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The intersection graph for a family of sets is obtained by associating each set with 
a vertex of the graph and joining two vertices by an edge exactly when their 
corresponding sets have a nonempty intersection. Intersection graphs arise 
naturally in many contexts, such as scheduling conflicting events, and have been 
widely studied. 

We present a unilied framework for studying several classes of intersection graphs 
arising from families of paths in a tree. Four distinct classes of graphs arise by con- 
sidering paths to be the sets of vertices or the edges making up the path, and by 
allowing the underlying tree to be undirected or directed; in the latter case only 
directed paths are allowed. Two further classes are obtained by requiring the direc- 
ted tree to be rooted. We introduce other classes of graphs as well. The rooted 
directed vertex path graphs have been studied by Gavril: the vertex path graphs 
have been studied by Gavril and Renz; the edge path graphs have been studied by 
Golumbic and Jamison, Lobb, Syslo. and Tarjan. 

The main results are a characterization of these graphs in terms of their “clique 
tree”representations and a unified recognition algorithm. The algorithm repeatedly 
separates an arbitrary graph by a (maximal) clique separator, checks the form of 
the resultant nondecomposable “atoms,” and finally checks that each separation 
step is valid. In all cases, the first two steps can be performed in polynomial time. In 
all but one case, the final step is based on a certain two-coloring condition and so 
can be done efficiently; in the other case the recognition problem can be shown to 
be NP-complete since a certain three-coloring condition is needed. 

The strength of this unified approach is that it clarifies and unities virtually all of 
the important known results for these graphs and provides substantial new results 

as well. For example, the exact intersecting relationships among these graphs. and 
between these graphs and chordal and perfect graphs fall out easily as corollaries. A 
number of other results, such as bounds on the number of (maximal) cliques, 
related optimization problems on these graphs, etc., are presented along with open 
problems. 0 1986 Academic Press. Inc. 

1. INTRODUCTION 

Throughout this paper we let G = (V, E) denote a finite connected 
undirected graph, where V is a set of vertices and E is a collection of pairs 
of vertices called edges. Two vertices joined by an edge are called adjacent. 
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For any subset W of V, the subgraph G(W) of G induced by W is the graph 
whose vertices are given by W with two vertices adjacent exactly when they 
are adjacent in G. A completely connected set of G is a subset of vertices 
with each pair adjacent in G. A clique of G is a maximal, completely con- 
nected set of G. We let C denote the set of cliques of G, and for every u E V 
we let C, = {C E C: v E C>. A clique cover of G is a subset of cliques of G 
which includes all vertices. Finally, an independent set of G is a subset of 
vertices each pair of which is not adjacent, and a coforing of G is an 
assignment of labels to the vertices of G so that similarly labeled vertices 
form an independent set. 

Let P be a finite family of nonempty sets. The intersection graph of P is 
obtained by associating each set in P with a vertex and connecting two ver- 
tices with an edge exactly when their corresponding sets have a nonempty 
intersection. A number of papers and books [S-lo, 14, 17, 20, 211 have 
been written about various classes of intersection graphs. Problems and 
applications of these graphs to areas such as scheduling, genetics, 
archeology, ecology, and relational database systems can be found in 
[ 17,211. 

Often the family of sets is obtained by taking subsets from a given 
underlying topological structure such as connected subsets of points on a 
line or on a circle. In these cases the intersection graphs are interval graphs 
[S, 131 and circular arc graphs [28], respectively. 

We consider a tree as the underlying structure and let the family of sets 
correspond to paths in the tree. The tree can be thought of as a computer 
communication network with paths representing messages between users. 
This gives rise to several different classes of intersection graphs. For exam- 
ple, taking a path to be the set of edges making up the path leads to a class 
of graphs quite different from taking a path to be the set of corresponding 
vertices; the former case has transmission links as the bottleneck in the 
computer network example, and the latter has switching nodes as the bot- 
tleneck. Another variation is to direct the edges in the tree and allow only 
directed paths in the directed tree; the directed tree may be required to be 
rooted. A directed tree is a rooted tree if it has exactly one vertex (the root) 
with in-degree zero. 

The intersection graph of a family of undirected (directed) vertex paths 
in a undirected (directed) tree is called a undirected (directed) uertex path 
graph, or UV(DV) graph for short. A DV graph with a rooted tree 
representation is called a rooted directed vertex path graph, or RD V graph. 
The RDV graphs are characterized in [9] where an efficient algorithm (i.e., 
polynomial time) is given for recognizing them and constructing a 
representation. UV graphs are characterized in [ 10,201 and an efficient 
recognition algorithm is given in [ 101. It is well known [S, lo] that UV 
and DV graphs are contained in the class of chordal graphs [3,8]. A chor- 
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da1 graph is defined to be a graph which contains no chordless cycle of 
length exceeding three; chordal graphs can be recognized efficiently [S]. 
The minimum coloring, maximum clique, minimum clique cover, and 
maximum independent set problems can be solved effkiently [7] for chor- 
dal graphs. 

The intersection graph of a family of edge paths in a tree is called an 
undirected edge path graph, or UE graph for short. A number of properties 
of UE graphs are derived in [ 15, 16, 19, 22-241. It has been shown that 
recognizing UE graphs is NP-complete [ 161. (We refer the reader to [6] 
for an excellent introduction to the theory of NP-completeness.) The 
minimum coloring and minimum clique cover problems are shown to be 
NP-hard [ 151 for UE graphs even given their UE representations. The 
maximum weight clique problem [15] and the maximum weight indepen- 
dent set problem [25] can both be solved in polynomial time. 

We now introduce a natural subclass of UE graphs. The intersection 
graph of a family of directed edge paths in a directed tree is called a direc- 
ted edge path graph, or DE graph for short. As before, a DE graph with a 
rooted tree representation is called a routed directed edge path graph or 
RDE graph. These six classes of graphs differ only by interchanging the 
words “rooted,” “ directed,” and “undirected,” and interchanging “vertex” 
and “edge.” 

Given the close correspondence between these classes of graphs, one 
would suspect that a unified approach could be used to study these graphs. 
We propose to show that this is largely true. 
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( i ) DV GRAPH G, I I I ) UV GRAPH Gb IIIII DE GRAPH G, 

(iv) UEH GRAPH Gd ( v) UE GRAPH G, (Vi1 CHORDAL GRAPH Gf 

FIG. I. Examples of path graphs. 



144 MONMA AND WEI 

I 
6’37, T 2’, 3 

7’,6’ 3’, 4’ 

4,5,5’.6 

(0) DV REPRESENTATION 
FOR G, 

192 2’, 3 

Y- 5’,1’ 
4’.5 

3’. 4 

2’. 4’,5.5’,6 394 

(b) UV REPRESENTATION CC) DE REPRESENTATION 
FOR Gb FOR G, 

I, 2,6’ 2’, 3,4 I,3 5 I.7 

4’,5.6 3’,4,4’ 7’, 8,8’ 

5’, 6,6’ 

(d) UEH REPRESENTATION (e) UE REPRESENTATION ( f ) CHORDAL 

FOR Gd FOR G, REPRESENTATION 

FOR Gf 

FIG. 2. Representations for the path graphs of Fig. 1. (Endpoints of path i are labeled i 

and i’.) 

In order to obtain completely parallel results we need to define another 
subclass of UE graphs. We call a graph a UEH graph if it can be represen- 
ted as the intersection graph of a collection of edge paths P in a tree, where 
P satisfies the HeZly property; namely for any subcollection P’ of P, 
Pi n P, # Qr for all Pi, Pi E P’ implies that r\l p, c p, Pi # 121. It is well known 
[ 141 that vertex paths satisfy the Helly property; we show in Section 2 that 
directed edge paths also satisfy the Helly property. It is easy to see that 
edge paths need not satisfy the Helly property. 

See Fig. 1 for examples of these various path graphs. Figure 2 contains 
the representations for the graphs in Fig. 1. (Figure 2e shows edge paths 
2,4, and 6, which do not satisfy the Helly property.) 

In Section 2 we show that all these graphs (except UE) can be charac- 
terized in terms of their “clique tree” representations. These charac- 
terizations are completely parallel differing only by interchanging the 
words “rooted,” “ directed,” and “undirected,” and interchanging “vertex” 
and “edge.” We also show that RDV=RDEcDVcUVcCHORDAL 
and DV c DE c UEH c UE; these inclusions are all strict. (Note that the 
letters “DV” stand for “directed vertex path” when used in “DV graphs,” 
and they also denote the entire class of such graphs when used as sets such 
as in the above sentence. The letters “UV,” “UEH,” “CHORDAL,” etc., are 
used in a similar manner.) 
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It is well known that a chordal graph G = ( V, E) has at most 1 VI cliques. 
In Section 3 we obtain polynomial (in 1 VI) bounds on the number of cli- 
ques in DE, UEH, and UE graphs. These bounds imply that known 
algorithms for generating all cliques in a general graph [27] require only 
polynomial time for these graphs. This results in a polynomial-time 
algorithm for finding a maximum weight clique in a UE graph. We also 
show that this implies a polynomial-time bound for decomposing a UE 
graph by its “clique separators.” Finally, we characterize the DE, UEH, 
and UE atoms in a unified Atom Theorem; an atom is a graph which can- 
not be further decomposed by clique separators. A consequence is to show 
that DE graphs are “perfect” and that UE graphs satisfy the “strong perfect 
graph conjecture”; the latter result was previously shown in [ 151. Another 
consequence is that the minimum coloring problem can be solved in 
polynomial-time for DE graphs; this problem is NP-hard for UE graphs 
Cl51. 

In Section 4 further structural properties of decomposition by clique 
separators are developed in a Separator Theorem for RDV, DV, UV, 
RDE, DE, UEH, and UE n CHORDAL graphs. These results are all very 
similar and lead to a unified recognition algorithm for these graphs. This 
algorithm can be implemented efficiently for DV, DE, and UEH graphs 
based on certain two-coloring conditions. The Separator Theorem implies 
the NP-completeness of recognizing UE n CHORDAL graphs since a 
three-coloring condition is required at each separation step; this result was 
previously shown in [ 151 by an ad hoc method. The complexities of 
recognizing RDV graphs and UV graphs under the framework of the 
Separator Theorem are left as an open problem; Gavril [9, IO] has presen- 
ted algorithms for recognizing these two classes of graphs without using 
separators. A consequence of the Separator Theorem is that DV = 
CHORDAL n UEH, DE = PERFECT A UEH, and UE n CHORDAL = 
UE n UV. 

The proof of the Separator Theorem is presented in Section 5. Con- 
cluding remarks and open problems are given in Section 6. 

We note that the intersection relationships of paths in a tree can also be 
represented as a hypergraph instead of a graph. This yields a different set of 
interesting problems. In this case, clique tree characterizations and 
separator-type theorems can also be obtained. This subject has been 
treated for edge path hypergraphs in [4, 11, 141 and for vertex 
hypergraphs in [15]. In fact, [ 151 contains separator-type theorems for 
UE and UV hypergraphs. 
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2. CLIQUE TREE REPRESENTATION 

We will show that RDV, DV, UV, RDE, DE, and UEH graphs can all 
be characterized in terms of their “clique tree” representations. These 
results are entirely symmetric, differing only by interchanging the words 
“rooted, ” “directed,” and “undirected,” and interchanging “vertex” and 
“edge.” A number of interrelationships among these graphs, as well as 
chordal and UE graphs, will also be discussed. The following theorem sets 
the stage for these results. Recall that C denotes the set of all cliques of a 
graph G = (V. E) and C, is the set of cliques containing a particular vertex 
UE V. In the following theorem, we let T(C,) denote the subgraph of a tree 
T with vertices or edges corresponding to C,. 

THEOREM 1. (Clique Tree Theorem). (a) A graph G = ( V, E) is RD V 
if and only if there exists a rooted tree T with vertex set C, such that for each 
v E V, T( C,) is a directed path in T. 

(b) A graph G = ( V, E) is D V if and only if there exists a directed tree 
T with vertex set C, such that for every v E V, T(C,) is a directed path in T. 

(c) A graph G = (V, E) is UV if and only if there exists a tree T with 
vertex set C, such that for every VE V, T(C,) is a path in T. 

(d) A graph G = (V, E) is chordal if and only zf there exists a tree T 
with vertex set C, such that for every v E V, T(C,) is a subtree in T. 

