
INFORMATION AND COMPUTATION 91, 86-102 (1991)

On Truth-Table Reducibility to SAT

SAMUEL R. BUSS*

Department of Mathematics,

University of California, San Diego,

La Jolla, California 92093

AND

LOUISE HAY+

Department of Mathematics, Statistics, and Computer Science,

University of Illinois at Chicago,
Chicago, Illinois

DEDICATED TO THE MEMORY OF LOUISE HAY

We show that polynomial time truth-table reducibility via Boolean circuits to
SAT is the same as logspace truth-table reducibility via Boolean formulas to SAT
and the same as logspace Turing reducibility to SAT. In addition, we prove that a
constant number of rounds of parallel queries to SAT is equivalent to one round
of parallel queries. We give an oracle relative to which 44 is not equal to the class
of predicates polynomial time truth-table reducible to SAT. 0 1991 Academic

Press. Inc.

1. INTRODUCTION

Ladner, Lynch, and Selman (1975) introduced the notion of polynomial
time truth-table reducibility as an aid to the study of low level complexity.
As noted by Ladner and Lynch (1976) this is equivalent to the notion of
polynomial time truth-table reducibility via Boolean circuits; they asked
whether it is equivalent to polynomial time truth-table reducibility via
Boolean formulas. This paper studies the class of predicates which are
polynomial time truth-table reducible to SAT; a number of equivalent and
somewhat surprising equivalent definitions are given. In particular, we
show that, for reducibility to the NP-complete problem SAT, polynomial
time truth-table reducibility via Boolean circuits is equivalent to logspace
truth-table reducibility via Boolean formulas. Consequently, it is also

* Supported in part by NSF Grants DMS-8511465, DMS-8701828, and DMS-8902480.
t Work partially completed while on sabbatical leave at the University of California.

Berkeley.

86
0890~54O1/9 1 $3.00
Copyright Q 1991 by Academx Press, Inc.
All rights of reproduction in any form reserved.

TRUTH-TABLE REDUCIBILITY 87

equivalent to logspace Turing reducibility to SAT. Several other equivalent
definitions are given for the the class of predicates polynomial time truth-
table reducible to SAT and the fact that all these definitions coincide
provide evidence that this is a robust and interesting class for computa-
tional complexity. The results below refute a conjecture of Kiibler,
Schoning, and Wagner (1986), but answer only a special case of the
original questions of Ladner and Lynch.

Let < ;(NP) denote the class of decision problems polynomial time
truth-table reducible to NP; this paper presents several other characteriza-
tions of this class. First, Krentel (1986) defines the class PSATIO(log n)];
we show this is equal to < ;(NP). Cai and Hemachandra (1985) defined a
hierarchy C,“, n,” above the finite levels of the difference hierarchy over
NP; we show this hierarchy collapses with C$ =fli= <g(NP). Further-
more, < ;(NP) is precisely the set of predicates definable by Ci n ni
formulas as defined by Buss [2].

The class < E(NP) is defined so that it contains the predicates which are
computed in polynomial time by a Turing machine which is allowed one
set of parallel queries to SAT. This paper shows that in fact a constant
number of rounds of parallel queries to SAT are permissable-so a polyno-
mial time Turing machine which makes O(1) rounds of parallel queries to
SAT recognizes a < E(NP) predicate.

In the final section we provide evidence that < E(NP) is distinct from
other commonly studied classes in computational complexity by giving one
oracle relative to which Q P,(NP) is equal to PSPACE and another oracle
relative to which < $(NP) and A,P are distinct. For both oracles, the
Boolean hierarchy over NP is proper and hence distinct from < $(NP)
and, in particular, < E(NP) is not equal to NP relative to these oracles.

Many of the results of this paper have been obtained independently by
K. Wagner; in particular, Theorem 1 and many of the other results of
Section 2 are in Wagner (1988a, 1988b). In addition, one of the referees
pointed out that alternative proofs of most of the results in Sections 1
through 3 can be obtained using the “census function” method of
Hemachandra (1987). Similar “counting” techniques have been used
recently by a number of authors; an early example is Jenner, Kirsig, and
Lange (1989); the work of Beige1 (1987) was particularly helpful to us in
the original formulation of our results.

The current paper is a slightly revised version of part of Buss and
Hay (1987); we wish to thank the referees for a number of suggestions
which improved this paper.

88 BUSSANDHAY

2. TRUTH-TABLE REDUCIBILITY TO SAT

Polynomial time truth-table reducibility (6 fi) was first introduced by
Ladner, Lynch, and Selman (1975) and further studied by Ladner and
Lynch (1976). The general idea is that A < ; B if there is a polynomial time
function which, on input x, precomputes a number of questions about
membership in B and describes a Boolean function of the answers to these
questions which specifies the membership of x in A. However, in the low
level complexity setting there are several, apparently inequivalent ways of
describing a Boolean function; the most common representations are as a
Boolean circuit, a Boolean formula, or as a full truth table. These represen-
tations may give rise to different notions of polynomial time truth-table
reducibilities, since there may be no way to convert one representation to
another in polynomial time; indeed, it is an open question whether Boolean
circuits have equivalent polynomial size Boolean formulas. And, of course,
a full truth-table may be exponentially larger than an equivalent Boolean
formula. Accordingly, we shall define three different versions of polynomial
time truth-table reducibilities. (These have already been considered by
Ladner and Lynch and more recently by Wagner, 1986, and Kobler,
Schiining, and Wagner, 1986.)

