is NP-hard. That means that deciding r(G, H)<m is NP-hard
(where m, in unary, is part of the input). Since the best upper bound we have is 6p

2 ,
this leaves us with a gap which will be more difficult to close than the one for the
Arrowing problem, since we rely heavily on the structure of the graph F we are
constructing. The situation for r(k, l ) seems worse. Burr's proof requires one of G
or H to be a path, so the restriction to complete graphs necessitates new ideas.
There do not seem to be any lower bounds on the complexity of computing r(k, l ).

We should also mention an analogue of F � (G, H) in computability. If the edge
set of (the possibly infinite graph) F is computably enumerable, and G and H are
finite, then Arrowing m-reduces to <$, the complement of the halting problem (if
e1 , ..., en , ... is an enumeration of the edges of F ask whether there is a (G, H)-good
coloring of F restricted to edges e1 , ..., en for all n). This observation is complemented
by a result of Burr [Bur84b] who showed that <$ can be m-reduced to Arrowing
even if F is restricted to be a highly computable (essentially finite and periodic)
graph. Hence this infinite version of Arrowing is 61-complete.

In conclusion, let us point out some other results inquiring into the complexity
of Ramsey theory. Burr showed that deciding whether a finite set of points in the
plane can be colored with three colors such that no two points within distance K
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have the same color is NP-complete [Bur82]. This seems to be the only computational
result in Euclidean Ramsey theory which considers pointsets in finite-dimensional
real space. One obvious question to ask is: does Burr's problem become 7p

2-complete
if K is not restricted to be fixed?

Finally, observe that all the results in this paper are about edge-colorings. What
happens for vertex-colorings? (Is there a clever reduction from edge-colorings to
vertex colorings? Simply using line graphs will not do.)
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