(e) A graph G = (V, E) is RDE if and only if there exists a rooted tree 
T with directed edge set C, such that,for every v E V, T(C,) is a directed path 
in T. 

( f ) A graph G = (V, E) is DE if and only if there exists a directed tree 
T with directed edge set C, such that for ever.y 1) E V, T(C,) is a directed path 
in T. 

(g) A graph G = (V, E) is UEH if and only if there exists a tree T 
with edge set C, such that for every o E V, T(C,) is a path in T. 

A tree satisfying Theorem 1 is called a clique tree for the graph it charac- 
terizes. See Fig. 2 for an illustration of the clique trees for the graphs in 
Fig. 1. Note that a clique tree has the minimum number of edges for a 
representation tree. This property will be used later. The Clique Tree 
Theorem for RDV, UV, and CHORDAL graphs has been obtained by 
Gavril [S-lo]. In the following, we prove the Clique Tree Theorem for 
DV, RDE, DE, and UEH graphs only. 

Proof for DV Graphs. Given a tree T satisfying the conditions of the 
theorem we can construct paths P = T(C,) for all u E V to obtain a DE 
representation. Conversely, let G be a DV graph. Let (T, P) be a DV 
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representation for G where T has the smallest possible number of nodes. 
Note that every node of T corresponds to a completely connected set in G. 
We claim that there is a one-to-one correspondence between the nodes of T 
and the cliques of G. On one hand, by the Helly property of vertex paths 
[I 141, there is a node in T corresponding to every clique in G. On the other 
hand, assume there are two distinct nodes n, and n2 in T which correspond 
to completely connected sets S, and Sz in G, with S, c Sz. Let n3 be the 
node next to n, on the path connecting n, and n2 in T, and S, be the com- 
pletely connected set in G corresponding to n3. It is easy to see that 
S, c S,. Obtain a new tree T’ from T by coalescing n, and n, and eliminate 
the edge between them. Any path in P that contains n, necessarily contains 
n3. Therefore T’ is a DV representation tree for G. But T has the fewest 
possible nodes, a contradiction. Therefore the nodes of T correspond to 
distinct cliques and T is a clique tree. 1 

Proof for UEH Graphs. Given a tree T satisfying the conditions of the 
theorem, we can construct paths P, = T(C,) for all v E V. Now P, n P,. # @ 
exactly when 21 and u’ are contained in a common clique which occurs 
exactly when [v, w] E E. Hence the paths together with T give a UE 
representation for G. Consider any subcollection P’ of paths, with 
Pin P,# @ for all Pi, P, E P’. The vertices corresponding to P’ form a 
completely connected set of vertices C’ in G. Let C be a clique containing 
C’, then CE C,, for all v E C. So every path P,. E P’ pass through the edge 
corresponding to the clique C and the Helly property holds. Therefore, G is 
UEH. 

Conversely, consider a UEH representation for G consisting of a tree T 
and a collection of paths P which satisfy the Helly property. Every edge e 
in the tree corresponds to a completely connected set of vertices (in G) 
whose paths contain this edge. The Helly property implies that every clique 
C in G has a corresponding edge in T given by an edge in the nonempty 
intersection n I’ E c P,. 

Consider an edge e in the tree with a corresponding completely connec- 
ted set C,. Contracting the edge e in the tree and in the paths containing e 
results in another UEH representation (T, P’) for a graph G’= (V, E’), 
where E’ = E - { [v, w]: P, n P,. = {e} ). So given two different edges e and 
f in T with corresponding completely connected sets C, and C, with 
C, s C, we may contract edge e in T and produce another UEH represen- 
tation for G. Repeating this process results in a tree whose edges corre- 
spond in a one-to-one fashion with the cliques of G and P, = T(C,). 

This completes the proof of the Clique Tree Theorem for UEH 
graphs. 1 

Prooffor DE Graphs. We claim that directed edge paths in a directed 
tree satisfy the Helly property. The proof is by induction on the number k 
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of paths. The lemma is clearly true for k = 2 paths. Consider a collection 
P = (Pi, Pz,..., Pk} of k>2 paths with PinPj#/21 for l<i,j<k and 
assume, by induction, that P= of_,’ Pi forms a directed path in T contain- 
ing at least one edge. Now if Pi s P for any i, 1~ i < k - 1, then P, n P 1 
P, n Pi # 0 and we are done. Therefore, each path Pi, 1 d i < k - 1, meets 
the subpath P together with an edge directed into the entering end of P or 
an edge directed out of the leaving end of P in T, or both. Also, since k > 2, 
there are at least two such edges. However, any path P in T with 
P n P = 0 can meet at most one edge directed into the entering end of P 
or one edge directed out of the leaving end of is, and so P n Pi = 0 for 
some 16 i6 k- 1. Since P,n Pi# 0 for 1 <id k- 1 it follows that 
Pk n P # 0. This completes the proof of the claim. 

The rest of the proof parallels that for UEH graphs. 1 

Proof for RDE Graphs. Since edge-contraction maintains a rooted tree, 
this proof parallels those for UEH graphs and DE graphs. 1 

The following theorem summarizes the inclusion relationships between 
these various class of graphs. We show in Section 4 that DV = 
CHORDAL n UEH, DE = PERFECT n UEH, and that UEn 
CHORDAL = UE n UV. 

THEOREM 2. (a) RDV= RDEc DVc UVc CHORDAL. 

(b) DVc DEc UEHc UE. 

ProoJ RDV c DV c UV c CHORDAL follows from the Clique Tree 
Theorem. RDE c DE c UEH follows from the Clique Tree Theorem in the 
same way. UEH c UE is trivial. 

To see that DV c DE we consider a clique tree for a DV graph G con- 
sisting of a directed tree T and a collection P of directed vertex paths. We 
construct a new directed tree T’ by expanding each vertex u in T to a direc- 
ted edge (u, 0’); every edge in T directed into v remains so in T’ and every 
edge directed out of u in T is directed out of u’ in T. The collection of 
directed edge paths P’ for T’ consist of the directed paths in P where any 
path in T passing through vertex u in T passes through the new directed 
edge in T’. It is easy to see that two paths in P meet in a vertex in T if and 
only if their corresponding paths in P’ meet in an edge in T’. So (T’, P’) is 
a DE representation for G. 

Similarly, we can show that RDV E RDE. To see that RDE E RDV, con- 
sider an RDE representation tree T for a (connected) graph G. Construct a 
directed tree T by associating a vertex for each edge in T. Direct vertex u 
to vertex u in T whenever edge u points to edge v in T. Clearly, T’ is an 
RDV representation tree. 1 
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3. DECOMPOSITION BY CLIQUE SEPARATORS 

In this section we show that the cliques of a UE graph can be generated 
in polynomial-time (in 1 VI) and can be used to decompose a UE graph 
efficiently by “clique separators.” We also characterize the DE, UEH, and 
UE atoms, i.e., those graphs which cannot be decomposed by clique 
separators. 

A clique C is a separator if G( v\C) is not connected. An atom is a con- 
nected graph with no separator. Any graph G which has a separator C can 
have its vertices uniquely partitioned into C, V,, I’,,..., fJY, with s> 2, so 
that each G( V,) is a connected subgraph and no vertex in V, is adjacent to 
any vertex in V, (i # j). We say that C separates G into G( Vi u C) for 
1 < i,< s. By repeating this process we obtain a clique decomposition of G. 
This process can be represented by a clique decomposition tree with each 
leaf node being associated with an atom of G and each internal node being 
associated with a clique separator of G. The original graph can be 
reconstructed by composing subgraphs in the decomposition tree. 

This decomposition scheme differs from that of Tarjan [25] and 
Whitesides [29] in that they decompose by completely connected sets (not 
necessarily maximal). In a private communication, Tarjan [25] has exten- 
ded his algorithm to do decomposition by maximal clique separators. The 
following lemmas are easily verified. 

LEMMA 3. Let G be separated by a clique C into Gi = G( V,u C), 
1 < ids, then the cliques of G are exactly the union of cliques of G,, 
1 6 i 6 s. Furthermore, C is a clique in every G, and every other clique in G is 
in exactl~~ one Gi. 

LEMMA 4. Let G be separated b+v a clique C into G, = G( V,U C), 
1 d ids. If a clique C’ is not a separator of G then it is not a separator of 
anv Gi. Also, C is not a separator of any G;. 

The algorithm of [27] generates all cliques in a general graph in 
0(/V/ /El ICI) time. By Lemmas 3 and 4, this collection of cliques can be 
used to decompose a graph by clique separators, in 0( (1 VI + (E( ) JCJ ) time. 
This follows since each clique CE C can be examined, in turn, to see if it 
separates G. If C does not separate G, then by Lemma 4 it will not separate 
any later subgraph and so need not be considered further. On the other 
hand, if G is separated into subgraphs by C, then by Lemma 3 every other 
clique will be contained in exactly one of the subgraphs and the process 
can be repeated for the remaining cliques; also by Lemma 4, C need not be 
considered further, Therefore, each clique is examined exactly once. For 
each clique C, the connected components obtained by deleting C can be 
found in at most O() VI + IE( ) time. 
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It is well known that a chordal graph G = (V, E) has at most 1 I/( cliques 
[S]. We now provide polynomial (in 1 V( ) bounds on the number of cliques 
in DE, UEH, and UE graphs. This implies that the clique generation 
algorithm and the clique decomposition algorithm can be implemented in 
polynomial-time. It is easy to see [ 15, Theorem 111 that a clique in a UE 
graph corresponds either to a set of paths containing a common edge in the 
tree (an edge clique) or to a set of paths each containing two out of three 
edges intersecting in a vertex (a claw clique). We let C, and C, be the par- 
tition of C according to the edge cliques and claw cliques, respectively. 
Clearly, for UEH graphs C, is empty. 

THEOREM 5. (a) For any UEH graph G = (V, E) with 1 VI 2 4 we have 
ICI < L( 31 VI - 4)/2 _I. Furthermore, this bound can be achieved by a DE 
graph G = (V, E) for any value qf ) I/( 2 4. 

(b) ForanyUEgraphG=(V,E)with(V(~3wehave(C,(<2(V(-3 
and (C,I < I VI (I VI - 1)/2. Furthermore, a UE graph G = ( V, E) can attain 
Q( 1 V/ 3’2) claw cliques for any ualue of ( VI. 

Proof of (a). Let G = (V, E) be a UEH graph and let T be a clique 
tree. It suffices to show that the number of edges in T is bounded by 
(3 I V) - 4)/2 or equivalently that the number of vertices in T is bounded by 
(31 V( - 2)/2; this follows since each edge in T corresponds to a clique and a 
tree has one fewer edges than vertices. Let t, , t2, t,, and t, denote the num- 
ber of vertices in T of degree 1, 2, 3, and 4 or more, respectively. 

Since G is connected, each clique is of size two or greater. Therefore, 
each vertex a of degree 1 adjacent to a vertex b is the endpoint of at least 
two paths in P containing edge [a, b] in T. Since cliques are incomparable, 
each vertex a of degree 2 adjacent to vertices b and c must be the endpoint 
of at least one path in P containing the edge [a, b] but not [a, c], and one 
path containing the edge [a, c] but not [a, b]. Now consider a vertex a of 
degree 3 adjacent to vertices b, c, and d. Since the cliques corresponding to 
the three edges [a, b], [a, c], and [a, d] are incomparable and using the 
Helly property, at least two paths have vertex a as an endpoint. Therefore, 
t, + t, + t3 < 1 VI. 

We complete the proof by showing that t, < (tl - 2)/2 using induction. 
Every tree has t, >/ 2; therefore the induction holds for t4 = 0. Let t, > 0 and 
suppose that the result is true for smaller values. Let a be a vertex in T of 
degree 6 > 4. Let T,, T,,... and T, be a partition of T into 6 trees all rooted 
at a. Let t\” and t y) denote the number of vertices of degree 1 and 4 or 
more in each tree Ti, 1 <id 6. By induction, t p) < ( tv) - 2 )/2. Summing 
over all i, 1 d i 6 6, and noting that Cp= I t$J = t4 - 1 and Cp= 1 ty’ f t, + 6 
yields the desired result. 
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FIG. 3. Example of a DV graph attaining the bound in Theorem 5. 