2.1. Some Definitions and a Main Theorem

As usual, P and NP denote the classes of polynomial time and non-
deterministic polynomial time predicates, respectively. Let Q $! denote
polynomial time, Turing reduction (as compared to many-one reduction).
Likewise, < ‘,“” denotes logspace, Turing reduction.

DEFINITION. Let A and B be decision problems. Let eval(z, x,, x,) be
the value of the Boolean function coded by z on binary inputs x1, x,.
Let xB be the characteristic function of B, so xc(y) = 1 if y E B and
xB(y) = 0 otherwise. Then:

(1) A < z B, A is polynomial time (Boolean circuit) truth-table
reducible to B if and only if there is a polynomial time function f such that
for all x, f(x) = (z, yl, yk) with z coding a Boolean circuit such that

XEA *evaUz, xAY~L -., x~(Y~))= 1.

(2) A i&B, A is polynomial time, Boolean formula truth-table
reducible to B if and only if there is a polynomial time function f such that
for all x, f(x) = (z, y,, yk) with z coding a Boolean formula such that

XEA -=-eval(z, kAyI), .-, x~(Y~) = 1.

TRUTH-TABLE REDUCIBILITY 89

(3) A ~5, B, A is polynomial time, full truth-table reducible to B if
and only if there is a polynomial time function f such that for all X,
f(x)= <z, Yl, yk) with z coding a full truth table such that

x E A * eval(z, xe(yl), xB(yk)) = 1.

In all three cases, the integer k may depend on x.

Ladner, Lynch, and Selman (1975) showed that A < $ B if and only if A
is polynomial time reducible to B with one round of parallel queries (see
Section 3).

DEFINITION. Let A be a decision problem. Then <;(A), <&(A), and
<$,(A) are the classes of decision problems which are polynomial time
truth-table reducible to A via Boolean circuits, via Boolean formulas and
via full truth tables, respectively. Also, < E(NP), < &(NP), and <$,(NP)
denote < i(SAT), < &(SAT), and <St (SAT), respectively.

The definitions of polynomial time truth-table reductions may be adapted
for logspace computability as well; except that for logspace reductions
there is a fourth natural notion of truth-table reducibility. We define ~2,
< 2, and <$,E exactly as in the definitions above except that now the
function f is required to be logspace computable instead of polynomial time
computable. Actually, the reducibility < ? is somewhat counterintuitive
since the evaluation of Boolean circuits is not logspace computable unless
P equals logspace. For this reason, Ladner and Lynch (1976) considered a
form of logspace reducibility which we shall denote <Ff which is inter-
mediate in strength between <$ and d 2. Referring to the definitions
above, Ladner and Lynch called our z coding a Boolean function a “tt-con-
dition” and called the eval function a “tt-condition evaluator.” For <$
reducibility there is no restriction on the format of the code z but eval is
required to be logspace computable. By the theorem of Lynch (1977) that
Boolean formulas can be evaluated in logspace, if A < 2 B then A < ti B;
and by Ladner’s (1975) theorem that the circuit value problem is complete
forP,ifA<tfBthenAQFB.

It is obvious that <E(NP) 2 <&(NP)z <$,(NP); complete problems
for these classes are given by Kobler, Schoning, and Wagner (1986) and in
Wagner (1986). The next theorem states that < E(NP) is actually equal to
< &(NP) and the following theorem and corollary show that they are equal
to all of < z(NP), < Ff(NP), < :g(NP), and < ‘,“B(NP). This theorem was
independently discovered by K. Wagner.

THEOREM 1. < ,P,(NP) = < &(NP).

90 BUSS AND HAY

Proof: Let C be a finite alphabet and suppose CC 27 and C Q ; SAT;
let f be a polynomial time function giving a truth-table reduction of C to
SAT. For all XE.Z*, f(x) codes a sequence (c,f,(x),f.Jx)); we shall
sometimes write c(x) and k(x) to make it explicit that c and k are (polyno-
mial time) functions of x. Since f is polynomial time computable, k(x) must
be bounded by a polynomial q(n), where n = Ix 1 is the length of x.
Now SAT(y) is the predicate “y is satisfiable,” also let TRU(u, JI) be the
polynomial time predicate “u codes a satisfying assignment of y”; so
SAT(y) c* (3~ < y) TRU(u, y). Let B(i, x) be the predicate

(3w = (WI) . ..) w,(,,)) [for i distinct values ofj, TRU(w,,fi(x))]

which asserts that there are satisfying assignments for 3 i off,(x),fJx).
Clearly BE NP. Let A(i, x) be the predicate

(3w = (w,, . ..) wkcXJ)) [for i distinct values ofj, TRU(w,,fi(x)), and

eval(cb), xTRuhfi(-4X xTRU(wkyfk(x))) = 11.

