
ToXgene Template Specification Language

Denilson Barbosa
Department of Computer Science

University of Toronto

dmb@cs.toronto.edu

Version 2.1 - March 2003

1 Introduction

ToXgene is a template-based generator for large collections of synthetic XML documents, under devel-
opment at the University of Toronto as part of the ToX (Toronto XML Engine) project. This document
describes the basic functioning of our tool and the ToXgene Template Specification Language (TSL).

TSL templates are essentially XML Schema [1] specifications annotated with specifications of proba-
bility distributions and CDATA content descriptors, used for generating both attributes and elements. Like
XML Schema specifications, TSL templates are XML documents. For increased readability, we present the
XML Schema notation of TSL in our examples using typewriter face. TSL-specific annotations are
attributes or elements added to a schema document; in either case, annotations are prefixed by the string tox-
and presented using a different font.

1.1 Definitions

Def. 1 - Type: A type is a data type, as defined in [1]: a type is one of a simpleTypeor a complexType.

Def. 2 - Instance: An instance of a type
�

is some XML content that conforms to
�
. Instances of a

simpleType are character data (CDATA) literals, while instances of a complexType are either XML
elements, CDATA literals, or a mix of both.

Def. 3 - Gene: A gene is the specification of some XML content that conforms to a type.

1.2 Anatomy of a template

A TSL template is an XML document whose root is a tox-template element, as specified by the following
DTD:

<!ELEMENT tox-template (tox-distribution|simpleType|complexType|tox-list|
tox-document)*>

These are the main main declarations in a template. We cover each of them throughout this document.

� tox-distribution: defines a random number generator according to the given distribution (see Sec-
tion 2).

1

� simpleType: defines a gene for literals (i.e., CDATA values) conforming to the specified simple
type (as specified in [1]).

� complexType: defines a gene for document fragments that conform to the specified complex type
(as specified in [1]).

� tox-list: defines a main memory repository for values that can be shared during the creation of the
actual XML documents (see Section 8).

� tox-document: defines the generation of one or more XML documents of a given type (see Section 6).

1.3 Installation instructions� Platform requirements: ToXgene should run on all Java platforms. It has been developed and tested
under Linux and Solaris, using the following:

– JRE compatible with JDK 1.4.1;

– Xerces 1.4.4;

– PoBoy 1.1 (persistent object manager).

� Installation instructions:

1. Download and unzip the file

2. Set the following environment variables:

– TOXGENE HOME should point to the full path of the directory where you unzipped the
package.

– XERCES HOME should point to the full path of the directory where you copied the Xerces
jarfile.

3. Add $(TOXGENE HOME)/bin to your PATH variable.

4. To test your installation, execute the script toxgene. You should get the response shown in
Figure 1.

1.4 Executing ToXgene

Templates are processed in two steps: validation and generation. The validation process starts with the
parsing of the template document, which is done by the Xerces XML parser using the ToXgene DTD.
Syntactical and some semantic errors are caught at this time and reported by the Xerces parser automatically.
The next step in the validation detects other semantic errors, such as references to non-existent datatypes
or path expressions in lists (see Section 8). After the validation steps are done, ToXgene moves to data
generation mode, when the actual processing of the template occurs.

ToXgene takes several command options that specify how it behaves. Invoking ToXgene without argu-
ments gives a list of valid options (see Figure 1), most of which are self describing. We next discuss some
of these options:

� -v: when executed in verbose mode, ToXgene outputs several messages as the template is being
parsed. This mode is helpful for developing and debugging templates.

2

ToXgene 2.1 - (c) 2001 by University of Toronto and IBM Corporation

Usage: ToXgene <options> <template file>
where possible options include (<default value>):
-c Check template only; do not generate files <false>
-h Print this message
-v Verbose mode <false>
-w Omit warning messages <false>
-n Add a new line after each element close tag <false>
-t Show elapsed time <false>
-s v Use "v" as initial random seed
-o [p[f][[s]]] Use a persistent object manager <false>:

p is the path where to store temporary files
f is the fraction of the memory used for buffering
s is the size (in kilobytes) of the memory buffers
the default values are: p=".", f=0.5 and s=8KB

Figure 1: ToXgene output listing invocation instructions.

� -n: this option makes ToXgene break lines after each element closing tag in the output documents.
This options makes ToXgene’s output more human readable and thus, also helps in debugging the
templates.

� -s � : uses � as master random seed. This option is useful if one wants to repeat a workload from a
given template.

� -o [� [� [�]]]: this option tells ToXgene to use a persistent object manager (POM) to store the
intermediate content when processing the templates. This permits ToXgene to generate XML data that
is larger than the memory of the machine being used (as is the typical situation in most benchmarks).
For details, refer to Section 11.

2 Specifying value distributions

Value distributions are declared by tox-distribution elements. User defined multinomial distributions are
specified with the aid of enumeration subelements as shown below:

<!ELEMENT tox-distribution (enumeration*)>
<!ATTLIST tox-distribution

name ID #REQUIRED
type (constant | exponential | geometric | lognormal

normal | uniform | user-defined) ’uniform’
minInclusive CDATA #REQUIRED
maxInclusive CDATA #REQUIRED
mean CDATA #IMPLIED
variance CDATA #IMPLIED>

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration value CDATA #REQUIRED

tox-percent CDATA #REQUIRED>

The attributes of a tox-distribution element are defined as follows:

� name: uniquely identifies the distribution within the template;

3

� minInclusive: specifies the minimum value that is drawn from the distribution;

� maxInclusive: specifies the maximum value that is drawn from the distribution;

� type: specifies the type of the distribution; it can be one of:

– constant: specifies a constant distribution where the value drawn is always minInclusive;

– exponential: specifies an exponential distribution, with expected value specified by attribute
mean;

– geometric: specifies a geometric distribution, with mean value specified by attribute mean;

– lognormal: specifies a log-normal distribution, with expected value specified by attribute mean
and variance specified by attribute variance;

– normal: specifies a normal distribution, with expected value specified by attribute mean and
variance specified by attribute variance;

– uniform: specifies a uniform distribution in the interval (default);

– user-defined: specifies a arbitrary user-defined distribution given by enumeration elements
(see below).