This bound is attained for any II 3 4 by the DE representations depicted 
in Fig. 3. m 

Proof of (b). Let G = (V, E) be a UE graph with a representation 
(T, P) where the number of edges in T is minimum. We will show that T 
has at most 21 V( - 2 vertices and so (C,( < 21 I’( - 3. We let t,, tZ, and t, 
denote the number of vertices of degree 1, degree 2, and degree 3 or more 
in T, respectively. The completely connected sets C, of G associated with 
edges e in Tare incomparable. (If not, edge e can be shrunk, contradicting 
the minimality of T.) Therefore, using the same reasoning as in (a), 
t, + t, d ( VI. It is easy to show by induction, as in part (a). that t3 < t, - 2 
to complete the first part. 

To see the second part we note that any pair of paths P, and P, which 
appear in a clique must share an edge and so can appear in at most two 
claw cliques which must be at different vertices in the tree. Also, for any 
pair of paths which form two claw cliques there are at least two pairs of 
paths which do not meet. Therefore, ]C,/ <(I,“‘). 

To see that (C,( can attain R( 1 V(3’2) consider a tree T where all edges 
share a common vertex with k spokes. Let P be the collection of all (5) 
paths. Then C, consists of one claw clique for each of the (i) claws. 1 

A by-product of Theorem 5 is that a maximum-weight clique can be 
found in polynomial-time for UE graphs. 
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For the independent set problem on a UE graph, Tarjan [25] describes 
an efftcient algorithm for recursively constructing a maximum weight 
independent set from repeated decomposition by completely connected sets. 
Note that although the algorithm in [24] can be used to generate the 
entire collection L of maximal independent sets for a general graph in 
sZ( 1 VI (El ILI) time, there may be exponentially many independent sets in a 
UE graph. For example, the chordless path of length n is a DV graph and 
it has exponentially many independent sets. 

We next describe the relationships between the atoms of DE, UEH, and 
UE graphs and certain classes of line graphs. This provides a number of 
interesting result for these graphs. We first require a few definitions. 

A multigraph is a graph with (possibly) multiple edges between pairs of 
vertices. A line graph L(M) of a multigraph M has a vertex for every edge 
of M with two vertices adjacent in L(M) exactly when the corresponding 
edges in M are adjacent. When H = L(M) we say that M = L ~ ‘(H). A mul- 
tigraph M is bipartite if the vertices can be partitioned into two parts so 
that no two vertices in the same part are adjacent. A multigraph M is 
triangle free if it does not contain three mutually adjacent vertices. A star 
tree is a connected bipartite graph G with one part consisting of a single 
vertex. We can draw a star tree with a center vertex and edges surrounding 
it like spokes of a wheel. 

THEOREM 6. (Atom Theorem). (a) The line graphs of multigraphs are 
exactly the UE graphs with star tree representations. Furthermore, every UE 
atom has a star tree representation. 

(b) The line graphs of trianglefree multigraphs are exact1.y the UEH 
graphs with star tree representations. Furthermore, every UEH atom has a 
star tree representation. 

(c) The line graphs of bipartite multigraphs are exactly the DE graphs 
with star tree representations. Furthermore, every DE atom has a star tree 
representation. 

(d) A graph consisting of a single clique or two intersecting cliques is 
an RDV graph. Furthermore, a chordal atom consists of either a single clique 
or two intersecting cliques. 

Proof for UE Graphs. Consider a multigraph M= (V, E) with line 
graph H = L(M). Construct a star tree T with a spoke i for every vertex 
ie V. Construct a collection P of paths with a path P, consisting of spokes 
i and j for every [i, j] E E. Multiple edges produce multiple paths. Now two 
vertices in H are adjacent exactly when the corresponding edges in M are 
adjacent, which is exactly when the corresponding paths in P share an edge 
in T. Therefore, (T, P) is a UE representation of L(M). 
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Conversely, let T be a star tree with a collection of paths P. Without loss 
of generality, we may assume that all paths consist of exactly two spokes of 
T, by extending every path of length one by adding a new spoke to the star 
and joining it with the path. Let H be the UE graph represented by T and 
P. Construct a multigraph M = ( V, E) with a vertex i E V for every spoke of 
T and an edge [i, j] E E for every path which uses spokes i and j. Now two 
edges in G are adjacent exactly when two paths in P share an edge in T. 
Therefore, H = L(M). 

Now let G be a UE atom with representation (T, P), where T is a 
representation tree with a minimum number of edges. We propose to show 
that if T is not a star tree then G contains a separator, thus contradicting G 
being an atom. If T is not a star tree than it contains a path on four ver- 
tices, a, 6, c, and d, respectively. Let Cob, Cbr, and Ccd denote the com- 
pletely connected set of vertices G whose corresponding paths in T include 
the edges (a, b), (b, c), and (c, d), respectively. (Cab, Cbrr andC,., are incom- 
parable else the edges corresponding to contained sets could be contracted 
while preserving a UE representation of G, contradicting the minimality 
of T.) Therefore, there are vertices x and y such that x E Cah\Cbc and .VE 
C,.,\C,,.. If Chc is a clique then we are done as it separates G. So Cbc is 
strictly contained in a claw clique C. The paths corresponding to the ver- 
tices in C must all share either vertex b or c in T but not both. Without 
loss of generality, we choose vertex c with the paths of C using edge (L’, e) 
in addition to edges (6, c), and (c, d). (Hence, .XI$ C.) We partition the 
paths for C into the nonempty sets P,,, Pber and P, corresponding to the 
path containing edges (b, c) and (c, d), edges (b, c) and (c, e), and edges 
(c, d) and (c, e), respectively. If the subtree containing vertex c obtained by 
deleting edge (b, c) in T contains no path P, for a vertex z $ C then vertices 
d and e are leaves in T (by the connectivity of G) and so the edges (c, d) 
and (c, e) can be deleted from T and deleted from the paths in P,, and P,,. 
The paths in P, can all be replaced by the single edge (b, c) while preserv- 
ing a UE representation for G. This would contradict the minimality of T. 
Hence, the subtreee containing vertex c obtained by deleting edge (6, c) in 
T must contain a path Pz for some vertex z 4 C and so C separates x and 2 
in G. i 

Proof for UEH Graphs. We use the same reduction as in the proof for 
UE graphs. Suppose first that H is the line graph of a traingle-free mul- 
tigraph; then (T, P) is a star tree UE representation for H by (a). Let 
P’ E P be a subset of paths all of which pairwise intersect in at least one 
edge. If all of these paths are identical then we are done. If not, consider 
two paths P, and Pik with j # k. Any other path P in P’ which meets both 
paths must do so in spoke i else a triangle is present in L-‘(H). Therefore, 
all paths in P’ contain the spoke i and the Helly property holds. 
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Conversely, suppose that (T, P) is a star UEH representation; then, by 
(a), H is a line graph of a multigaph. If L-‘(H) had a triangle then the 
corresponding paths in P would not satisfy the Helly property, a contradic- 
tion. 

Finally, by the Clique Tree Theorem for UEH graphs, every edge in T 
corresponds to a clique and removing an edge which disconnects the tree is 
equivalent to removing a clique to separate the graph. So T must be a star 
tree. 1 

Proof for DE Graphs. Again we use the same reduction as in the proof 
for UE graphs. Suppose first that H is the line graph of a bipartite graph 
G = (V, E) with vertex partition V= V, u Vz; then (T, P) is a star tree UE 
representation for H. All edges (i, j) E E are of the form i E I/, and j E I/,. 
Therefore we may direct the spokes of T corresponding to vertices in I/, 
towards the central vertex in T, and direct the spokes of T corresponding 
to vertices in V, away from the central vertex. So all of the paths P, E P for 
iE V, and LIZ V, are uniformly directed as well. 

Conversely, let (T, P) be a star tree DE representation for a graph H; 
then by (a), H is the line graph of a multigraph G = (I’, E). We may par- 
tition V into V, u I’, corresponding to the spokes of T directed towards 
the central vertex of T and the spokes of T directed away from the central 
vertex of T. Each path consists of one spoke corresponding to a vertex in 
V, and one spoke corresponding to a vertex in I/, and so G is bipartite. 

Finally, using the Clique Tree Theorem for DE graphs, and the fact that 
DE c UEH of Theorem 2, an argument identical to the last part of the 
proof for UEH graphs shows that a DE atom has a star tree represen- 
tation. 1 

Proof for RDV Graphs and CHORDAL Graphs. An atom consisting of 
a single clique has an RDV representation consisting of a tree with a single 
vertex representing the clique and also representing the degenerate paths 
for all vertices in the clique. An atom consisting of two intersecting cliques 
has an RDV representation consisting of a tree with two vertices connected 
by a directed edge. The directed path for each vertex u in the graph is the 
vertices in the tree corresponding to the cliques containing the vertex u. By 
the Clique Tree Theorem for chordal graphs, a chordal atom must consist 
of a tree with either one vertex or two vertices connected by an edge; each 
vertex represents a clique; since an atom is connected the two cliques must 
intersect. 1 

A graph G is called perfect if for every induced subgraph H of G, the size 
of a maximum clique in H is equal to the size of a minimum coloring of H 
[l, 21. The Strong Perfect Graph Conjecture (SPGC) [2] states that a 
graph is perfect if and only if it contains no odd chordless cycles of length 
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live or greater, or the complement of one, as an induced subgraph. It is 
easy to see that a graph is perfect if and only if the atoms produced by the 
clique decomposition are perfect, and that the SPGC holds for a class of 
graphs if and only if it holds for their atoms. It is also known [26] that a 
line graph is perfect if and only if it contains no odd chordless cycle of 
length live or greater. This yields the following result as a corollary of 
Theorem 6. Part (a) of Corollary 7 was previously shown in [ 121. 

COROLLARY 7. (a) A UE graph is perfect if and only if it contains no 
odd chordless cycle of length five or greater, 

(b ) DE graphs are perfect. 

COROLLARY 8. (a) The atoms for CHORDAL, DE, UEH, and UE 
graphs can be efficient/y recognized. 

(b) The minimum coloring problem can be solved in polynomial-time 
for DE graphs and CHORDAL graphs, and is NP-complete for UE graphs. 

Proof of Part (a). For CHORDAL graphs the atoms are trivial to 
recognize. For UE graphs, the atoms are line graphs of multigraphs which 
can be recognized in linear-time [3 11. 

We claim that an atom is UEH if and only if each vertex v E V is con- 
tained in at most two cliques. To see this, consider a UEH atom 
G = (V, E). By the Atom Theorem, G has a star tree representation T with 
each spoke representing a clique. Clearly, the path for a vertex v can meet 
at most two cliques. Conversely, if G = ( V, E) satisfies the stated condition, 
then we can build a star tree with an edge for each clique of G. Let X(V) be 
the spokes (cliques) containing v. This is clearly a clique tree for G, hence G 
is UEH by the Clique Tree Theorem. 

To determine whether a graph G is a DE atom or not we First verify that 
G is a UEH atom by the procedure described above. Then it is easy to see 
that G is a DE atom if and only if the auxiliarly graph H = (U, F) is bipar- 
tite, where there is a vertex u,. E U for each clique C of G and [u,, ~~1 E F 
when CnD#@. 1 

Proof of Part (b). We first show how to efficiently color the atoms of a 
DE graph and then show how to color the entire graph using the same 
number of colors. 

By the Atom Theorem, a DE atom H = L(G) is the line graph of a bipar- 
tite multigraph G. Coloring the vertices of H is equivalent to coloring the 
edges of G. The minimum coloring of the edges of a bipartite multigraph G 
is easily obtained and is equal in size to the largest vertex degree in G [ 181. 
Now given a coloring for the atoms we obtain a coloring for the entire 
graph by applying the following procedure recursively. Suppose a graph G 
is separated by a clique C into Gj = G( Vi u C), 1 < ids. Each component 

582h,‘41/2-2 
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can be colored recursively using, say, at most k colors. We extend this 
k-coloring to G by renaming the colors in each component consistently. 
(Recall that no vertex vi in vi and vertex uj in V, (i # j) are adjacent in G.) 