So A(i, x) is in NP and asserts that there are satisfying assignments for i
of the J.(x)3 such that evaluating the Boolean circuit c(x) assuming that
these are all the satisfying assignments yields a True result.

Note that if A(i, x) is true then B(j, x) is true for all j< i. Also, if B(i, x)
is true and B(i + 1, x) is false then there are exactly i distinct values of j for
which fi(x) E SAT. Hence C can be defined by

x~Co(3i<k(x))(A(i, x) A lB(i+ 1,x)).

Finally, we claim that this puts C in 6 &(SAT). This is because for any x,
XE C if and only if the Boolean formula

k(s)

,\i, (A(k x) A lB(i+ 1, xl)

evaluates to be True. Since SAT is NP-complete, there are polynomial time
functions fA and fB so that fA(i, x) E SAT iff A(& x) and similarly for B.
Hence for any x, XE C if and only if the Boolean formula

k(x)
iJ/ohw(fAw) A 1 XSAT(fB(i + 1, xl)).

evaluates to True. Since k(x) is bounded by a polynomial of the length of
x, this is clearly a polynomial time, Boolean formula, truth-table reduction
of C to SAT. Q.E.D.

Actually the above proof gives a stronger result:

TRUTH-TABLE REDUCIBILITY 91

THEOREM 2. A decision problem C is in 6 $(NP) if and only tf it is
logspace truth-table reducible to SAT via Boolean formulas. So < z(NP)
equals < $(NP),

Proof The above proof still applies; note that fA and fB can be picked
to be logspace computable. 1

COROLLARY 3. A decision problem C is in < z(NP) if and only if it is
logspace Turing reducible to SAT.

Proof This is immediate from Theorem 2 and the theorem of Ladner
and Lynch (1976) that logspace Turing reducibility is identical to the
logspace truth-table reducibility GE;. In general, ~2 is weaker than
d tj, the latter is weaker than < ?, which in turn is weaker than < $. It
follows from Theorem 2 that all these reducibilities are equivalent for
reductions to SAT. 1

THEOREM 4. Every predicate in < E(NP) can be defined by a formula of
the form

(3i<p(Jx())[A(i, x) A lB(i, x)]

and by a formula of the form

(Vi < q(1 x I))CC(i, x) A lD(i, x)1

where A, B, C, and D are NP-predicates and p and q are polynomials.

Proof The proof of Theorem 1 proves the first part; the second part is
a consequence of the fact that 6 ;(NP) is closed under complementa-
tion. 1

2.2. A Syntactic Characterization of < E(NP)

In this and the next subsection, we give alternate characterizations of the
the class < P,(NP); these follow as easy corollaries of the above theorems.

First we provide a syntactic characterization of formulas which define
predicates in < i(NP) by showing that a decision problem is in < $(NP)
if and only if it is definable by a Ci nn$formula in the sense of Buss
(1986). The superscript b is used to indicate that Ci and IJi are classes of
formulas; the C: (resp. the I-Ii) formulas define precisely the Cc (resp., the
I-I;) predicates. Hence we shall establish that a decision problem is in
f P,(NP) if and only if it has a defining formula which is simultaneously
and explicitly in both Ci and nt. (However, this is in no way intended to
say that C$nnf= <;(NP).)

92 BUSS AND HAY

Buss (1986) defines a first-order language for bounded arithmetic where
variables ranges over integers and with non-logical symbols 0, S, +, ., I x 1,
L$x_l, #, and <, where 1 x 1 equals the length of the binary representation
of x and x#y= 21X1.l”l. A bounded quan@er is a quantifier of the form
(Qx < t), where Qi is V or 3 and t is a term; a sharply bounded quantifier
is a bounded quantifier with the bound t of the form t = 1 s 1 for some term
s. A boundedformula is a formula in which all quantifiers are bounded. The
classes Cp and nf are classes of bounded formulas defined by counting
alternations of (bounded) quantifiers, ignoring the sharply bounded ones.
The formulas in the class Cp or nf define precisely the predicates in the
ith level of the polynomial time hierarchy C4 or n:, respectively. The
class Ci n ni has already been studied by Buss (1987) who showed that it
is the largest class of formulas for which Si is known to prove PIND
(polynomial- or length-induction).

For the reader who has not studied bounded arithmetic, we provide
some alternate, essentially equivalent definitions:

ALTERNATE DEFINITIONS. A sharply bounded quantifier is a quantifier of
the form (Vy <p(1 x 1)) or (3y <p(I x I)) for p a polynomial and 1 x 1 the the
total length of the binary representations of x. An NP-formula is a formula
which defines a predicate in NP. Ci n ni is the smallest class of formulas
which contains all NP-formulas, is closed under the Boolean operations of
negation (1), conjunction (A), and disjunction (v) and is closed under
sharply bounded quantification.

THEOREM 5. The class < E(NP) is equal to the class of predicates
definable by Ci n ni formulas.