User-defined distributions are specified by enumeration elements, each containing the following at-
tributes:

� value: numeric outcome (the following must hold: minInclusive � value � maxInclusive).

� tox-percent: probability mass associated with the value.

2.1 Examples:

Example 1. Definition of an exponential distribution:

<tox-distribution name=”n-pars” type=”exponential” minValue=”1” maxValue=”5” mean=”2”/>

Example 2. A user-defined distribution:

<tox-distribution name=”discount” type=”user-defined” min=”0” max=”30”>
<enumeration value="0" tox-percent=”50”/>
<enumeration value="5" tox-percent=”25”/>
<enumeration value="10" tox-percent=”15”/>
<enumeration value="30" tox-percent=”10”/>

</tox-distribution>

3 Specifying simpleTypes and constants

A simpleType is a specialization of a base type (e.g., string, integer, etc.). Each simpleType inherits
the properties of the base type it builds upon. The following base types are supported in TSL:

� Numerical types: integer, unsigned integer, long, unsigned long, int, unsigned int, short, byte, non-
negative integer, positive integer, non-positive integer, negative integer, decimal, float and double;

4

� String;

� Date;

� ID, IDREF and IDREFS.

Types are either named or anonymous. A named type is declared once, independently of elements
or attributes, and is referenced by its name. The same named type can be used by multiple elements or
attributes in a template. Anonymous types are declared within element or attribute specifications, and cannot
be reused.

This the general notation for specifying simple types in TSL:

<simpleType name="type name">
<restriction base="base type">
< �	��
���� />�����
< �	��
����� />

</restriction>
</simpleType>

Of course, the name attribute is only used for defining named simple types. Each facet element refines
the definition of the type; the properties specified in a facet have to conform with the canonical properties
of the base type being refined. Important note: all facets are optional; if no facets are provided, the default
values for the corresponding base type are used.

The generation of instances of ID, IDREF and IDREFS types is covered in Section 8. We now give
more details on the various facets that specify the generation of instances of each of the base types.

3.1 Numerical types

An instance of a numerical type is a string representation of a number, extracted from the interval specified
by � ����������� ��!�"#��$&%(')��* +,���-�.�/!�" �/$0%21 . Instances of a numeric type are either randomly selected from the
interval or sequentially computed as discussed below. XML Schema defines various numeric data types,
some of which have infinite domains (e.g., the integers). ToXgene, however, imposes bounds on the max-
imum and minimum values allowed for each numeric type supported1 . Table 3.1 shows the maximum and
minimum values for each of the numeric types supported by our tool.

These are the facets used for defining numerical types:

� minInclusive: defines the minimum value allowed for instances of the type. The new value has
to be greater than or equal to the default value for the base type.

� maxInclusive: defines the maximum value allowed for instances of the type. The new value has
to be smaller than or equal to the default value for the base type.

� minExclusive: defines a value for which all allowed instances of the type have to be strictly
greater than. This value has to be greater than or equal to minInclusive + 3 , where 3 is the
smallest absolute number that can be represented by the machine (e.g., 1 for integer datatypes).

� maxExclusive: defines a value for which all allowed instances of the type have to be strictly
smaller than. This value has to be greater than or equal to maxInclusive - 3 , where 3 is the
smallest absolute number that can be represented by the machine (e.g., 1 for integer datatypes).

1It is natural to do so, since we can represent only finitely many numbers on digital computers anyway.

5

Base type minInclusive maxInclusive Example

integer MINLONG MAXLONG 123
unsignedInt 0 4294967295 123
long MINLONG MAXLONG 123
unsignedLong 0 MAXLONG 123
int -2147483648 2147483647 123
short -32767 32768 123
byte -127 128 123
nonNegativeInteger 0 MAXLONG 123
positiveInteger 1 MAXLONG 123
nonPositiveInteger MINLONG 0 123
negativeInteger MINLONG -1 123
decimal MINFLOAT MAXFLOAT 123.45
float MINFLOAT MAXFLOAT 123.456
double MINFLOAT MAXFLOAT 123.456

Table 1: Supported numerical datatypes. MAXLONG and MINLONG represent respectively the largest and
smallest integer number that can be represented by the (Java virtual) machine ToXgeneis being executed.
Similarly, MAXFLOAT and MINFLOAT represent the largest and the smallest floating point numbers that can
be represented. These values may vary among different implementations of the Java virtual machine. Please
refer to the documentation of your local Java runtime environment for details.

� tox-format: specifies formatting instructions for writing the actual instances of the type. For numer-
ical values, we use the formatting conventions of the NumberFormat Java class (for more details,
see [3]).

� tox-number: this is ToXgene’s main annotation for specifying numeric values. It provides the fol-
lowing attributes:

<!ELEMENT tox-number EMPTY>
<!ATTLIST tox-number

minInclusive CDATA #IMPLIED
maxInclusive CDATA #IMPLIED
tox-distribution IDREF #IMPLIED
sequential (yes|no) ’no’
format CDATA #IMPLIED>

– tox-distribution: specifies a distribution used to generate instances of the type. If none is pro-
vided a uniform distribution on the interval [minInclusive, maxInclusive] is used.

– sequential: specifies whether the numbers are sequentially generated; the default value for this
attribute is no. Both increasing and decreasing sequences are allowed. The increment is speci-
fied by providing a constant distribution; an increment of +1 is used if no distribution is specified.
Consecutive instances of the type form an increasing sequence starting at minInclusive if the
increment is positive, or a decreasing sequence starting at maxInclusive otherwise.