It is shown in [6] that the minimum coloring problem is solvable in 
polynomial time for CHORDAL graphs. It is shown in [32] that the 
minimum coloring problem is NP-complete for line graphs hence is also 
NP-complete for UE graphs by the Atom Theorem. 1 

4. SEPARATOR THEOREM AND RECOGNITION ALGORITHMS 

In this section, we present further results on the structure of path graphs 
when decomposed by clique separators. Together with the earlier results on 
an efficient algorithm for generating a clique decomposition and the 
characterization of the atoms, these structural theorems yield efficient 
algorithms for recognizing DV, DE, and UEH graphs and constructing 
their clique trees based on certain two-coloring criteria. The algorithms for 
these classes of path graphs are very similar to each other. Within the same 
framework, we also prove the NP-completeness of recognizing UE graphs, 
in a manner similar to that of Golumbic and Jamison [ 163, since we show 
that the recognition of UE n CHORDAL graphs requires a certain three- 
coloring criterion. Stronger inclusion and intersecting relationships among 
the classes are also by-products of the Separator Theorem. First some 
definitions. 

Assume clique C separates G into G, = G(Cn Vi), 1 d id s. Cliques 
which intersect C but are not identical to C are called relevant. In the 
following, only relevant cliques are considered. For example, when we say 
“some clique” and “every clique,” we mean “some relevant clique” and 
“every relevant clique,” unless explicitly specified otherwise. 

Two cliques C, and C2 are unattached, denoted C, ( CZ, if (C, n C) n 
( C2 n C) = @. We say that C, dominates Cz, denoted C, > C,, if C, n C 
contains C, n C. We say that C, properly dominates Cz, denoted C, > C,, 
if C, n C properly contains CZ n C. C, and C, are congruent, denoted 
C, - CZ, if C, 3 CZ and C, 3 C,. The two cliques are antipodal, denoted 
C, t* Cz, if they are attached (i.e., not unattached) and neither dominates 
the other. The dominance relation on cliques is transitive, i.e., C1 >/ C2 and 
C, > C3 imply C, 2 C3. Note that all definitions are with respect to the 
separator C. 

Two separated subgraphs G I = G( C u V, ) and G2 = G( C u V2) are unat- 
tached, denoted G, ( G2, if Cr ) C, for every C1 in G, and every C? in GZ. We 
say that G1 dominates G2, denoted G, >, G,, if they are attached, and for 
every C, in G,, either C, 3 CZ for all C2 in G,, or C, ( C, for all C, in G,. 
We say that G, properly dominates Gz, denoted G, > G2, if G, >/G, but not 
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G, 3 G,. They are congruent, denoted G, - GZ, if G, > G2 and G, > G, ; in 
this case C, - C2 for every C, in G1 and every C, in G2. We say that GI 

and G2 are antipodal, denoted G1 ++ G2, if they are attached, and neither 
dominates the other, A subgraph not properly dominated by any other 
subgraph is called a sovereign subgraph. 
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FIG. 4. (a) Example of the separation of G into G,, G,, G3, and G, by C= : 1,2,3,4 
(b) The UEH clique trees for the graphs in (a). 



158 MONMAANDWEI 

We claim that the relation “2” is transitive, i.e., Gi > Gj and Gj > Gk 
implies G,> Gk for any i, j and k. Assume Gi> G, and Gj> Gk. There exists 
a clique CT in Gj which dominates every clique C, in G,, and there exists a 
clique CT in G, which dominates every clique C, in G,. So C,? >, C,! 2 Ck 
for every clique Ck in Gk, and G, and Gk are attached. Consider any Ci in 
Gi. If Ci dominates every clique in G, then C, > CT 2 Ck for every Ck in Gk. 
Otherwise, C, 1 C,,+ and hence Cj/ C, for every C’, in Gk. This proves that 
Gi> G,. 

Consider the graph G = ( V, E) separated by the clique C = { 1,2, 3,4} 
into Gr through G, as shown in Fig. 4a. We have G, > G,, G, I G3, 
G, H Gq, G,J G,, G,/ Gq, and G, < G,. Incidentally, G is a DE (hence 
UEH) graph, G,, G3, G4 are atoms, while { 1, 2, c> separates G,. The UEH 
clique trees for these graphs are shown in Fig. 4b. Each edge is labelled by 
the clique to which it corresponds. 

LEMMA 9. Two subgraphs G,, G2 are antipodal if and only if 

(1) C,++G1 

(2) c,>cz, c;<c;, 
(3) C,>C,, C;>C;, C;ICz (or C,>C,, C;>,C;, CiIC;), or 

(4) c,-c2, c,ic;, q-c;, c;1c;, 

for some C,, C;, C; in G, and Cz, C;, CT in G2. (These cliques need not all 
be different ). 

Proof. It is straightforward to verify that each condition implies 
G, ++ G2. Assume G, c* G2 and that no clique in G 1 is antipodal to any cli- 
que in G,. If there are some C, > Cz, then since G, does not dominate Gz, 
we have some C;, C;, C;l, with either C’, < C;, or C’, >, Cl, C’, 1 C;l ; i.e., 
Conditions (2) or (3). On the other hand, if no clique in G, properly 
dominates any clique in Gz and vice versa, then we must have Con- 
dition (4). m 

LEMMA 10. Let C, and Ca be cliques in G, and G2, respectively, with G, 

and G2 not antipodal. If C, > C,, then G, > G2. 

Proof. Straightforward. 1 

LEMMA 11. A collection of pairwise non-antipodal subgraphs Gi of a 
(general) graph G can be arranged in such a way that Gi > G, implies i < j. 

ProoJ: First, assume there are no Gi- Gj, i# j. Let 1 be the largest 
number for which there exists a chain G, > G2 > . . . > G,. We will use 
induction on 1. If l= 1 then the Gls are mutually unattached, and any 
arrangement will do. 

Assume the lemma true for l,..., l- 1, with 12 2. Let k be the number of 
sovereign subgraphs H, ,..., H,. Every subgraph Gi is dominated by a uni- 
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que sovereign subgraph; otherwise we would have two subgraphs antipodal 
to each other. Assume H, dominates a,,, subgraphs, including itself, where 
IzL , a, = s, and s is the total number of subgraphs. 

Consider the a, - 1 subgraphs properly dominated by H,. There are no 
antipodal pairs and the maximum length of a chain is at most I- 1. By the 
induction assumption, the a, - 1 subgraphs can be arranged. 

Let the (I +CyzP,’ a,)th subgraph be H,. For each m, let the 
(2 + CT=-,’ a,)th through (Cy= i a,)th subgraphs be those dominated by H,, 
arranged in the inductive way just described. Let G, dominate G,. If G, is 
sovereign, then i = 1 + CT=“=;’ a, for some m and j > i by the construction 
used. If Gi is not sovereign, then both Gj and Gj are dominated by some 
H,,,, hence j > i by the inductive arrangement. 

If there are congruent subgraphs Gjm Gj, take one subgraph from each 
congruence class and rearrange. Then insert the other G,‘s into the 
sequence immediately after the subgraph to which it is congruent in an 
arbitrary order. i 

We note that a collection of pairwise non-antipodal subgraphs G, of a 
(general) graph G (not necessarily a path graph) possesses several 
interesting properties. Let H = (U, D) be an undirected graph with a vertex 
iE U for each subgraph Gi, and an edge [i, j] if G, dominates or is 
dominated by G,. Assume the subgraphs are arranged in such a way that 
G, > Gi implies i < j. Lemma 11 guarantees such an arrangement. Note that 
[i, i] E D, i < j, imply that Gi 3 G,. Orienting an edge [i, j] from i to j if 
i<j, we see that H is transitively orientable. It is also triangulated since 
G, < Gi and Gj < Gk imply that [i, k] is an edge, or else G, +-P G,. It is also 
the case that the complement of K is transitively orientable so that H is an 
interval and a permutation graph. To see this, assume, in order to obtain a 
contradiction, that H is the smallest such graph with R not transitively 
orientable. Note that the G,‘s dominated by different sovereign G,‘s are 
unattached. Hence, s 3 2 sovereign G,‘s means s disjoint components of H 
each of which is an interval as well as a permutation graph. Arbitrarily 
order the disjoint component into H,, Hz,..., H,. We have a transitive 
orientation of A as follows: For X, JJE Hi, use the transitive orientation in 
H,. For x, y in different components, orient them as Hi’s are oriented. 
Therefore, we must have s = 1, i.e., there is only one sovereign sub- 
graph G*. 

Let H’ be the graph derived from H by deleting the vertex G*. Then H 
is an interval and permutation graph by the minimality of H. Noting that 
G* is adjacent to all other vertices in H, we see that the transitive orien- 
tation on R’ directly gives a transitive orientation on R 

Let C separate G into G, = G(Cu V,), 1 did s. A subgraph Gj is a 
neighboring subgraph of v E C if some vertex in V, is adjacent to o. 
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Here is the main theorem of this section. 

THEOREM 12. (Separator Theorem). Assume clique C separates 
G = ( V, E) into subgraphs Gi = G( C u Vi), 1 < i < s, s 2 2. 

(a) G is a DE graph if and only if each Gj is DE, and the G;s can be 
2-colored such that no antipodal pairs have the same color. 

(b) G is a DV graph if and only if each Gi is D V, and the G:s can be 
2-colored such that no antipodal pairs have the same color. 

(c) G is a UEH graph if and only if Gi is UEH, and the Gi’s can be 
2-colored such that no antipodal pairs have the same color. 

(d) G is a UV graph if and only if each Gi is UV, and the G,‘s can be 
colored such that no antipodal pairs have the same color, and for each v E C, 
the set of subgraphs neighboring v is 2-colored. 

(e) G is both a UE and a CHORDAL graph if and only if each G, is 
both UE and CHORDAL, and the G,‘s can be 3-colored such that no 
antipodal pairs have the same color, and for each v E C, the set of subgraphs 
neighboring v is 2-colored. 

( f ) G is a chordal graph if and only each Gi is chordal. 

(g) G is an RD V graph if and only $ each G, is RD V, and the G,‘.~ can 
be two-colored such that no antipodal pairs have the same color, and that in 
one color every subgraph has an RDV clique tree rooted at C, and that in the 
other color no two subgraphs are unattached and every subgraph (with one 
possible exception) has an RDV clique tree rooted at a relevant clique. The 
exception subgraph, should it exist, is dominated by every other subgraph of 
the same color, and it has an RDV clique tree in which the node C has out- 
degree zero. 

It is understood that k-coloring means using k of fewer colors, where 
k = 2 or 3. 

The proof of the Separator Theorem is left for the next section. Here, we 
provide some insight into the ideas behind this theorem. Consider the cli- 
que tree T of a DE graph G. Separating G by a clique C corresponds to 
dismantling T by the edge C into several pieces. The edges corresponding 
to the cliques of a subgraph constitute a subtree that lies entirely within 
one piece. A piece may contain more than one subtree. Subtrees of 
antipodal subgraphs must lie on opposite sides of the edge C. This 
motivates the necessity of 2-coloring; the fact that this condition is also suf- 
ficient is left to the proof. (See Figs. 1 and 2. ) 

The intuition for UEH graphs is similar. For DV graphs, separating G 
by a clique C corresponds to dismantling its clique tree T by the vertex C 
into several pieces. The subgraphs can be grouped into two categories 
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depending on whether the piece they are in contains an edge leading into 
the node C or not. Two antipodal subgraphs must be in opposite 
categories. 

The situation for UV gaphs is slightly different. Separating a UV graph 
G by a clique C corresponds to dismantling its clique tree T by the ver- 
tex C, but the subgraphs are grouped into as many categories as the degree 
of the vertex C. Consider T as consisting of branches emanating from the 
vertex C; the subgraphs with subtrees on the same branch are grouped 
together. Two antipodal subgraphs must be in different categories. For any 
u E C, the path corresponding to u extends into at most two branches. This 
motivates the coloring conditions for UP’ graphs. 

The situation for RDV graphs is illustrated in Figs, 5a and b. Figure 5a 
illustrates the separation of an RDV graph G by the clique C = ( 1, 2, 3,4). 
The clique trees for G and its subgraphs are shown in Fig. 5b. Each vertex 
is labelled by the clique to which it corresponds. The relationships between 
the subgraphs are: G,<G,, G,<G,, G,-Gq, G,e,G3, GZ++Gq, and 
G, - G,. We can use one color on G, and G2, and another color on G3 and 
G,. The conditions of the Separator Theorem are satisfied by making G, 
the exception. 

On the basis of the Separator Theorem, we can outline a general 
algorithm for recognizing these graphs: 

Step 1. Obtain a clique decomposition for G = ( V, E). 