Proof Theorem 4 states that every predicate in Q ;(NP) can be
expressed by a formula of the form

(3i<p(lx())[A(i, x) A lB(i+ 1, x)],

where A and B define NP predicates. This is clearly a Ci A fit formula.
For the converse, it is easy to prove by induction on the complexity of
formulas that every Ci n ni formula C(x) is equivalent to a formula of the
form

where p is a polynomial and Y is a Boolean combination of NP formulas.
Since SAT is NP-complete we may assume that Y is a Boolean combina-
tion of formulas of the form SAT(f (x, y)) with f a polynomial time

TRUTH-TABLE REDUCIBILITY 93

computable function. To give a truth-table reduction of (x: C(x)} to SAT
we just express C(x) as a Boolean formula

P(l.4) Al-4) P(lXl)

>o()o(-~>o(~,

?‘,=o y2=0 r’k = 0

where)o(denotes a ‘,I or a A depending on whether Qi is 3 or V. Clearly
this Boolean formula is obtainable as a function of x in polynomial
time. 1

Cai and Hemachandra (1985) define a hierarchy of sets denoted C,“, nk
for k 2 0. They defined these sets in terms of Turing machine computation:
a predicate is in C,” (or n,“) if it is recognized by a Turing machine which
has k logtime alternation blocks beginning with an existential (universal,
respectively) block and followed by a polynomial time alternation block
which may be existential on some inputs and universal on other inputs. It
is readily seen that the following syntactic definition is equivalent:

DEFINITION, Let C be an alphabet. A predicate A 5 C* is in Ci if and
only if A can be defined as the set of XE~* such that

where Qk is 3 or tJ depending on whether k is odd or even, R is a polyno-
mial time predicate, B is an NP predicate, and C is a co-NP predicate.
A is a ni predicate if and only if the complement of A is a C,” predicate.

Cai and Hemachandra left open the question of whether this hierarchy
is proper; in fact, it collapses by the second level:

THEOREM 6. ~,“=n,“=~~=n~= <moor all kB2.

Proof. Clearly C,” and ni have cinni definitions. Hence C,” and
nk are subsets of < i(NP). Furthermore, we claim that any C E < i(NP)
is in Ct. By Theorem 4, C is defined by a formula

(3i<p(lxO)(A(i, x) A lB(i,X))

with A, BE NP. So C can be defined by

Hence C.is in Cc. Since < t(NP) is closed under complementation,
< E(NP) is also a subset of n$ and we are done. 1

94 BUSSANDHAY

2.3. Another Characterization of < E(NP)

Krentel (1986) defines PSATIO(log n)] to be the set of predicates
recognizable in polynomial time with an oracle for SAT with the restriction
that SAT may be queried only O(log n) times on inputs of length n.

THEOREM 7. PSATIO(log n)] = < ;(NP).

This theorem is well known but we include its proof for the sake of com-
pleteness. Hemachandra (1987) has already established the harder (2)
direction; we first found the proof using ideas from Beige1 (1987). The
method of proof is also used in Section 4.

Proof: (z) Suppose A E PSATIO(log n)] and A is recognized by Turing
machine MSAT in polynomial time with only O(log n) queries. Because of
the restriction on the number of queries there are only polynomially many
possible queries for a given input x to M (regardless of what the answers
to the queries may be). This is because there are only polynomially many
possible answers of O(log n) queries during the execution of Ma(x) for an
arbitrary oracle Q. This makes it possible to give a polynomial time truth-
table reduction of A to SAT: given X, compute all potential queries of
MD(x), then write out a Boolean circuit which gives the value MSAT(x) in
terms of the answers to the queries to SAT.

(2) Let C be in Q i(NP) and let A(i, x) and B(i, x) be as in the proof
of Theorem 1, so that, for all x,

XE Co (S<k(x))[A(i, x) A lB(i+ 1, x)].

Let A*(& x) be A(i, x) v B(i+ 1, x); clearly A* is an NP predicate and, by
the definitions of A(i, x) and B(i, x),

x~Co@i<k(x))[A*(i, x) A iB(i+ 1, x)].

Now note that for all i, B(i+ 1, X) implies A*(& x) and A*(& x) implies
B(i, x). So consider the sequence of NP predicates,

A*@, x), Nl, xl, A*(L xl, W, xl, A*@(x), x), B(G) + 1, x),

where each predicate is implied by the next. Of course, B(k(x) + 1, x) must
be false; if we knew which NP predicate in the sequence is the first false
one, then we would know if XE C. This is because if A*(& x) is true and
B(i+ 1, x) is false then XE C, whereas if B(i, x) is true and A*(i, x) is false
then x # C. But it is easy to see that a binary search can be used to find the
first false predicate in polynomial time with O(log n) queries to SAT. 1

The above method of proof is esentially equivalent to, although cruder
than, Beigel’s proof that k parallel queries to SAT are polynomial time

TRUTH-TABLE REDUCIBILITY 95

equivalent to 2k serial queries to SAT; his proof used “mind-changes.” The
crucial idea here is the use of a descending sequence of NP predicates;
this idea has been exploited to give a definition of an infinite difference
hierarchy over NP in Buss and Hay (1989).

DEFINITION. Let A and B be predicates. A function f is a normalized
truth-table reduction of A to B if and only if for all x, f (x) = (y,, y,(,,)
so that xB(yi)b xe(yi+,) for all i and so that XEA if and only if an odd
number of the yls are in B.