– format: same as tox-format above; this one takes precedence.

– minInclusive: same as above; this one takes precedence.

6

– maxInclusive: same as above; this one takes precedence.

Example 3. Anonymous simpleType for positive integers in the interval [1,1000]. See Section 4 for
more details on element declarations:

<element name="my element">
<simpleType>
<restriction base="positiveInteger">

<minInclusive value="1"/>
<maxInclusive value="1000"/>

</restriction>
</simpleType>

</element>

Example 4. Named simpleType for sequentially generated integer numbers. Consecutive instants of the
type form the sequence 100, 98, 96,...:

<tox-distribution name=”c1” type=”constant” minInclusive=”-2” maxInclusive=”-2”/>
<simpleType name="sequential">

<restriction base="Integer">
<tox-number sequential=”yes” tox-distribution=”c1” maxInclusive value=”1000”/>

</restriction>
</simpleType>

3.2 Date types

Date literals are also generated from an interval. There is only one base date type, whose default minIn-
clusive and maxInclusive values are January 1st, 1 A.D. and January 1st, 3000 A.D., respectively.
The same facets used for specifying numerical types are also defined for date types, except for tox-number,
which is replaced by:

� tox-date: specifies a random date generator and has the following attributes: tox-distribution, min-
Inclusive, maxInclusive and format, with the same usage as defined for numerical types:

<!ELEMENT tox-date EMPTY>
<!ATTLIST tox-date

start-date CDATA #REQUIRED
end-date CDATA #REQUIRED
tox-distribution IDREF #IMPLIED
format CDATA #IMPLIED>

Instances of date types are generated by adding a random number of days 4 to the start date of the
specified interval � ����������� ��!�"#��$&%(')��* +,���-�.�/!�" �/$0%/1 . 4 is randomly chosen from the given distribution; if no
distribution is specified, 4 is uniformly chosen from the interval � 50'76#89�:2;<�-*.+,���-� ��!�" �/$&%0')���2�����-�.�/!�" �/$0%.=)1 ,
where 6(892:�;?>,'A@B= returns the number of days between the dates > and @ . In any case, 4DCE���������-� ��!�" �/$&%F��-*.+,���-� ��!�" �/$&% .

Important note: all date constants in a template, such as minInclusive values, are specified using
the format YYYY-MM-dd. Output formatting instructions follow the standards in the DateFormat class
in the Java language [2].

7

Type Description

text A textual string generated according to the TPC-H benchmark [5] rules.
word A word, extracted from the list of words used in the XMark bench-

mark [4].
xmrk text A textual string generated according to the XMark benchmark rules.
fname A first name, extracted from the list of first names in the XMark bench-

mark.
lname A last name, extracted from the list of last names in the XMark bench-

mark.
city A city name, extracted from the list of cities in the XMark benchmark.
province A province name, extracted from the list of provinces in the XMark

benchmark.
country A country name, extracted from the list of countries in the XMark

benchmark.
domain An internet domain name, extracted from the list of domains in the

XMark benchmark.
email An email address of the form G . H @ I , where G is an instance of fname,H is an instance of lname and I is an instance of domain.
gibberish A random string in J�*K'BLBLBL�'7M,'BLBLBL�'7N,'BLBLBL�'AOP'AQK'BLBLBL2'AR&S TJ #,ˆ,*,(,),_,-,=,$,+,{,},[,],?,.,/,˜, S .

Table 2: Predefined tox-string types.

Example 5. The following example specifies a type for date literals, using dd/MM/yyyy as format pattern:

<simpleType name="x date">
<restriction base="date">
<minInclusive value="1998-01-01"/>
<maxInclusive value="2001-28-12"/>
<tox-format value=”dd/MM/yyyy”/>

</restriction>
</simpleType>

3.3 String types

ToXgene comes with several predefined string generators, as listed in Table 2; the default string type is
gibberish. String literals are defined by the following facets:

� minLength: defines the value for the minimum length allowed for instances of the type.

� maxLength: defines the value for the maximum length allowed for instances of the type. If neces-
sary, instances are truncated to fit the maximum length specified.

� pattern: specifies a pattern to which the instances of the type have to conform. ToXgene uses
this pattern when generating the instances of the type. ToXgene supports a subset of the pattern
specification language in [1].

� tox-string: this is the main annotation for specifying string types, and has the following structure:

8

<!ELEMENT tox-string EMPTY>
<!ATTLIST tox-string

type CDATA ’gibberish’
minLength CDATA #IMPLIED
maxLength CDATA #IMPLIED
tox-distribution IDREF #IMPLIED>

– type: specifies the type of the strings to be generated; the default is gibberish. The basic string
that come with ToXgene are listed in Table 2. User-defined string types can also be used (see
Section 10).

– minLength: same as above; this one takes precedence;

– maxLength: same as above; this one takes precedence;

– tox-distribution: specifies a distribution for determining the length of instances of this type;
an uniform distribution in the interval � �����&U0%V�KW X Y,')�-*.+#U0%V�KW X Y 1 is used if no distribution is
provided.

The default values for minLength and maxLength are 1 and 200, respectively.

Example 6. A named simpleType for string literals based on a pattern:

<simpleType name="isbn type">
<restriction base="string">
<pattern value="[0-9] Z 10 ["/>

</restriction>
</simpleType>

3.4 Constants

Constants are also instances of a simpleType and in ToXgene are declared using tox-value elements.
Constants can be used for specifying the content of both elements and attributes.