Step 2. Verify that the atoms satisfy the Atom Theorem. 

Step 3. Verify that each separation in the decomposition satisfies the 
Separator Theorem. 

In the previous section, we have shown that Steps 1 and 2 can be done in 
polynomial-time for all of these graphs. Step 3 is executed at most I VI 
times. For each separation, there are at most I VI subgraphs, so it takes 
polynomial-time to set up the antipodal relationships between the sub- 
graphs. This can be done by (1) determining the cliques in the subgraphs, 
(2) deciding antipodality between all pairs of cliques, and (3) resolving 
antipodality among subgraphs. 

So the complexity of recognizing these graphs depends on how difticult it 
is to check the conditions of the Separator Theorem. For CHORDAL 
graphs there is nothing to check. For DV, DE, and UEH graphs this 
involves a 2-coloring and can be done efficiently. (We note that the 
statements of the Separator Theorem for DV, DE, and UEH graphs are 
identical except for the names of the classes; therefore these graphs differ, in 
a sense, only in their atoms.) The RDV graphs and UV graphs can be 
efficiently recognized using algorithms given by Gavril [9, lo] and by 
Dietz [30]. The efficiencies of recognizing RDV graphs and UV graphs 



INTERSECTION GRAPHS 163 

under the framework of the Separator Theorem are left as open problems. 
Algorithms for generating clique trees (or UE representation trees in the 
case of UE n CHORDAL graphs) are presented in the next section. 

Not surprisingly, we can prove the NP-completeness of recognizing 
UE n CHORDAL graphs by transforming the 3-coloring problem into the 
graph recognition problem in a manner similar to [ 151. Let H = (U, D) be 
any connected graph. Without loss of generality, let every vertex of H have 
degree at least two. (If not, the vertex could be deleted and colored con- 
sistently later.) Let G = (V, E) be defined by V= U u D, E = { [u, d] E 
U x D: d is incident to u in Hi u D x D. Then G has ( U( + 1 cliques, namely 
D and C, = (u) u {d: d is incident to u in H), for each u E U. Clearly D 
separates G into subgraphs G, = G(D u C,), u E U. Each G, is an atom and 
a UE n CHORDAL graph since it has only two cliques. Furthermore, G, is 
antipodal to G, if and only if [u, w] ED. For each ne D, d= [u, ~1 and 
there are exactly two neighboring subgraphs, G, and G,,, to d. The second 
condition of the Separator Theorem for UE n CHORDAL graphs is 
satisfied by any coloring of the subgraphs. Therefore, by the Separator 
Theorem, H is 3-colorable if and only if G is a UE n CHORDAL graph. 
Hence it is NP-complete to recognize UE n CHORDAL graphs. Since 
CHORDAL graphs are polynomial-time recognizable [lo], it is NP-com- 
plete to recognize UE graphs. 

In summary, we have the following theorem. 

THEOREM 13. The RD V, DV, RDE, DE, UEH, and CHORDAL graphs 
are recognizable in polynomial-time. The problem of recognizing UE graphs 
is NP-complete. 

On the basis of the Separator Theorem, we have the following inter- 
secting relationships. 

COROLLARY 14. (a) DV= UEHn CHORDAL. 

(b) DE = UEH n PERFECT. 

(c) UEnCHORDAL=UEnUV. 

Proof of Part (a). By Theorem 2, DV c UEH n CHORDAL. To see the 
reverse containment, we note that by the Atom Theorem if G is a chordal 
atom, then G is DV. Otherwise, let G be a non-atom UEH and chordal 
graph. Separate G into subgraphs Gi= G( V,u C), 1 < i,<s. By the 
Separator Theorem for chordal graphs, each Gj is chordal. By the 
Separator Theorem for UEH graphs, each Gi is UEH and they are 2- 
colorable. By induction, each Gi is DV. Hence by the Separator Theorem 
for DV graphs, G is DV. [ 
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FIG. 6. Intersecting relationships among various classes of graphs. (Examples of graphs 
from Fig. 1 are shown in appropriate regions.) 

Proof of Part (b). By Theorem 2, DE c UEH c UE. By Corollary 7, a 
UE graph is perfect if and only if it does not contain an odd chordless cycle 
of length five of more, and all DE graphs are perfect. Hence DE c UEH n 
PERFECT. Let G’ = (I’, E) be a graph in UEH\DE. It remains to show 
that G’ contains an odd chordless cycle of length at least five. 

By the Separator Theorem, since G’ is in UEH\DE, some atom G of G’ 
is the line graph of a multigraph H, where H is triangle free but not bipar- 
tite. Since H is not bipartite it contains an odd cycle. The smallest odd 
chordless cycle must be of length at least live since H is triangle free. Hence 
G has an odd chordless cycle of the same length, and so does G’ since 
separators cannot break such a chordless cyde. 1 

Proof of Part (c). This is straightforward by combining Theorem 2, the 
Atom Theorem, and the Separator Theorem for UV graphs and UEn 
CHORDAL graphs. 1 

The inclusion and intersection relationships among various classes of 
path graphs are summarized in Fig. 6. Examples of graphs from Fig. 1 are 
shown in appropriate regions. Regions not shown are empty. Note that the 
set of RDV (=RDE) graphs is strictly contained in the set of DV graphs 
since G, is DV but not RDV. 
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5. PROOF OF THE SEPARATOR THEOREM 

In this section, we prove the Separator Theorem. We shall proceed in the 
sequence UEH, UV, DE, DV, RDV, and UEn CHORDAL graphs. The 
proof for CHORDAL graphs is trivial and is omitted. The algorithm for 
constructing a clique tree or representing tree is given also. 

Proof of the Separator Theorem for UEH Graphs. If G = (V, E) is a 
UEH graph and x E V, let rc(x) denote the corresponding path in the clique 
tree. The proof will be given as a series of propositions. Throughout, let C 
separate G into Gi = G( V, u C), 1 < i G s. 

PROPOSITION 1. If G is UEH, then each Gi is UEH with a clique tree 
having C as a leaf-edge. 

ProoJ Let T be a clique tree for G, and we will construct a clique tree 
T, for each G,. Let rr( Vi) be the subtree consisting of edges traversed by 
paths (vertices) in V,. Since G( Vi) is connected, so is n( V,). There is a uni- 
que path of vertices in T given by rc* = (v~,..., u, i with u0 in rc( I’,), 
[tl,,- ,, v,,] = C, and u, ,..., o n-2 not in rr( Vi). Note that when C is connected 
to n( V,) we have n = 1. Construct T, by augmenting rc( I’,) with one edge 
[uO, u], where u is a new vertex. Let [v,, u] correspond to clique C. There 
is a one-to-one correspondence between cliques of G, and edges of T,. 
Furthermore, z’(s) = n(s) for x E Vi, z’(x) = ( [v,, u] ) u (z(x) n rr( Vi)) for 
.Y E C are the representing paths. Hence, T, is a UEH clique tree for Gj with 
leaf-edge C. 1 

PROPOSITION 2. Each G, contains no antipodal pair of cliques (with 
respect to C). 

Proof: From the previous proof, we see that each G, is a UEH graph 
which has a clique tree T, with C as a leaf. Suppose that a subgraph Gi 
contains cliques C, and Cz, where C, ++ C2 ; then consider x E (C,\C,) n C, 
.Y o (C,\C, ) n C, and z E C, n C, n C. The path z(z) in T, contains the cli- 
ques C, C,, and C2 in either sequence (C3 C,, Cz) or (C, C2, C,). In the 
former case, the path n(r) contains both C and C,, hence must contain C, . 
But 1’ 4 C, , a contradiction. In the latter case n(x) produces a similar con- 
tradiction. 1 

In a UEH clique tree T, let rr(C’, C”) denote the path (consisting of 
edges) between the edges in the tree corresponding to cliques c’ and C”. 
Observe that C’ and C” are on the same side of C in the tree if and only if 
C $ 7c( C’, C”). Let rr 0 rr’ = {x : x in either rt or rr’ but not both}. We state a 
few useful facts before proceeding with the proof. 
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PROPOSITION 3. Let C’, C” be two cliques on the same side of C. rf C’ 
and C” are attached then either C’ E n(C, C”) or C” E n(C, C’). Furthermore, 
if C’ > C” then C’ E x(C, Cl’). 

Proof. Consider x E C’ n C” n C. Since C is a leaf and rc(x) is a path 
containing C’, C”, and C, we must have either C’ E n(C, C”) or C” E 
z(C, C’). Now let C’ > C’“. The latter case cannot happen for it would imply 
that C’ E rc( y) for every y o (C’\C”) n C # 0, contradicting C’ > C”. i 

PROPOSITION 4. Zf C’ E n( C, C”), then C’ > C”. 

Proof: For every XE Cn C”, we have C’ E rc( C, C”) 5 rc(.x), hence 
XEC. 1 

PROPOSITION 5. Let Ci and C; be two (relevant) cliques of a subgraph G,; 
then every clique in z(C,, C:) is in G,. 

Proof: Consider XE C,\C and y E C!\C; then there is a path p (con- 
sisting of vertices) in G( Vi) connecting x and y. Let n(p) be the union of all 
paths (consisting of edges) in T corresponding to members of p; then 
rr(Cj, Ci) s z(p). Every clique in rc(Ci, Cl) contains some vertex of Vi, 
hence is in G, because vertices from different subgraphs are non- 
adjacent. h 

PROPOSITION 6. The G,‘s can be 2-colored such that no antipodal pairs 
have the same color. 

Proof. Consider a clique tree T of G. From the previous proof we know 
that, for each i, the cliques of Gi are on the same side of the edge C. 
Therefore, we can partition the Gfs into two parts according to which side 
of C they are on. We show that neither part contains antipodal subgraphs. 

For the remainder of this proposition, we consider only cliques on one 
side of C. Let G, and G2 be antipodal and on the same side of C; we will 
prove this leads to a contradiction. There are four cases: 

Case 1. C, ++ C2 for some C, in G, , and some C, in G2. Since C, and 
C, are attached either C, E rr(C, C,) or C2 E 7c(C, C,) by Proposition 3. 
Then by Proposition 4, C, 2 C2 or Cz b C,, a contradiction. 

Case 2. C, > C,, C’, < C;, for some C, , C’, in G, , and some Cz, C; 
in G,. We have C, E rc(C, C,) and C;E n(C, C;) by Proposition 3. Note 
that rc(C,, C;)=rc(C, C,)Orc(C, Cl,) and 7-c(C3, C;)=x(C, C,)@rr(C, C’;) 
because C is a leaf. By Proposition 5, C2 6 rr(C,, C; ), hence C2 E n(C, C,). 
Similarly, we obtain C, E rr(C, C;). But the last two inclusion conditions 
are contradictory. 
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Case 3. C, > C2, C’, >C2, C;IC;, for some C,, C; in GL, and some 
C,, C;, C;l in G,. Since C;$rc(C;, C;)=n(C, C;)OTC(C, C;) By 
Proposition 5, and Cl, $ rr( C, C;) by Proposition 4, we have Cl, $ z( C, CL); 
hence C; - Ci and C; E rc( C, C’,) by Proposition 3. But by Proposition 5, 
C; $ n( C,, C;) = rc( C, C,) @ n( C, C;); therefore C; E n( C, C,). But C, E 
rr(C, Cz) by Proposition 3, and C, # rr(C2, C>) = rc(C, C,) @rc(C, C>) by 
Proposition 5. So C, E rr( C, CL), a contradiction. 

Case 4. Cl -cl, c,jc;, c;- C;, C;jC; ,for some C,, C;, Cr in G, 
and some Cl, C;, C; in G2. From CI 4 n(C, C;) by Proposition 4, and 
C, + n( C2, C;) = rc( C, C,) @ n( C, C;) by Proposition 5, we have C1 $ 
n(C, Cz); hence C2 E rc(C, C, ) by Proposition 3. Then C, 4 rc(C,, C’,) = 
n( C, C, ) 0 rr( C, C;). Hence Cz E rc( C, C’, ). Symmetrically, we obtain C; E 
rr(C, C1!), a contradiction. 

Combining these four cases, we complete the proof. 1 

This completes the proof of the forward part of the Separator Theorem 
for UEH graphs. 

PROPOSITION 7. Let C be a clique in the UEH graph G. If C is not a 
separator, then C is a leaf in any clique tree of G. 