THEOREM 8. A predicate A is in < :(NP) if and only if there is a polyno-
mial time normalized truth-table reduction of A to SAT.

The theorem is immediate from the proofs of Theorems 1 and 7. The fact
that “odd” rather than “even” is used in the definition of normalized truth-
table reductions is unimportant since f could be modified to prepend a
y, E B to each sequence. Normalized truth-table reductions have already
been studied by Wagner (1986) under the name “truth-table Hausdorf
reductions” and Theorem 8 is also a direct consequence of Theorem 2 and
a theorem of Wagner’s that d $(NP) equals the set of predidates which are
polynomial time, truth-table Hausdorf reducible to an NP set.

3. MULTIPLE ROUNDS OF PARALLEL QUERIES

Ladner, Lynch, and Selman (1975) proved that < :(NP) contains
precisely those decision problems A(x) which are recognized by a polyno-
mial time Turing machine which is allowed one round of parallel queries
to SAT. By a round of parallel queries to SAT we mean that the Turing
machine writes a set of strings separated by delimiters on a query tape and
then invokes an oracle for SAT; the oracle returns a string of Yes/No
answers on an answer tape which specify membership of each query string
in SAT.

A crucial feature of the notion of allowing one round of parallel queries
to SAT is that all the queries must be formulated before any answers are
known. This leads naturally to the question of whether two (say) rounds
of queries to SAT are more powerful than one. For instance, in two rounds
the Turing machine could ask polynomially many queries to SAT in
parallel and then use the answers to construct a further query to SAT.
One’s initial impression is that this may provide more computational
power; however, we prove below the somewhat surprising result that, for
polynomial time Turing machines, a constant number of rounds of parallel
queries to SAT can be reduced to one round of parallel queries.

96 BUSSANDHAY

THEOREM 9. Let k 2 1. If A(x) is a decision problem recognized by a
Turing machine M which runs in polynomial time and makes k rounds of
parallel queries to SAT, then A(x) is in < E(NP), i.e., A(x) is polynomial
time truth-table reducible to SAT.

The idea of the proof of Theorem 9 is very similar to the proof of
Theorem 1.

Proof: Fix k, an integer 2 1. Let us assume that M(x) always asks p(n)
or fewer queries in a given round, where n = (x 1 and p is a polynomial.
Recall that TRU(x, y) is the predicate “x is a satisfying assignment for y.”
A k-tuple of integers is a sequence r = (r,, rk) of integers. We order the
k-tuples lexicographically so r <s iff for some i, ri < si and (Vj < i)(rj = sj).

If w= (w,, . ..) wl) is a sequence of truth assignments, we define M” to
be the polynomial time Turing machine which runs as follows: on input x,
M” runs like M, except when a query state is entered M” does not invoke
an oracle for SAT but instead, for each query y, checks if there is some
member wi of w such that TRU(w,, y) is satisfied. If so, M” acts as if the
oracle had answered “Yes, ye SAT”; in this case we say that M” sees y
satisfied. Otherwise, of course, M” acts as if the oracle had answered “No,
y$ SAT”. Note that M”(x) is polynomial time in both x and w.

Now let r(w, x) = (r,(w, x), r,Jw,x)) be defined so that ri(w, x) is
equal to the number of queries y that M”(x) sees satisfied in the jth round
of parallel queries to SAT. In other words, rj(w, x) is equal to the number
of queries y asked in the jth round of M”(x) which are satisfied by some
member of w. Clearly r(w, x) is a polynomial time function of x and w. We
can express membership in C by

XE Co i’s= (sl, sk) (3w[M”(x) accepts A s=r(w, x)]

A 7 3v(s < r(v, x))).

Note that the quantifiers 3w and 3v may be polynomially bounded, since
M(x) can make only (p(n))k total queries and hence, for instance, w can
be assumed to be of the form (w,, w,) with I,< (p(n))k and with each
wj of length less that the total runtime of M(x). Thus the two predicates
inside the expression for XE C of the forms 3w(...) and 3v(...) are in NP.
Also note the values sj may be restricted to be <p(n) so the 3s quantifier
is sharply bounded. Thus by Theorem 5, C is in d ;(NP). (We could avoid
the use of Theorem 5 by directly expanding the 3s quantifier as a disjunc-
tion and thereby express x E C as a polynomial-size Boolean formula
involving instances of SAT.) 1

Finally, note that the k in Theorem 9 must be constant. If k is
unrestricted we get all of A,P, the class of predicates polynomial time

TRUTH-TABLE REDUCIBILITY 97

Turing reducible to NP. However, we can let k vary a little if we bound
severely the number of parallel queries to SAT allowed in a round. Indeed,
if M(x) makes fi(x) queries in the jth round and if, for all X,
C log(fi(x) + 1) = O(log n), or equivalently, if n(f,(x) + 1) = no(‘), then M
recognizes a predicate in d E(NP). This fact has the c-inclusion of
Theorem 7 as a special case with k = O(log n) and fj = 0(1).