<!ELEMENT tox-value (#CDATA)>

Example 7. Declaration of an integer constant:

<simpleType name="my constant">
<restriction base="integer">
<tox-value>10</tox-value>

</restriction>
</simpleType>

4 Specifying attributes and elements

In this section we discuss the specification of attributes and elements that have simpleType content.
These are the building blocks for complexType specifications, covered in Section 5. The notation for
specifying elements and attributes is as follows:

9

<!ELEMENT element ((simpleType|complexType|tox-expr*)?)>
<!ATTLIST element

name CDATA #REQUIRED
type CDATA #IMPLIED
minOccurs CDATA ’1’
maxOccurs CDATA ’1’
tox-distribution IDREF #IMPLIED
tox-recursionLevels IDREF #IMPLIED
tox-reset (yes|no) ’no’
tox-omitTag (yes|no) ’no’>

<!ELEMENT attribute (tox-expr|simpleType)>
<!ATTLIST attribute

name CDATA #REQUIRED
type CDATA #IMPLIED
tox-minOccurs CDATA ’1’
tox-maxOccurs CDATA ’1’
separator CDATA #IMPLIED
tox-distribution IDREF #IMPLIED>

Elements and attributes are specified by a name, a type, and cardinality constraints. The type of an ele-
ment or attribute can be a named type (see previous section) or an anonymous type; elements can have either
simpleTypes or complexTypes; attributes can have only simpleTypes. The tox-expr annotation is
discussed in Section 7.

These are the attributes used in the definition of elements:

� name: specifies the name of the element.

� type: provides information about the type for the content of the element. If not specified, the element
declaration must contain an anonymous type specification. When provided, it must be either a named
type (simple or complex) previously declared, or a base type. When a a base type is specified, the
content of the element is generated using the canonical specifications of the type (see Section 3).

� minOccurs: specifies the minimum number of occurrences for the element. Valid values are non-
negative integers.

� maxOccurs: specifies the maximum number of occurrences for the element. Valid values are non-
negative integers or unbounded.

� tox-distribution: specifies a distribution used to determine the actual number of occurrences of the el-
ement at generation time. If omitted, an uniform distribution in the interval � ���2�,\0�(��!&]�".')��* +&\0�(��!&]�"B1
is used. Recall that each distribution is also defined in terms of a � ������')�-*.+.1 interval, which might con-
flict with the interval defined for the element. In such cases, the interval specified for the distribution
takes precedence and warning messages are issued by ToXgene at template validation time.

� tox-recursionLevels: specifies a value distribution that governs the depth of the recursion tree when
generating recursive content.

� tox-reset: when set to yes, the genes for all descendant elements and/or attributes are reset each
time an instance of the element is produced. For example, resetting a tox-number specification for
sequentially incremented numbers restarts the numeric sequence specified by the annotation.

As for attribute declarations, name and type have exactly the same use as above, thus we focus on
the remaining attributes next. As far as XML Schema is concerned, an attribute is simply a ^?_K`Vacb.'�d�`Vegf&b2h

10

<element name="person" maxOccurs="500"
tox-recursionLevels=”r1”>
<complexType>
<element name="name" type="name type"/>
<element name="age" type="age type"/>
...
<element name="children">

<complexType>
<element name="person" maxOccurs="5"/>

</complexType>
...

</complexType>
</element>

(a) Specification of a recursive gene.

age name children

person

age name children

person person

Level 0

Level 1

(b) Structure of resulting XML elements.

Figure 2: Specification and instantiation of recursive element genes. Note the reference to distribution "r1"
that determines how many recursive levels will be generated.

pair; the value of the attribute is a string, and can be a list of words. In ToXgene, each word is viewed
as an “occurrence” of a simple type: an attribute whose value is a single string has 1 occurrence, while
an attribute whose value is a list has many occurrences. The tox-minOccurs, tox-maxOccurs and tox-
distribution are used to determine the number of occurrences for attributes, and behave similarly to the
attributes minOccurs, maxOccurs and tox-distribution for element declarations. The separator
attribute specifies which character is used to separate the words in a list-valued attribute; its default value is
“,”.

Example 8. Specification of elements using named and anonymous types:

<simpleType name="my int">
<restriction base="integer">
<tox-number minInclusive=”5” maxInclusive=”100”/>

</restriction>
</simpleType>
...
<element name="capacity" type="my int"/>
<element name="age" type="nonNegativeInteger"/>

11

Example 9. Specifying anonymous types in attribute declarations:

<attribute name="address">
<simpleType>
<restriction base="string">

<tox-string type=”gibberish” maxLength=”25”>
</restriction>

</simpleType>
</attribute>
...
<attribute name="currency">

<simpleType>
<restriction base="string">

<tox-value>CDN</tox-value> <!-- a constant -->
</restriction>

</simpleType>
</attribute>

4.1 Specifying recursive elements

ToXgene also supports the generation of recursive XML content, determined by three parameters: the total
number of (recursive) elements to be generated, the number of children per element, and the number of
levels in the recursion. Figure 2 illustrates the generation of recursive content with ToXgene.

5 Specifying complexTypes

Similarly to a simpleType, a complexType can be named or anonymous. Named types can be used to
define the content of different elements in a template. The syntax for specifying complex types is as follows:

<!ELEMENT complexType ((tox-alternatives| tox-scan | tox-sample | tox-foreach |
tox-if |attribute | element | tox-string | tox-number |
tox-value | tox-expr)*)>

<!ATTLIST complexType
name ID #REQUIRED
mixed (true|false) ’false’>

As in [1], an instance of a complexTypemight contain a CDATA string, one or more elements, or a mix
of elements and CDATA strings (in this case the attribute mixed has to be set to true in the corresponding
type declaration). By definition, only elements with complexType can have attributes.

Regarding the notation for specifying a complexType, element, attribute, tox-string, tox-
number and tox-value were covered already in previous sections; tox-scan, tox-sample, and tox-expr,
which are used for specifying queries over previously defined content, are covered in 8; finally, tox-if and
tox-alternatives define the conditional generation of content and are covered in Section 9.