ProoJ: If C is not a leaf, then there are (not necessarily relevant) cliques 
C, and C2 incident to C from opposite ends of the edge C. Let XE C,\C, 
y E C?\C. Then I and y are not connected in G( v\C) because if they are, 
then n( C, , CJ and C form part of a cycle. Hence. C is a separator. 1 

PROPOSITION 8. Let C separate G into Gi = G( V, v C), 1 < i < s. Assume 
each Gi is UEH, and that G,, Gz,..., G, are pairwise non-antipodal. Then 
G( V, u . . u V, u C) is a UEH graph with a clique tree having C as a 1eajY 

Proof By Lemma 11 we can arrange the first t < s subgraphs so that 
G, > G, implies i <j. We will recursively construct a UEH clique tree for 
G(Cu V, u ... u V,) for n = 1, 2 ,..., t with C as a leaf. 

By Lemma 4, C is not a separator of G, = G( C u V,), for any i, 1 < i < s. 
By Proposition 7, C is a leaf in any clique tree of G,, 1 d id s. In particular, 
G(Cn V,) has a clique tree with C as a leaf. 

Assume G( C u V, u . . u V, , ) has a clique tree T’” ~ ’ ’ with C as a leaf. 
The subgraph G(Cu V,) has a clique tree T, with C as a leaf. Let C corre- 
spond to leaves [vO, u, ] and [vb, u; ] in T’“- ” and T,,, where vO and vb 
have degree 1. 

First consider the case where G, is not dominated by any Gi, 1 < i < n. 
Then G, must be unattached to any Gi, 1 < i < n. Merge the two C-edges in 
p- 1’ and T,, to make a bigger tree T(“) by identifying vO with vb and uI 
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with vi. By Lemma 3, the edges in T”” correspond to cliques in 
G(Cu I/, u ... u V,). Let v~Cu V, u ... u V,. If VE V, u ... u V,,- 1, 
then the cliques containing v form a path in T(“-‘I, hence in T’“) also, If 
u E V,, then the cliques containing u form a path in T,,, hence in T(“’ also. 
If VE C there are two cases: If v is not adjacent to any vertex in 
v,u ... u v,, then there is only one clique, C, containing v in T’“‘. 
Otherwise, u E C is either adjacent to some vertex in V, u ... u I/,- 1 or to 
some vertex in V,. (If u adjacent to both sets, then G, c-, Gi for some 
1 < i < n.) In the first case, the cliques containing v form a path in T’” ‘I, 
and there is only one clique, C, containing v in T,,. Hence the clique con- 
taining v is a path in r’“‘; the second case is similar. 

Next consider the other case, where G, is dominated by some Gi, 
1 < i < n. Let A = (Cr ,..., C,}, be the set of cliques with each C,, 1 <j f k, 
in some Gi, 1 < i < n, and each C, dominating every clique of G,. Also, let 
C E A. We claim that, for any v E C, v is adjacent to some vertex in V,, we 
have A =7t(v) in T(“-‘). On one hand, for any C’ E A, we have C’ 3 C”, 
where C” is any (relevant) clique in G, containing u. Hence C’E n(v). On 
the other hand, consider any clique C’ E x(u), C’ in some G,, 1 du < n. 
Then G, and G, are attached via v, hence G, > G,. Since C’ is attached to 
the cliques in G, containing u, C’ dominates all cliques of G, and C’ E A. 

Let C and C* = [u,, ur] be the two ends of the path A in T’“-I), where 
u0 is closer to C than ur is, Let C = [ wO, w  , ] in T,, where w0 has degree 1. 
Then we can construct T’“) by identifying u,, with M’~ and u, with w, to 
merge T’“- ” and T,. The resulting T(“’ is a UEH clique tree for 
G(Cu V, u ... u I’,). fl 

For example, the subgraphs G, > G2 in Fig. 4a are both UEH; their cli- 
que trees are shown in Fig. 4b. In T”) = T,, the path A consists of the 
edges { 1,2, a} and C = { 1,2, 3,4}. The trees can be glued together by 
coalescing the { 1,2, u} edge of T, and the C edge of TZ. 

PROPOSITION 9. Let C separate G into Gj = G( Vi u C), 1 d i< s. Zf the 
Gis are UEH and they are 2-colorable such that no antipodul pairs have the 
same color, then G is UEH. 

Proof: By Proposition 8, for each color, we can construct a clique tree 
with C as a leaf. Let C be the edge [v,, vl] in one tree and [vb, v’,] the 
edge in the other, where u0 and u; have degree 1. Then make a bigger tree 
T by identifying u0 with u; and u, with vb. Then T is a clique tree for G; 
hence G is a UEH graph by the Clique Tree Theorem. fl 

This completes the proof of the Separator Theorem for UEH graphs. 
Propositions 8 and 9 outline an algorithm to construct a clique tree for 
UEH graphs. 
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Proof of the Separator Theorem for UV Graphs. The proof proceeds as 
a series of propositions in a manner similar to the UEH case. 

PROPOSITION 1’. If G is UV, then each G, is UV with a clique tree T, 
having C as a leaf node. 

Proof Let T be a UV clique tree for G; we will construct a UV clique 
tree Tj for each G,. Let z( V,) be the subtree consisting of vertices traversed 
by paths corresponding to the vertices in Vi. Since G( Vi) is connected, so is 
z( V,). There is a unique path n* = { u0 ,..., u,) in T with u,, = C, u, ,..., o,_ , # 
7~( V,), and u, E z( Vi). Construct T, by augmenting z( Vi) by a new vertex u* 
and a new edge [v*, u,]. Then T, is a UV clique tree for G,. 1 

In the tree T, let n(C’, C”) denote the path (consisting of vertices) from 
C’ to C”. Observe that C’ and C” are on the same branch (with respect to 
root C) if and only if C$ n(C’, C”). Recall that the symmetric sum is 
defined as n@ R’ = {x: x is in either 7c or rc’ but not both}. Using this 
notation, we can easily derive analogies of Propositions 2-5. 

PROPOSITION 2’. Each Gi contains no antipodal cliques (with respect 
to C). 

PROPOSITION 3’. Let C’ and C” be two cliques on the same branch of C. 
If C’ and C” are unattached, either C’ E x(C, C”) or C” E n(C, C’). Further- 
more, if C’ z== C” then C’ E z( C, C” ). 

PROPOSITION 4’. If C’ g TL( C, C”), then c’ > C”. 

PROPOSITION 5’. Let Ci and C: be two (relevant) cliques qf a subgraph 
Gi; then every clique in z(Ci, C:) is in G;. 

PROPOSITION 6’. The G,‘s can be colored such that no antipodal pairs 
have the same color, and for each u E C, the neighboring subgraphs qf v are 
2-colored. 

Proof. Consider a clique tree T of G. Consider T as a rooted tree with 
C as root. For each i, 1 < i<s, the cliques of G, are contained in one 
branch of the tree T. Let there be k branches emanating from C. We will 
color the subgraphs using k colors. A subgraph is colored according to 
which branch of the tree it is on. 

Assuming subgraphs G, ++ GZ, and that G, and G2 have the same color, 
we will exhibit a contradiction. There are four cases to consider. 

Case 1. C, +-+Czfor some C, in Gz% and some Cz in G7_. Since C, and 
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C2 are attached, Proposition 3’ implies that either C, E x( C, C,) or C, E 
rc( C, C,). By Proposition 4’ either C, > C2 or C2 > C, , a contradiction. 

Case 2. Cl > Cz, C; < C;, for some Cl, C; in G1, and some C,, CL in 
GZ. We have C, E z(C, C,) and C; E z(C, C’,) by Proposition 3’. Note that 
7c(CI, C;)=z(C, Cl)@rc(C, C;) and rc(C2, C;)=$C, Cz)@n(C, C;). By 
Proposition 5’, C; $ rr( C1, C;), hence C; E n(C, C,). Similarly, we obtain 
C, E x(C, CL). The last two conclusions are contradictory. 

Case 3. C,>C,, C’,>C;, C’,(C;, for some C,,C’, in G,, and some 
Cl, c;, C;l in GZ. Since Cr$7r(C;, C;)=x(C, C;)@n(C, C;‘) by 
Proposition 5’, and C’, $ n(C, C;) by Proposition 4’, we have C; 4 7c( C, C’s); 
hence C’, N C; and C; E z(C, C;) by Proposition 3’. But C; $ rr(C,, C’,) = 
n(C, C,) @ n(C, C;); therefore C;EK(C, C,). But C,ER(C, C,) by 
Proposition 3’, and C, $ x(C?, C;) = n(C, C,) @ rr(C, C;) by Proposition 5, 
so C, E rc(C, C;), a contradiction. 

Case 4. C, -cz, c,\c;, c;- C’,, C’;llC;, for some C,, C’,, C;l in G,, 
and some Cl, C;, C;l in Gz. C, $ 7c( C, Ci ) by Proposition 4’, and C, 4 
n(C,, C;) = x(C, C,) @ rr( C, C;) by Proposition 5’, so we have C, 4 
rr(C, C,); hence C, E z(C, C,) by Proposition 3’. Similarly we have C’, E 
n(C, C;). Then C’, $ x( C>, C$) = n( C, C;) 0 n(C, Cz) by Proposition 5’, and 
C’, E n( C, C;). Similarly C; E n( C, C’, ), a contradiction. 

Combining these four cases we have that no antipodal subgraphs have 
the same color. For each u E C, the path in T corresponding to u is con- 
tained in at most two branches from the root C. Therefore, the neighboring 
subgraphs of u have at most two colors among them. 1 

This completes the forward part of the Separator Theorem for UV 
graphs. We can easily derive these analogies to Propositions 7 and 8. 

PROPOSITION 7’. Let C be a clique in the UV graph G. If C is not a 
separator, then C is a leaf node (i.e., a node with degree 1) in any clique tree 
ofG. 

PROPOSITION 8’. Let C separate G into Gi = G( Vi u C), 1 < i < s. Assume 
each G, is UV, and that G,,..., G, are pairwise non-antipodal. Then 
G( V1 u . . ’ u V, v C) is a UE graph with a clique tree T having C as a leaf 
node. 

Proof By Lemma 11, we can arrange the subgraphs G1,..., G, so that 
Gi > Gj implies i < j. We will recursively construct a clique tree for 
G(Cu V,u ... u V,), n = 1, 2 ,..., t, with C as a leaf node. 

By Lemma 4, C is not a separator of Gi, 1 d i < s. By Proposition 7’, C is 
a leaf node in the clique tree Ti of Gi, 1 < i < s. In particular, G1 has a cli- 
que tree with C as a leaf node. 
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Assume G(Cu V1 u ... u V, ~ 1) has a clique tree T’” - ” with leaf node 
C. Let C correspond to node v in T(“- ” and to node v’ in T,. 

First consider the case where G, is not dominated by any G,, 1 d i < n. 
Then form Ttn’ by merging v in T’“- I ) and u’ in T,,. That is, identify the 
two vertices into one. By Lemma 3, there is a one-to-one correspondence 
between the vertices of T(“’ and the cliques of G(Cu V, u . .. u V,). If 
DE v,u ..’ u vn-,, then the cliques containing u are all in 
G( C u V, u . . . u V,, _, ) and they form a path in 2”““- ‘I; hence they form a 
path in 2”‘“). If VE V,, then the cliques containing v are all in G(Cu V,) 
and they form a path in T,,; hence they form a path in T”“. Finally, if v E C, 
there are two cases: If v is not adjacent to any vertex in V, u . . . u V,, then 
C is the only clique in G( C u V, u . . u V,) which contains v. Otherwise, v 
is either adjacent to some vertex in V, u . u V,-, or adjacent to some 
vertex in V,. (If v is adjacent to both, then G, d G, for some 1 < i < n.) In 
the former, the cliques containing v form a path in T(“-‘) and C is the only 
clique in T, containing v. In the latter, C is the only clique in T’“- ‘) con- 
taining u and the cliques containing Y is T, form a path. Either way, the cli- 
ques containing ZI in T(“) form a path. Therefore, T(“) is a clique tree for 
G(C u Vl u .. . u V,,). Also, every path Z(X) with XE C, has C at one end 
in T(“‘. 