4. SEPARATION RESULTS

It is obvious that < i(NP) includes NP and is a subset of A; = < P,(NP);
it is of course open whether these three clases are distinct since, if so, then
P ZNP. It is thus natural to ask whether these classes are distinct in
relativized worlds.

There are some related prior results for the Boolean (or difference)
hierarchy over NP. The difference hierarchy was defined in an abstract
setting by Hausdorff (1978) and the Boolean hierarchy over NP has been
extensively studied by a number of researchers (Wechsung, 1985; Cai and
Hemachandra, 1986; Kiibler et al., 1986; Cai et al., 1988, 1989). Cai and
Hemachandra (1986) showed that there are oracles relative to which the
Boolean hierarchy over NP has infinitely many levels, and oracles relative
to which the Boolean hierarchy extends exactly k levels, with PSPACE
collapsing to the (k + 1) th level. We extend these results by showing that
in relativized worlds where the Boolean hierarchy over NP has infinitely
many levels, the condition of d E(NPA) being equal to < ;(NPA) may be
relativized either way. However, we do not know if there exists an oracle
which separates 6 E(NPA) and <$(NPA) and collapses the Boolean
hierarchy over NP. Recall that NP(i) is the ith level of the Boolean
hierarchy over NP.

THEOREM 10. There is a recursive oracle A such that for all ia 1,
NPA(i) # NPA(i+ l), while PSPACEA = < Y;(NPA).

Proof. Let SA be a set many-one complete for NPA under logspace
reductions. To obtain a set A with PSPACEA = < ;(SA), we can modify
the construction in (Cai and Hemachandra, 1986) of an oracle A which
separates the finite levels of the Boolean hierarchy as follows: spread out
the “blocks” used in that construction and intersperse a coding of a set U
which is PSPACEA-complete, ensuring that for each y of length i,

yEUo(3z)(i3-i+1<IzI<i3andyzEAand

the minimum length of such a z is odd.)

98 BUSS AND HAY

We omit the details which are similar to the proof in op. cit. of an oracle
which separates the first k levels of the Boolean hierarchy and collapses
PSPACE to the kth level. 1

An oracle A is a subset of (0, 1 I*; if (TEA, then) 61 is the length of 0
and gi denotes the ith symbol in the string g. Following Goldsmith and
Joseph (1986), define a relativized Boolean formula to be of the form

where 4 is in conjunctive normal form and each pi and ri is a concatena-
tion of the form z1z2 . . . z, with each zj a literal xi or 2,. A truth assignment
tl is a mapping from {xi: 0 <i> to (0, 11, where CI(X,) = 1 iff xi is assigned
truth value “True.” Given an oracle A c (0, 1 > * we define the truth value
of QA under a truth assignment in the obvious way by interpreting
21 . ..z.E A as meaning a(zi) . . . a(~,) E A. Now define SATA to be the set of
satisfiable relativized Boolean formulas. It was shown by Goldsmith and
Joseph that SATA is many-one complete for NPA for all A. We say
that a truth assigment CI satisfying QA above is odd iff a(~,) = 1. Let
ODDMAXSATA be the set of satisfiable relativized Boolean formulas
whose maximum satisfying assignment is odd; ODDMAXSATA is
evidently in d $(NPA).

Using the notion of relativized Boolean formula, it is possible to extend
Theorems l-9 to relativized computation. By the relativized version of
Theorem 8, we have that a set B is < g(SATA) if and only if there is a
normalized truth-table reduction of B to SATA; i.e., if and only if there
is a polynomial time computable function f such that for each x,
f(x)= (Yl, ..., yncx)), where each yj encodes a relativized Boolean formula
and ~~~~4.~~) 3 LW(YJ 3 ... 2 x~~~~Y,(,,) and

.~EB~~I{~:~;ESAT~}I isodd.

THEOREM 11. There is a recursive oracle A such that for all i 3 1,

NPA(i) #NPA(i+ 1) and < P,(NPA) # < c(NPA).

Proof: We will construct an oracle A such that ODDMAXSATA is in
<$(NPA) but not in <;(NPA). The steps in our construction can be
interspersed with those of the Cai-Hemachandra construction to ensure
that NPA(i) # NPA(i+ 1) for all i. The latter details are omitted.

Let PJi,, be an enumeration of all polynomial time transducers com-
puting a functionfi such that for each x, h(x) = (y,, y,(,..), where each
yi encodes a relativized Boolean formula. We shall construct the oracle A

TRUTH-TABLE REDUCIBILITY 99

so that none of the functions f; is a normalized truth-table reduction of
ODDMAXSATA to SATA.