5.1 Specifying elements with complexType

Similarly to simple types, complex types can be named or anonymous and named types can be used to define
the content of multiple elements. The following examples summarizes the notation for specifying complex
types.

Example 10. Specification of anonymous and named complex type. Note the anonymous complex type for
the price element has mixed content, defined by the currency element and a tox-number specification:

12

<complexType name="my book">
<attribute name="isbn" type="isbn type"/>
<element name="title" type="string">
<tox-string type=”text”/>

</element>
<element name="price">
<complexType mixed="true">

<element name="currency">
<simpleType>
<restriction base="string">

<tox-value>CDN</tox-value>
</restriction>

</simpleType>
</element>
<tox-number tox-distribution=”c1” format=”0.00”/>

</complexType>
</element>

</complexType>
...
<element name="book" type="my book"/>

6 Specifying documents

A document specification is TSL consists of a name and an element declaration, which defines the root
element of the document being generated. The tox-document annotation has the following properties:

<!ELEMENT tox-document (element)>
<!ATTLIST tox-document

name CDATA #REQUIRED
copies CDATA ’1’
starting-number CDATA ’0’
DTD-file CDATA #IMPLIED>

These are the attributes that affect the a tox-document specification:

� name: the name of the document. ToXgene automatically appends a ".xml" extension to all docu-
ments it generates. Documents that have more than one copy (see below) are named by appending an
unique integer identifier to the document name (e.g., book00.xml, book01.xml, etc.).

� copies: determines the number of documents to be generated by ToXgene using the same element
specification. Each document will contain its own root element (a different instance of the element
defining the document). This feature allows the emulation of situations in which the database consists
of multiple (similar) documents, each containing a single object, as opposed to having a single doc-
ument containing all objects in the database. By default, copies are numbered from 0 to the number
specified.

� starting-number: specifies the initial value for numbering the documents.

� DTD-file: specifies a value that is added to the DOCTYPE declaration of each document generated.

Example 11. Specification of a document for a book catalog, containing from 100 to 200 instances of the
my book type:

13

<tox-document name=”books”>
<element name="books">
<complexType>

<element name="book" type="my book" minQtty="100" maxQtty="200"/>
</element>

</complexType>
</tox-document>

7 Specifying expressions

Expressions are the base for defining queries, some simple computations and integrity constraints over the
data being generated. The following grammar sketch describes the valid expressions in a template:

i(jlknmpo,qsrutwvi(jlkxrykni#jzkFv ; i(jlk =o�q{r|t}m�~�ru���Kq�ol��q�v�����t�k��(i q��zk�iuv��y�{i-�P�
ruknm

+
v
-
v
*
v
/
v
%
v
#~�ry���&q-o���q�mp�B���/�����cv����K���Dv��?���{v����P�K�

����t�k��0i q��zk�ixm0 ¡���,¢£�
�u�¤i-�,�¥m � ¦ �&��§ � ¨ ¦ �2�(��������� 1 v�o�©�© � ¦ �&��§ � ¨ ¦ �2�(��������� 1o�©�©Em7ª ��« v)ª N#¬ v� \�®&«#¯ v�° ® ª|v N ±0² v U(³#« v� \V« N#¯

We now discuss each of the terminal symbols.

� string: a CDATA literal enclosed by single quote marks (e.g., ’maple leafs’);

� date: a date, enclosed by single quote marks, in the YYYY-MM-DD format (e.g., ’1998-06-28’);

� float: a floating point number, written using the format #0.0# (e.g., 123.45);

� int: an integer number, written using the format #0 (e.g., 123);

� name: a name of a named simple type declared in the template);

� path expression: a path used for navigating elements in queries (see Section 8).

The operators allowed in an expression are the usual arithmetic operators (+, -, * and /), the modulo
operator (%), and the the string concatenation operator (#). Expressions in ToXgene are typed. Table 3
shows the resulting types for valid expressions and the cases where automatic type casting is done.

The result of a path expression might be an atomic value (of any of the types supported) or a list of
atomic values (see Section 8 for details on how queries are written and evaluated). ToXgene also offers the
most common aggregate operations on the results of path expressions, as shown in Table 4.

Expressions are evaluated in the usual left to right manner; the order of evaluation of expressions is
as follows: queries and named type references; multiplication, division and modulo; all other operators.
Parenthesis can be used to override the default precedence. A named type reference evaluates to an instance
of the named simple type.

Example 12. The following example shows how to prefix a sequentially incremented numeric values with
a string:

14

operand 1 operand 2 operator type

int int +,-,*,/, % int
float float +,-,*,/ float
int float +,-,*,/ float *
float int +,-,*,/ float *
date int +,- date
int date +,- date
ANY ANY # string *a

aNo warning is issued if both operands are of type string.

Table 3: Resulting types for valid operations, according to the operands in ToXgene. Lines marked with a
star indicate situations where automatic type casting is done by ToXgene, a warning message at template
validation time is issued in such cases. Any other combination of operands and operators result in error.
ANY represents any type.

Input Output
name list/atom type description type

MIN list int,float,date returns the smallest value in the list unch
MAX list int,float,date returns the largest value in the list unch

COUNT list ANY returns the number of elements in the list int
SUM list int,float returns the sum of all values in the list unch
AVG list int,float returns the average of the values in the list float
LEN atom ANY returns the length in characters of the operand int

CONCAT list ANY returns the concatenation of all items in the
list, treated as strings

string

Table 4: Aggregate operators in ToXgene.