Next we consider the case where G, is dominated by some G;, I < i < n. 
Let A = (C, ,..., Ck ), be the set of cliques with each C,, 1 ,< j< k, in some 
Gi, 1 < i < n, and each Cj dominating every clique in G,. We can show 
that, for any VE C, u adjacent to some vertex V,, we have A =X(V) in 
T’” - I). On one hand, for any C’ E A, we have C’ 2 C”, where C” contains v 
in G,. Hence C’~n(v). On the other hand, for any c’ EZ(U) in T(“-‘), we 
have C’ attached to C” in G,, C” containing v. Hence C’ dominates every 
clique of G,, C’ E A. Let C and C* be the two ends of A. Construct T’“) by 
merging C* in T(“- ‘) with C in T,,. 1 

PROPOSITION 9’. Let C separate G into Gj = G( C u Vi), 1 < i 6 s. If each 
G, is UV, and they can be colored in such a way that no antipodal pairs have 
the same color and that, for every v E C, the neighboring subgraphs of D are 
two-colored, then G is UV. 

ProoJ: By Proposition 8’, for each color, we can construct a clique tree. 
Next we construct a clique tree T for G by “gluing” up all the clique trees 
of different colors. We merge all the vertices corresponding to C in the cli- 
que trees of various colors into one vertex. 

If a vertex UE C, then the cliques containing v form a path in one of the 
subtrees. If VE C, then in at most two subtrees, the cliques containing v 
form a path with C at one end. After gluing, the cliques form a path in T. 

By Lemma 3, there is a one-to-one correspondence between cliques of G 
and vertices of T. By the Clique Tree Theorem, G is a UV graph. 0 

582b/41/2-3 
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This completes the proof of the Separator Theorem for UV graphs. 
Propositions 8’ and 9’ outline an algorithm to construct a clique tree for 
UV graphs. 

Proof of the Separator Theorem for DE Graphs. This is similar to the 
proof for UEH graphs, with some extra attention paid to Propositions 8 
and 9. By Proposition 8, the clique trees TI,..., T, for the pairwise non- 
antipodal DE subgraphs G, ,..., G, are “glued” together to make a clique 
tree for G(Cu V, u .. . u I’,). We accomplish this by iteratively merging 
the directed leaf edge C = ( wO, w, ) in T, with a specific directed edge C* = 
(u,, ui) in T’“-” (which is a UE clique tree for G(Cu I”,u ... u I/n-,)), 
where u,, is closer to C = (v,, u i) in T(“) than u, is. If w0 has degree 0, then 
we identify w0 with u0 and w, with u,. Otherwise, w1 has degree 1, and we 
reverse the direction of all edges in T,, then identify w0 with uI and w, with 
uO. The resulting T’“’ is the desired DE clique tree. Other portions of the 
proof can be modified by this technique of reversing the directions of all 
arcs when necessary. 1 

Proof of the Separator Theorem for DV Graphs. This is similar to the 
proof for UV graphs, with the following special attention to the orientation 
of the edges in the clique tree. 

In Proposition 6’, the UV clique tree is considered a rooted tree with C 
as the root, and each subgraph Gj is colored according to which branch of 
the tree it is on. If there are k branches, then k colors are used. For a DV 
clique tree, we will use only two colors. Use one color on the branches with 
an edge leading into the node C, and use another color for all other 
branches. For each u E C, the path rc(u) occupies at most one branch in 
each color. Two like-colored subgraphs on different branches are 
necessarily unattached. Therefore two colors suffice. 

In Propositions 8’ and 9’ when two DV clique trees are glued together to 
make a larger DV clique tree, sometimes we have to reverse the directions 
of all arcs in one tree. The proof remains valid after such modifications. 1 

Proof of the Separator Theorem for RDV Graphs. If G is RDV, consider 
an RDV clique tree T for G. Without loss of generality, assume C is not the 
root. Color each subgraph according to the branch it is on in the same way 
as the coloring of DV subgraphs. Two antipodal subgraphs are colored dif- 
ferently. 

Let T* be the subtree of T rooted at C. Then T* is an RDV represen- 
tation tree for every subgraph having the color opposite that of the sub- 
graph containing the root clique. A clique tree with the same root can be 
easily derived from T*. Next, we consider the subgraphs having the same 
color as the subgraph containing the root clique. 

The vertices corresponding to (relevant) cliques form a contiguous part 
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of the path from the root to C. Hence no two (relevant) cliques are unat- 
tached, and no two subgraphs are unattached. In each subgraph G,, con- 
sider the (relevant) clique that is closest to the root. The subtree of T 
rooted at the vertex corresponding to this clique is an RDV representation 
tree for Gi, and a clique tree with the same root can be easily derived. The 
only possible exception is the subgraph containing the root clique, G,, and 
the exception occurs exactly when the root clique is not a relevant clique. 
In this case, G, is dominated by every other like-colored subgraph, and the 
tree obtained from T by removing T* is an RDV representation tree for 
G,. A clique tree with C as a leaf can be easily derived. 

Conversely, assume each separated subgraph is RDV and that they can 
be 2-colored satisfying the conditions of the theorem. The RDV clique trees 
rooted at C for the subgraphs of the first color can be glued together by the 
method described in the proof of Proposition 8’ to make an RDV clique 
tree T rooted at C. In the RDV clique tree for each subgraph of the second 
color cliques form the path from the root to the leaf C. Hence these trees 
can be glued together by the same method to make a clique tree T” rooted 
at a relavant clique and having C as a leaf. The clique tree of the exception 
subgraph can be glued to T” to form an RDV clique tree 7”” in which C is 
a leaf. Then T’ and T”’ can be glued at the C nodes to obtain an RDV cii- 
que tree T for G. 1 

Proof of the Separator Theorem for UE n CHORDAL Graphs. Again, 
the proof proceeds in a series of propositions. But first, we need some more 
definitions. 

A path rc traverses a (relevant) clique C’ if (1) rt contains C’ when C’ is 
an edge clique; or (2) rc contains an arm A of C’ with A E n(x) for some 
.K E C’\C, when C’ is a claw clique. Let 7c = rc, 0 rc7. If neither rr, nor rcz 
traverses C’, then rc does not traverse C’; if either n, or 7c2 (but not both) 
traverses C’, then z traverses C’. The case when both rrr and rr2 tranverse 
c’ will not be encountered in this paper. 

If C is a claw clique, we can associate each G, with an arm of C as 
follows. If rc( V,) does not contain any arm of the separating claw clique C, 
then consider the unique path rr connecting rc( V,) and C. n cannot emanate 
from the center of C while keeping V, and C connected in G, so it emanates 
from one arm of C; associate Gi with this arm. If n( V,) contains exactly one 
arm of C, associate Gi with this arm. We claim rc( Vi) cannot contain two or 
more arms of C. Otherwise, there exist some x, YE V, where X(X) contains 
one arm A, and n(y) contains another arm A,. We have x # y since 
x, .r 4 C. Let Al, A,, A3 also denote the completely connected set in V 
represented by these edges. There exist some UE A, n A, n C, some v E 
(A,\A2)nC, and some w~(A,\A,)nc. Let PE F’, be the shortest path 
between x and y in G( Vi). Since G, is chordal, by focusing on the cycle for- 
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med by v, w, and p, we can find a vertex z E p, z adjacent to both v and w. 
By focusing on the cycle formed by u and p, we find that z is adjacent to u. 
Since z(u), z(u), and z(w) each contain a different pair of arms of C, n(z) 
must contain two arms of C in order to intersect all three paths. But z 4 C, 
a contradiction. Therefore n( Vi) contains at most one arm of C. In the case 
when C is an edge clique, we define the “arms” of C to be the two sides of 
the edge and associate each Gi with the side it is on. 

We will 3-color the subgraphs according to their association with the 
arms of C, when C is a claw clique; and 2-color the subgraphs according to 
which side of C they are on, when C is an edge clique. If Gi is associated to 
an arm of C, then its (relevant) cliques are considered to be associated with 
this arm. 

Let n(C’, C”) denote the unique path (consisting of edges), from C’ to 
C”. Let the path start at the center vertex when C’ (or C”) is a claw clique, 
and let the path include C’ (or C”) when it is an edge clique. 

PROPOSITION 1”. If G is a UE and CHORDAL graph, then Gi is UE and 
CHORDAL with a UE representation tree where C is a leaf-edge. 

Proof. The proof is identical to that for UEH graphs when C is an edge 
clique. When C is a claw clique, we need to replace references to the “edge” 
for C by the “arm of C associated with G;.” The proof goes through as 
before. m 

PROPOSITION 2 )I. Each Gi contains no antipodal cliques (with respect 
to C). 

Proof. By Proposition l”, Gi is UE and CHORDAL and has a UE 
representation tree T, with C a leaf-edge. Suppose, in order to obtain a 
contradiction, that Gi has antipodal cliques c’ ++ C”, i.e., there exists u E 
C n C’ n C”, u E: (C’ n C)\( C” n C), and u’ E (C’ n C)\( C’ n C). Note that 
n(u) contains C’ (or C”) if it is an edge clique and contains two arms of C’ 
(or C”) if it is a claw clique. If rc(u) reaches C’ (resp. C”) first when starting 
from C, then C’ Z C” (resp. C” B C’), a contradiction. If n(u) meets C’ and 
C” both for the first time on the same edge, and C’ is an edge clique, C” is 
a claw clique (or vice versa), then C’ B C” (or vice versa). 

Assume X(U) meets C’ and C” both for the first time on the same edge A 
in Tj and C’ and C” are both claw cliques. Then there is a four-prong star 
consisting of arms A, B, D, and E in Ti where C’ has arms A, B, and D; C” 
has arms A, B and E; rc(u) contains A and B; rc(u) contains A and D; and 
n(w) contains A and E. By the definition of claw cliques, there is a path 
rc(x) containing B, E and a path rc(y) containing B, E. Then {u, w, x, y} 
form a chordless cycle of length four, contradicting the chordality of G,. 1 
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The last of the proof shows that two attached (with respect to C) cliques 
of a UE n CHORDAL graph cannot share two arms. 

PROPOSITION 3”. Let C’ and C” be associated with the same arm of C. If 
C’ and C” are attached, then either n(C’, Cl’) traverses C’ or n(C, C’) traver- 
ses C”. Further, if C’ > C” then I$ C, C”) traverses c’. 

Proof. The path n(v), VE CA c’ n C”, contains C’ (or C”) when it is an 
edge clique and contains two arms of c’ (or C”) when it is a claw clique. 
Think of rc(v) as starting from C and going toward C’ and C”. If ~((tr) 
reaches C’ first, then rc(C, C”) traverses C’. If z(v) reaches C” first, then 
rc(C, C’) traverses C”. Assume n(v) reaches both C’ and C” simultaneously. 
In this case, C’ and C” cannot both be edge cliques. If C’ is a claw and C” 
is an edge, then rr(C, C’) traverses C”. C’ and C” cannot both be claws, 
since then they would share two arms and contradict the observation 
immediately following the proof of Proposition 2”. 

Furthermore, if C’ > C”, then n(C, C”) traverses C’ in all cases. 1 

PROPOSITION 4”. If z(C, Cn) traverses c’, then C’ 2 C”. 

Prooj For every XE Cn C”, X(X) contains rc(C, C”) which traverses C’. 
Hence x E C’. 1 

PROPOSITION 5". Let Ci and C: be two (relevant) cliques of G,. Then 
every clique traversed bv 7c( C,. C:) is in G,. 

Proof: Consider x E C,\C, y E C:\C. Then there is a path p connecting .Y 
andyinG(V;).Letn(p)=U,,, n(u). Then rc(Ci, C:) E z(p). Let Co be a cli- 
que traversed by n(C,, C:). Then there is some DE C,\C with z(v)n 
z(C,, C; ) # 0. But then v is adjacent to some vertex in p. Hence, v E V, and 
Co is in G,. 1 

PROPOSITION 6”. The G,‘s can be 3-colored such that no antipodal pairs 
have the same color, and so that, for each v E C, the neighboring subgraphs of 
v are 2-colored. 

Proof: Consider a UE representation tree T of G. According to our 
earlier discussion, each subgraph can be associated with an arm of C 
according to the position of n( Vi) in the tree. We will 3-color the subgraphs 
according to the arm it is associated with. Any path n(v), v E C, contains at 
most two arms of C, so the neighboring subgraphs of u have at most two 
colors. It remains to show that no antipodal pairs of subgraphs have the 
same color. 