Let each ri compute fi with polynomial time bound p,(n); without loss
of generality, p,(n) > n. Let C = (0, 1 }; so C” is the set of all strings of O’s
and l’s of length n. For each n, let @, be the relativized Boolean formula

Qn=(xl v lx,)Ax,x,~~~x,EA;

clearly there is a polynomial t(n) such that Qn has length < t(n). The set
A will be constructed in stages; A, will be the set constructed at stage s and
A will be the union of the A,‘s. At each stage s, we will select a length n = n,
and form A, by adding strings of length n to A,+ 1 ; no strings are ever
removed from A. During stage s there will be a set S of strings available
for addition to A. Our construction will maintain the condition that there
will always be both even and odd strings available which are lexicographi-
tally larger than any string already in A. The goal at stage s is to use @,,
to witness the fact that f, _ i will not be a normalized truth-table reduction
of ODDMAXSATA to SATA. For any oracle B define h, so that if
A- l(@n) = (Yl, “.T yk), then h,(@J= I { j:yi~SATS}I mod2; thus a
normalized truth-table reduction f, to SATB causes op” to be accepted iff
h,(@,) = 1. Our goal at stage s is to arrange that @, E ODDMAXSATA iff
hA(@J = 0.

To begin the construction of A, set A, = Iz/ and n, =O. Now construct
A s+l as follows: Let q(n) =p,(t(n)). Choose n = n,, I > 2”s big enough so
that 4q(n) < 2”-‘. Run T, on input @,; the output f,(@,) is a sequence
(Y 1, yk) of total length <q(n) with each yj encoding a relativized
Boolean formula of the form #j A A pi E A A A zi 4 A. We may assume that
XsATAs(yj) 2 XsATAs(yj+ i) for all j; otherwise, we let A,, 1 = A, and f, will
not be a normalized truth-table reduction to SATA. Likewise, we may
assume that for all A,, 1 formed by adding some set of strings of length n
to A, we have x SATAs+l(Yj)~.XSATAr+l(Yj+l) for all j; otherwise we pick an
A s+l such that f, will not be a normalized truth-table reduction to
SATAs+‘. Let bj be the number of conjuncts of the form ri# A in the
formula coded by yj. Let X be the set {j : Y/E SATAS) and then
hA,(Qn) = (I XI mod 2). If hA,(Qjn) = 1 then we may set A,, i = A,; in this
case, hA(@,J = hA,+,(Qn) = 1 but A will contain no strings of length n and
hence @, $ ODDMAXSATA.

So suppose that X has even cardinality. We initialize S to be the set of
all strings of length n-these are the strings available to be added to A at
this stage. Also initialize A,, 1 to be A,. S will be the set of strings available
to be added to A,, 1 ; at any point in the construction, each string in S will
be lexicographically greater than the strings already in A, + i . To build up
A x+1 we run the following procedure repeatedly as necessary:

100 BUSS AND HAY

Loop:
For each j E X (if any) let uj be a fixed satisfying assignment of y, with

respect to the oracle A,, i constructed so far. The formula coded
by yj may contain clauses ‘?$A” which under the satisfying
assignment 01~ specify a string as being out of A. Let Nj be the set
of strings that txj and yj specify as being out of A; note bi > 1 N, I.
(If aj and Nj have already been assigned in an earlier iteration of
the loop, leave them unchanged.)

Set L I= UjEXNj. SO IL1 <xj.xbj<q(n).
Set S : = S- L. Note that adding members of S to A,, , will never

unsatisfy any member yj of &(@,).
Lets’:= {c~~S:(~,=1cth~,+,(@~)=O};or,inwords,S’isthesetof

odd (even) strings in S if hA,+,(@,,) is 0 (resp., 1). Since strings in
S are greater than strings in A,, , , if we can add a member of S’
to A,+I without altering the satisliability of the members off,(@,)
then this will force f, to not be a truth-table reduction of
ODDMAXSATAs+’ to SATAT+‘.

If there is some member 0 of S’ such that adding cr to A,, 1 does not
change the satisliability of the members yj of f3(Qp,), then set
A S+l := A Sfl

u (0) and exist from the loop. In this case, we
have that @, E ODDMAXSATAs+’ iff hA,+,(Qn) = 0. Note that this
case always applies when 1 X (= k and every member of JJ@,J is
already satisfied, since the exclusion of the set L guarantees that
nothing becomes unsatisfied.

Otherwise, add the lexicographically minimum element c of s’ to
A S+l’ This will satisfy at least one more yj; so redefine X to be
(j : yj E SATAs+l} and redefine hAsi, : = 1 XJ mod 2. Note that
the cardinality of X is always increased. Finally, remove from S
the string CJ and every string 0’ which is lexicographically less
than 0. (It is important that CJ be the least element of S’ so that
not too many small CT’% need to be removed from S.) Now repeat
the loop.

Endloop

To see that the procedure halts there are two things to notice. First, the
loop will be iterated at most k times since 1 XI increases each time and the
loop halts after (XI = k. Second, the set S always contains both even and
odd members by our choice of n, since it is easy to see that at most
2. (L I+ 2. k < 4q(n) strings can be removed from S, where I L (means the
cardinality of the final set L at the end of the procedure. 1

A stronger notion of relativized polynomial truth-table reductions may
be defined by letting the reduction query the oracle A; we denote this
reducibility by Q E”. It is easy to modify the above construction to ensure

TRUTH-TABLE REDUCIBILITY 101

that it is not the case that ODDMAXSATA <r” SATA by freezing any
queries that fs makes of length n,, I out of A,, I ; it will be necessary to
choose n, + I large enough so that S is big enough after the “frozen” strings
are removed. The result is an oracle A such that < ;A (NPA) # < $(NPA).