<simpleType name="key">
<restriction base="positiveInteger">
<tox-number sequential=”yes”/>

</restriction>
</simpleType>
...
<element name="book id">

<tox-expr value=”’book’# ´ key”/>
</element>

7.1 Debugging expression executions

ToXgene offers some debugging information that might help understanding the parsing of expressions when
executed in “verbose” mode (-v option in the command line). We recommend you use this mode when
writing templates, to make sure your expressions get evaluated the way you expect them to be.

Here is an example of the output of ToXgene in verbose mode:
...
Processing tox-expr for: [a]+([b]+[c])*[c]/[d]
parsed expression: ([a]+(([b]+[c])*([c]/[d])))
...

15

The following is a fragment of ToXgene’s output in verbose mode when processing the make orders
template in the TPCH sample:

...
Processing tox-expr for: [PartKey]
parsed expression: [PartKey]
Processing tox-expr for: (([PartKey]+([i]*(250+([PartKey]-1)/1000)))%1000)+1
parsed expression: ((([PartKey]+([i]*(250+(([PartKey]-1)/1000))))%1000)+1)
...

8 Specifying lists and queries

In many situations one needs to generate correlated content. For instance, one might want to generate a
catalog of books (uniquely identified by their ISBN values) and a collection of reader reviews about these
books. Evidently, each review has to refer to an existing book (e.g., include an ISBN value present in the
catalog). This is called element sharing (the content of some elements is shared with others). The ToXgene
approach for element sharing is to first generate all data that will be shared in a “temporary memory” called
a tox-list, and query this list whenever necessary.

A list declaration is similar to a document declaration in the sense that both include an element specifi-
cation that is used to generate their content (the document itself or the items in the list). The actual number
of elements in a list is dictated by the occurrence pattern for the element declared inside it (i.e., the element’s
distribution or minOccurs, maxOccurs values). The following DTD fragment describes the syntax for
declaring lists:

<!ELEMENT tox-list (element)>
<!ATTLIST tox-list

name ID #REQUIRED
unique CDATA #IMPLIED
where CDATA #IMPLIED
readFrom CDATA #IMPLIED
abort (yes|no) ’no’
dump (yes|no) ’no’>

� name: uniquely identifies the list within a template;

� unique: specifies uniqueness constraints for the elements in the list; see details below;

� where: specifies more elaborate integrity constraints over the elements in the list; see details below;

� readFrom: specifies a file from which the elements in the list are read;

� abort: determines whether the template processing is aborted when elements read from a list violate
any of the integrity constraints specified for the list;

� dump: determines whether the list should be written to a file for later reuse.

Example 13. Declaration of a list with 100 book “records”. Each record contains a unique ISBN and a title
of a book:

16

<tox-list name=”book list” unique=”book/isbn”>
<element name="book rec" minOccurs="100" maxOccurs="100">
<complexType>

<element name="isbn" type="isbn type"/>
<element name="title">

<simpleType>
<restriction base="string">

<tox-string type=”text”/>
</restriction>

</simpleType>
</element>

</complexType>
</element>

</tox-list>

For the moment we discuss how the elements in a list are generated by ToXgene. Section 8.4 describes
how a list can be read from a file. Each element in the list is generated independently and validated against
the list’s integrity constraints; if the element violates any of the constraints it is discarded. This process is
repeated until all elements in the list are generated. For instance, for the list specified in Example 13, each
time a book rec element is generated, its isbn value is compared to those for the books already in the
list; if this isbn value was assigned to an existing book, the element is discarded; otherwise, the element
is added to the list. Of course, the frequency of repeated isbn values depends on the specification of the
isbn type and the number of instances in the list.

8.1 Querying lists

Queries in ToXgene are specified using cursors and tox-expr annotations. Each cursor specifies a path
expression, relative to a list or to another cursor, which determines a list of elements over which the cursor
iterates. As mentioned before, queries are expression, thus declared in tox-expr annotations. Each query
is bound to a cursor, thus tox-expr elements that define queries have to be descendants of some element
defining a cursor. By default, a query is bound to its closest ancestor cursor. Cursors in ToXgene work in
the usual “one-element-at-a-time” mode: each query returns (possibly a set of) values that are descendants
of the current element of the cursor only.

A path expression is a sequence of labels separated by ’/’. A label is one of a list name, an element name,
a variable name (referring to a named cursor) or ’!’ (shorthand for CDATA). All path expressions in ToXgene
are enclosed by square brackets. For example, the path expression [book list/book rec/isbn/!]
returns all isbn values of all book records in book list; [$a/isbn/!] returns the isbn of the current
element in the cursor named a (see example below). All path expressions in ToXgene are fully specified: no
wildcards are allowed.

There are two types of cursors in ToXgene, differing on the way they access their contents, declared by
the following annotations:

17

<!ELEMENT tox-scan ((tox-scan|tox-sample|tox-foreach|tox-expr|attribute|element|
tox-if|tox-alternatives)*)>

<!ATTLIST tox-scan
path CDATA #REQUIRED
name CDATA #IMPLIED
where CDATA #IMPLIED>

<!ELEMENT tox-sample (((tox-scan|tox-sample|tox-foreach|tox-expr)*)|
(attribute|element)*)>

<!ATTLIST tox-sample
path CDATA #REQUIRED
name CDATA #IMPLIED
where CDATA #IMPLIED
tox-distribution IDREF #IMPLIED
duplicates (yes|no) ’yes’>

<!ELEMENT tox-foreach ((tox-scan|tox-sample|tox-foreach|tox-expr|attribute|element|
tox-if|tox-alternatives)*)>

<!ATTLIST tox-foreach
path CDATA #REQUIRED
name CDATA #IMPLIED
where CDATA #IMPLIED>

� tox-scan: specifies a cursor for a sequential scan over a list of elements resulting from evaluating a
path expression. The following attributes are used for defining the cursor:

– path: specifies a path expression relative to a list or to an ancestor cursor (see example of nested
cursors below) from where the elements of the cursor are extracted;

– name: necessary only when declaring nested cursors within the one being specified (see exam-
ple of nested cursors below);

– where: specifies conditions for the selection of the elements resulting from evaluating the path
expression (see example below).