For the remainder of the proof, we consider only one arm A of C, and 
the subgraphs associated with A. Note that all relevant cliques in these sub- 
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graphs are on the same side of A. Let G1 and G2 be antipodal and let both 
be associated with A; we will derive a contradiction. There are four cases: 

Case 1. CI c-) C, for some C, in G1, and some Cz and G,. Since C1 
and C2 are attached, rr(C, C,) traverses C2 or rr(C, C,) traverses C, by 
Proposition 3”. But then C2 > C, or C, 2 C, by Proposition 4”, a con- 
tradiction. 

Case 2. C, > C,, C; CC;, for some C1, C; in GI, and some C,, C; in 
G2. x(C, Cl,) traverses C; by Proposition 3”. Since all (relevant) cliques are 
on the same side of A, we have rr(C,, C’,) = n(C, C,) 0 x(C, C’,). By 
Proposition 5”, rc(C,, C;) does not traverse C;. Hence rc( C, C, ) traverses 
C;. By a symmetric argument, x(C, C;) traverses C,. The last two con- 
clusions are contradictory. 

Case 3. C, > C,, C’, >C;, C; IC;, ,for some C1, C; in G,, and some 
C,, C;, C; in G,. As before, TC(C;, C;)=n(C, C;)@n(C, C;). By 
Proposition 5”, z(C;, C;) does not traverse C’, . Also, z(C, C;) does not 
traverse C; since C”, 1 C;. Hence rc( C, C;) does not traverse C’, . Then since 
C; - C;, we have rc( C, C’, ) traversing C; by Proposition 3”. Also, 
rc(C1, Cl,) = rc(C, C,)@ n(C, C’,), and by Proposition 5”, n(C,, C;) does 
not traverse C;. Hence n(C, C,) traverses CL. But we know that 
x(C2, C;) = rr(C, C,) 0 n(C, C’;), and that rc(C2, C;) does not traverse C, 
by Proposition 5”, while rc( C, C,) does by Proposition 3”. Hence n( C, C;) 
must traverse C,, a contradiction. 

Case 4. C,-C,, C,IC& Cq - C;, C’i 1 C’y, for some C,, C;, C’;l in G,, 
and some C2, CL, Cl in Gz. We have n(C2, Ci)=n(C, C,)@x(C, C;). By 
Proposition 5”, rc(C,, C;) does not traverse C,. Because C1 1 C;, n(C, C’s) 
does not traverse C,. Then z(C, C,) does not traverse Cl, and rc(C, C,) 
traverses C2 because CI - Cz. As before, rr(C,, C’,)=rr(C, C,)@rc(C, C’,) 
does not traverse Cz. Hence rt(C, C;) traverses Cz. Symmetrically, we 
obtain that rc(C, C,) traverses C’;, a contradiction. 

Combining four cases, we complete our proof. 1 

This completes the proof of the forward part of the Separator Theorem 
for UE n CHORDAL graphs. 

PROPOSITION 7”. Let C be a clique in a UE and CHORDAL graph Gi. rf 
C is not a separator, then there exists a UE representation tree of G, having 
C as a leaf 

Proof Let Ti be a UE representation tree for Gj with the minimum 
number of edges. If C is an edge, then C is a leaf edge since C is not a 
separator. Otherwise, assume C is a claw. Let A,, A,, A3 denote the com- 
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pletely connected sets represented by the three arms of C. We claim that at 
least two Als are subsets of C. Suppose the opposite. Then, without loss of 
generality, assume there are some x E A ,\C and some y E A,\C. Let p G Vi 
be the shortest path connecting x and y in G( Vi), and let u E A, n A, n C, 
VE (A,\A2) n C, w  E (A,\A,) n C. Focusing on the cycle consisting of v, ~1, 
and p, we find that there is some z E p, z adjacent to both v and w  because 
G, is chordal and p is the shortest path between x and y. Focusing on the 
cycle consisting of u and p, we find that z is adjcent to u because Gi is chor- 
dal and p is the shortest path between x and y. Since n(u), z(v), and z(M’) 
each contain a different pair of arms of C, X(Z) must contain two arms of C 
in order to intersect all three paths. But z 4 C, a contradiction. 

Without loss of generality, assume A,, A, E C. These two arms of C are 
both leaves; otherwise C would be a separator. But then we can merge 
these two arms and let it represent C, contradicting the minimality of T,. 
Therefore, C is a leaf edge in Ti. 1 

PROPOSITION 8”. Let C separate G into Gi = G(Cu Vi), 1 < i 6 s. 
Assume each Gi is UE and CHORDAL and that G,, Gz,..., G, are pairwise 
non-antipodal. Then G(Cu V, v .. . u V,) is a UE and CHORDAL graph 
with a UE representation tree having C as a leaf edge. 

Proof The proof is similar to that of Proposition 8, with minor 
modifications. By Lemma 11, we can rearrange the subgraphs such that 
G, > G, implies i < j. Assume G( C u VI u . . u V,, _ , ) is a UE and CHOR- 
DAL graph with a UE representation tree T(“- ‘) having C as a leaf, By 
Proposition 7”, G, has a UE representation tree T, having C as a leaf. We 
wish to combine r’“- i’ and T, to obtain a UE representation tree T’“’ for 
G(Cu V, u ... u V,). 

We are done if n = 1, so assume n > 2. If G, is not dominated by any G,, 
1 6 i < n, then T(“’ can be easily obtained by merging the C-leaves of 7’“- ” 
and T,, because G, is unattached to every Gi, 1 d i < n. 

Assume G, is dominated by some G,. 1 < j< n. Let A be the set of edges 
of T’“- ‘) which represent completely connected sets S E V satisfy C’ n C c 
Sn C for every clique C’ of G, (i.e., S “dominates” every clique c’ of G,). 
We will show that either A = X(V) in T (n ~ ” for every v E C, with v adjacent 
to some member of I’, in G; or we can redefine some paths in T’“- ‘) to 
make this assertion true. 

Let S(e) denote the completely connected set represented by the edge e. 
Consider an arbitary v E C, where v is adjacent to some member of V,. For 
any e E A, and any (relevant) clique C’ of G,, with C’ containing v, we have 
C’n CC S(e)n C. Hence VE S(e), eE z(v), and A c z(v). On the other 
hand, if n(v)sA we are done. Assume there is some edge e, ~z(v)\A for 
some v E C, and we will show that there are exactly two such edges. 
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Let C* be a clique containing S(e, ). C* must be a claw for otherwise we 
have C* = S(e, ) and e, E A, a contradiction. Since v E C* and u adjacent to 
V,, we have that C* dominates every clique of G,. Since S(e, ) does not 
dominate every clique in G,, there exist some u E C* n C, u adjacent to I/, , 
24 4 S(e,). Let e,, e2, e3 be the three arms of C* with e3 closest to C; then 
e,, e3 E E(U) and e2, e3 E n(u). Every edge e E z( C, C*) “dominates” every 
clique C’ of G, because C’ n C E C* n CC S(e) n C. Hence rc(C, C*) c A. 
For any e E A, we have e E n(u) n x(u) = n( C, C*). Hence n(C, C*) = A. 
Next we show that for any w  E C, w  adjacent to V,, we have n(w) = 
A u {e, } or A u { e2}. Note that w  E C* because w  is adjacent to some ver- 
tex in V, and C* dominates every clique of G,. 

Earlier, we have showed that A c rc(w). If n(w) = A, then w  $ C*, also C* 
cannot dominate all cliques of G,, a contradiction. Let e’ denote an 
arbitrary edge in n(w)\A, and C’ be an arbitrary clique containing S(e’). 
Since C’ is attached to some clique of G, via w, C’ dominates all cliques of 
G,. Hence C’ contains u and u. Since n(u) n z(u) = A, C’ is a claw clique 
because an edge clique outside A cannot contain both u and u, hence can- 
not dominate every clique of G,. Furthermore, C* is the only claw clique 
containing all u, u, and w  in 71”-” because rc(u) n n(u) = A, and rc(~) 
properly contains A. Therefore, C’ = C*, and e’ = e, or ez. Since rc( w) can- 
not contain both e, and ez, we have z(w)=Au (e,} or Au fez). Next we 
show how to reroute some paths in T’“-” to obtain a new UE represen- 
tation (T’” - I ), P’). 

Let S*= ju’ES(e,)l u’ adjacent to some vertex in V,}. Note that S* E 
Cn C*. For every u’eS*, let the new path be rc’(~‘)=rr(~‘)\{e, i + {e,]. 
For all other vertices, use the old paths. If there is a vertex WE V, where 
rc(w) includes e, but not ez, then we claim e3 E rc(w). Suppose the opposite. 
Then let C, be any clique containing u and w. Since Co is attached to some 
clique of G, via u. C, dominates every clique of G,. But u 4 C, and u is 
adjacent to some vertex in V,; hence Co cannot dominate every clique of 
G,,, a contradiction. Therefore e3 E rc(~), and n’(w) and n’(u’) intersect at 
e3, for any u’ E S*. If there is a vertex w  E I’, n(w) includes e2 but not e,, 
then e3 E rc( W) by a symmetrical argument. Hence (T’+ I), P’) is a UE 
representation of G( C u V, u . . . u I’,,). Furthermore, let A’ be the set of 
edges e in r’” ~ ” whose represented completely connected set S(e) c V’ 
satisfies C’ n Cc S(e) n C for every clique C’ of G,. Then A’ = A u {e2} 
and A’ = X’(U) for every u E C, with o adjacent to some member of I’,,. 

By merging the last edge of the path A’ in T’” ” with the leaf edge C in 
T,,, we obtain T(“). m 

For example, Fig. ?a shows two UEH and CHORDAL subgraphs and 
Fig. 7b shows their UE representation trees. Each edge is labelled by the 
completely connected set to which it corresponds. Both subgraphs have 
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FIG. 7. (a) Two UE and CHORDAL subgraphs. (b) The UE representation trees for the 
graphs in (b). (c) The tree T, with the path n(1) rerouted. 

C= 1234 as a leaf. We have A= (1234, 123x, 12ahd). Although G, >G?, 
their representation trees cannot be readily glued together. But by 
rerouting the path rc( 1) as shown in Fig. 7c, we have A’= { 1234, 123x, 
12abd, 12bc). Then the trees can be glued together by coalescing the edge 
12hc in T, and the edge C in T,. 

PROPOSITION gn. Let C separate G into G, = G(Cn Vi), 1 6 ids. If each 
G, is UE and CHORDAL, and they can be 3-colored so that no antipodal 
pairs have the same color, and so that, for each v E C, the neighboring sub- 
graphs of v are 2-colored, then G is UE and CHORDAL. 

ProoJ G is chordal by the Separator Theorem. By Proposition S”, for 
each color, we can glue all of the subgraphs of that color to obtain a UE 
representation with C as a leaf edge. Now, make a claw C and merge each 
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arm with leaf edge C of the same color. The result is a UE tree for G. For 
each u E C, n(u) includes the two arms which have the colors of the 
neighboring subgraphs of r. Note that if two colors suffice, then C is an 
edge clique. 1 

Proposition 8” and 9” outline an algorithm for constructing a UE 
representation tree for a graph G which is both UE and CHORDAL. As 
stated in the previous section, the problem of recognizing UE A 
CHORDAL graphs is NP-complete. So the tree-construction problem in 
NP-hard (due to the 3-coloring condition). 

6. CONCLUDING REMARKS 

We have presented a unified approach for studying various classes of 
graphs arising from the intersection of paths in a tree. This framework 
leads to an efficient algorithm for recognizing DV, DE, UEH, and CHOR- 
DAL graphs. It also indicates why recognizing UE graphs is NP-complete. 
The efficiencies of recognizing RDV graphs and UV graphs under this 
framework and the extension of the Separator Theorem to general UE 
graphs are open problems. 

We leave as an open problem improvement on the time bound for the 
recognition algorithm. It may be possible to reduce the time bound to be 
linear in ( F/I, (El, and 1 C( rather than the product of these quantities. Dietz 
[30] has obtained a linear-time algorithm for recognizing RDV graphs. 

Other open questions are the complexity of the minimum coloring 
problem for UEH graphs (which can be solved in polynomial time for DE 
graphs and is NP-hard for UE graphs) and the minimum clique cover 
problem for DE and UEH graphs (which is NP-hard for UE graphs). 
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