5. CONCLUSIONS

To summarize, we list most of the characterizations of < g(NP) dis-
cussed in this paper:

THEOREM 12. The following are equivalent:

l A is polynomial time (Boolean circuit) truth-table reducible to SAT,

l A is polynomial time, Boolean formula truth-table reducible to SAT,

l A is logspace, Boolean formula truth-table reducible to SAT,

9 A is logspace, Turing reducible to SAT,

l A is definable by a 1; n JJi formula,

l A is in xk (equivalently, ni),

l A is in PSAT[O(logn)].

l A is recognizable in polynomial time with a constant number oj
rounds of parallel queries to SAT.

The multiplicity of equivalent definitions for 6 E(NP) indicates that it is
a robust concept and hence likely to be a natural and useful class for
theoretical computational complexity.

RECEIVED April 27, 1988; FINAL MANUSCRIPT RECEIVED October 27, 1989

REFERENCES

BEIGEL, R. (1987) Bounded queries to SAT and the Boolean hierarchy, Theoretical Computer
Science, to appear.

Buss, S. R. (1986), “Bounded Arithmetic, “Bibliopolis, Napoli; revision of 1985 Princeton
University Ph.D. thesis.

Buss, S. R. (1990), Axiomatizations and conservation results for fragments of bounded
arithmetic, in “Proceedings, Workshop in Logic and Computation, 1987,” Contemp. Math.
106, 57-84.

Buss, S. R. AND HAY, L. (1988), On truth-table reducibility to SAT and the difference
hierarchy over NP, in “Proceedings, Structure in Complexity Conference, June,”
pp. 224-233.

CAI, J., GUND~RMANN, T., HARTMANIS, J., HEMACHANDRA, L., SEWELSOK, V., WAGNER, K..
AND WECHXJNG, G. (1988), The Boolean hierarchy. I. Structural properties, SIAM J. Com-
put. 17, 1232-1252.

102 BUSS AND HAY

CAI, J., et al. (1989), The Boolean hierarchy. II. Applications, SIAM J. Comput. 18, 95-1 Il.
CAI, J.-Y., AND HEMACHANDRA, L. (1985), “The Boolean Hierarchy: Hardware over NP,”

Tech. Rep. TR85-724, Cornell University, Computer Science Department, December.
CAI, J.-Y., AND HEMACHANDRA, L. (1986), The Boolean hierarchy: Hardware over NP, in

“Structure in Complexity,” Lecture Notes in Computer Science, Vol. 223, pp. 105-124,
Springer-Verlag, New York/Berlin.

GOLDSMITH, AND JOSEPH, D. (1986), Three results on polynomial isomorphism of complete
sets, in “Proceedings, 27th Annual Symposium on Foundations of Computer Science,
IEEE, Oct. 1986,” pp. 390-397.

HAUSDORFF, F. (1978). “Set Theory 3rd ed., Chelsea, New York. -7
HEMACHANDRA, L. A. (1989), The strong exponential hierarchy collapses, in “Proceedings,

19th Annual ACM Symposium on Theory of Computing, 1987.” pp. 110-122; J. Cornput.
Sysrem Sci. 39. 299-322.

JENNER, B., KIRSIG, B., AND LANGE, K.-J. (1989), The logarithmic alternation hierarchy
collapses: AZ; = AH?, Inform. and Comput. 80 (1989), 269-288.

KGBLER, J., SCHBNING,*U., AND WAGNER, K. W. (1987), The difference and truth-table
hierarchies for NP, Informatique ThPorique et Applications 21, 419-435.

KRENTEL, M. W. (1986) The complexity of optimization problems, in “Proceedings, 18th
Annual ACM Symposium on Theory of Computing,” pp. 69-76.

LADNER, R. E. (1975). The circuit value problem is log space complete for P, SIGACT News

7, 18-20.
LADNER, R. E., AND LYNCH, N. A. (1976) Relativization of questions about log space com-

putability, Math. Systems Theory 10, 19-32.
LADNER, R. E., LYNCH, N. A., AND SELMAN, A. L. A comparison of polynomial time

reducibilities, Theoret. Cornput. Sci. 1, 103-123.
LYNCH, N. A. (1977), Log space recognition and translation of parenthesis languages,

J. Assoc. Comput. Mach. 24, 583-590.

WAGNER, K. W. (1987) More complicated questions about maxima and minima, and some
closures of NP, Theoret. Comput. Sri. 51, 53-80.

WAGNER, K. W. (1988a), Bounded query classes, in “Proceedings, Structure in Complexity
Theory Conference,” pp. 26G277, IEEE Comput. Washington, DC.

WAGNER, K. W. (1988b), On restricting the access to an NP oracle, in “Automata, Languages
and Programming,” Lecture Notes in Computer Science, Vol. 317, pp. 682-696, Springer-
Verlag, New York/Berlin.

WECHSUNG, G. (1985), On the Boolean closure of NP, in “Proceedings, Int’l Conf. on
Fundamentals Computation Theory,” Lecture Notes in Computer Science, Vol. 199.
pp. 485493 (co-authored by K. Wagner), Springer-Verlag, New York/Berlin.