A cursor is populated as follows: the path expression is evaluated returning a list of elements (that
match the path expression); each element is checked against the conditions in the where clause, and
those that do not qualify are discarded.

� tox-sample: specifies a cursor for sampling from a list of elements resulting from evaluating a path
expression. All attributes common to tox-scan and tox-sample cursors behave in the same way as
above (path, name and where). The following attributes are exclusive to tox-sample cursors:

– tox-distribution: specifies a distribution in the interval � 50'�µB5V5�1 , that determines which element
of the list is sampled next;

– duplicates: determines whether the same element can be sampled more than once.

� tox-foreach: specifies a cursor that is instantiated for each element that matches the given path ex-
pression. This cursor is especially useful for producing complex types.

Example 14. The element definition below specifies a query over the book list, defined in Example 13.
Note that one can define new random content within a cursor (as in the author element specification):

18

<tox-document name=”books”>
...

<element name="book" minOccurs="100">
<complexType>

<tox-scan path=”[book list/book rec]” name=”a”>
<attribute name="isbn" type="isbn type">
<tox-expr value=”[$a/isbn/!]”/>

</attribute>
<element name="title" type="string">
<tox-expr value=”[title/!]”/>

</element>
<element name="author" maxOccurs="5" type="string">
<tox-string type=”gibberish” maxLength=”30”/>

</element>
</tox-scan>

</complexType>
</element>

...
</tox-document>

The example above shows how path expression in queries bind to cursors. One can define the path
relative to a cursor name, as in [$a/isbn/!]. However, explicit naming is required only when declaring nested
cursors. By default, each path expression binds to its closest ancestor cursor, thus in the example above, the
expressions [title/!] and [$a/title/!] are equivalent.

Observe that the ISBN value of each book is declared as an element in the book list and as attributes
in the book element. As shown in the example above, both elements and attributes in a document declara-
tion can include queries. However, list records cannot have attributes: we stress the fact that lists are meant
for temporary storage of data, for querying purposes only, and element declarations alone suffice for this
purpose.

Example 15. Nested queries. The following example illustrates the specification of queries within list
definitions (note the definition of the authors element in the new book list) and of nested queries:

19

<tox-list name=”book list” unique=”book/isbn”>
<element name="book rec" minOccurs="100" maxOccurs="100">
<element name="isbn" type="isbn type"/>
<element name="title">

<simpleType>
<restriction base="string">

<tox-string type=”text”/>
</restriction>

</simpleType>
</element>

<element name="author id" type="integer" maxOccurs="5">
<tox-sample path=”[author list/author]” duplicates=”no”>

<tox-expr value=”[id/!]”/>
</tox-sample>

</element>
</element>

</tox-list>
...
<tox-document name=”books”>
...

<element name="book" minOccurs="100">
<complexType>

<tox-scan path=”[book list/book rec]” name=”a”>
<attribute name="isbn" type="isbn type">
<tox-expr value=”[isbn/!]”/>

</attribute>
<element name="title" type="string">
<tox-expr value=”[title/!]”/>

</element>
<attribute name="authors" type="IDREFS" maxOccurs="unbounded">
<tox-scan path=”[$a/author id]”>

<tox-expr value=”’author’#[!]”/>
</tox-scan>

</attribute>
</tox-scan>

</complexType>
</element>

...
</tox-document>

A few words are worth mentioning here on how the specifications in Example 15 are processed, es-
pecially with respect to the authors attribute in the book element. First, note that the “records” in
book list now contain a random number (up to 5) of author identifiers, which are sampled without rep-
etition from another list. Assume that these identifiers are declared to be unique within that list, so we
get up to 5 distinct author id’s in each record in book list. As in Example 14, the specification of the
book element defines a sequential scan over the records in book list, copying both the ISBN and the
title in each record. Here, however, we define the authors attribute, containing all author identifiers in
each book record. This can be done by declaring a nested cursor over the author id elements within each
book rec in the list. Note the reference to the outer cursor is made by defining a path expression relative
to its name ($a in the example). Also, note that maxOccurs is set to unbounded for the authors
attribute, meaning that there will be as many items in the list as there items matching [$a/author id]
(i.e., author identifiers in the current book record of the outer cursor).

8.2 Specification of ID, IDREF and IDREFS attributes

As illustrated in Example 15, one can use lists with uniqueness constraints and queries to produce attributes
of type ID, IDREF and IDREFS. The same mechanisms can be used to enforce “referential integrity”
among documents as well. For a complete example, consider the catalog sample, which produces a docu-

20

ment containing a book catalog with 500 books and 1000 review documents, each referring to an existing
book.

8.3 Where clauses

Other integrity constraints can be specified when generating a list via where clauses. Each clause defines
multiple predicates involving queries that are checked whenever a new element is generated (or read from a
file). Where clauses are used also for specifying selection criteria in cursors, and the same notation applies
in both cases:

~��/o{����ixm2k���i-¶��·~�o,qzi ; �u��ol�{i(jlk ' �y��o��{i(jlk =k���i-¶��·~�o,qzixm ³&¸ v)¹ ��º v U(¯ v U#³K¸ v ²#¯ v ² ³K¸�y��o��|m N U(U v N#«#» v�¼
i(jlknmpo,qsrutwvi(jlkxrykni#jzkFv ; i(jlk =o�q{r|t}m�~�ru���Kq�ol��q�v�����t�k��(i q��zk�iuv��y�{i-�P�
ruknm

+
v
-
v
*
v
/
v
%
v
#~�ry���&q-o���q�mp�B���/�����cv����K���Dv��?���{v����P�K�

����t�k��0i q��zk�ixm0 ¡���,¢£�
�u�¤i-�,�¥m � ¦ �&��§ � ¨ ¦ �2�(��������� 1 v�o�©�© � ¦ �&��§ � ¨ ¦ �2�(��������� 1o�©�©Em7ª ��« v)ª N#¬ v� \�®&«#¯ v�° ® ª|v N ±0² v U(³#« v� \V« N#¯

The
¼

symbol above represents the empty string, thus makes the qualifier optional. The definition for
EXP and all rules that derive from it are identical to the ones specified in Section 7, we repeat them here for
the convenience of the reader. The predicates EQ, DIF, LT, LEQ, GT, GEQ correspond to ½¾'.¿½¾'�Ày'��y'�Á andÂ

, respectively2 .

Example 16. The following list contains sequentially incremented integer values, used as keys for the order
relation in the TPC-H database. The where clause in the list specifies that only the first 8 numbers from each
group of 32 (i.e., µ/'BLBLBL2'AÃ('AÄVÄ('BLBLBL�'�Å.50'BLBLBL) are used, as required by the TPC-H specification:

<tox-list name="order keys0" where="LT([OrderKey]%32,8)">
<element name="OrderKey" minOccurs="1000" maxOccurs="1000">
<simpleType>

<restriction base="nonNegativeInteger">
<maxInclusive value="1000"/>
<tox-number sequential=”yes”/>

</restriction>
</simpleType>

</element>
</tox-list>

Example 17. Join of lists.The following example shows how nested cursors can be used to implement
a join operation between lists L1 and L2. Note that the where clause in the outer cursor defines a se-
lection criterion (L1/a/x>100), while in the inner cursor the where clause defines the join condition
(L2/b/y=L1/a/x):

2We use the prefix notation simply because one cannot have angle brackets inside attributes in XML documents (remember
ToXgene templates are XML documents).

21

<element name="e1" maxOccurs="unbounded">
<complexType>
<tox-scan path=”[L1/a]” where=”GT([x],100)” name=”a”>

<element name="x" type="integer">
<tox-expr value=”[x]”/>

</element>
<element name="y" maxOccurs="unbounded">

<simpleType>
<restriction base="interger">

<tox-scan path=”[L2/b]” where=”EQ([y],[$a/x])”>
<tox-query expr=”[y]”/>

</tox-scan>
</restriction>

</simpleType>
</element>

</tox-scan>
</complexType>

</element>

8.4 Reading lists from files

As mentioned earlier, lists can be “dumped” into files for later reuse (by setting the dump attribute to
yes on the list declaration). For convenience, the lists are written to XML documents. We stress that
although dumping a list to a file produces an XML document, this is not the preferred method for generating
documents in ToXgene. The tox-document declaration provides more resources for this task such as the
ability of generating attributes, to cite just one. Moreover, ToXgene implements a simple garbage collection
mechanism which enforces that only lists that are used (directly or indirectly) in a document declaration
are populated. Thus, no data at all is generated for templates that do not declare documents. ToXgene’s
garbage collector also ensures that the memory used by a list is freed as soon as all queries defined over it
are executed.

Evidently, lists can be populated with the contents of XML documents, not necessarily generated by our
tool. This means that one can reuse previously generated content, say for growing an existing collection of
documents, as well as using real data in the document generation process. One typical example is the use of
real country names in documents.

There are a few important things to mention here. First, an element specification, describing the type of
the “records” being read has to be declared. The validity checking of path expressions and type inferencing
in ToXgene are done before any data generation takes place, thus the element declaration is required for
verifying the integrity of the expressions and queries in the template. We note that only the elements of
interest need to be declared (i.e., the document might contain more elements than those in the list declara-
tion). Second, only elements in the input XML document are considered; attributes are ignored. Finally,
integrity constraints over lists read from files are declared in the same way as for lists being generated by
ToXgene. List “records” that violate any constraint are discarded; the abort attribute indicates whether ToX-
gene should abort the generation process should a list record read violate an integrity constraints defined for
the respective list. At template processing time, ToXgene outputs the actual number of elements that were
generated or read for each list:

22

ToXgene V2.1 - (c) 2001 by University of Toronto and IBM Corporation

***** Parsing template: Done!

Generating 1500 elements in order keys0: Done!
Generating 1500 elements in order keys1: Done!
Reading list Parts from temp/orders input.xml: Done! 2000 elements read.
Generating 1500 elements in order list0: Done!
Generating 1500 elements in order list1: Done!
Generating 1500 elements in order list2: Done!
Reading list priorities list from input/priorities.xml: Done! 5 elements read.
Reading list ship mode list from input/ship modes.xml: Done! 7 elements read.
Reading list ship instructions list from input/ship instructions.xml: Done!
4 elements read.

All ToXgene sample templates include lists that are read from XML documents.

9 Specifying random structures

In this section we describe two useful annotations, used for introducing some controlled randomness in the
data generation process in ToXgene:

<!ELEMENT tox-if (tox-then, tox-else?)>
<!ATTLIST tox-if

expr CDATA #REQUIRED>
<!ELEMENT tox-then (tox-alternatives|tox-scan|tox-sample|tox-foreach|tox-if|

element|attribute)*>
<!ELEMENT tox-else (tox-alternatives|tox-scan|tox-sample|tox-foreach|tox-if|

element|attribute)*>

<!ELEMENT tox-alternatives (tox-option*)>
<!ATTLIST tox-alternatives

tox-distribution IDREF #IMPLIED>
<!ELEMENT tox-option ((attribute|element|tox-if|tox-alternatives|tox-expr|

tox-string)*)> <!ATTLIST tox-option odds CDATA #REQUIRED>

� tox-if, tox-then, tox-else: these annotations provide IF-THEN-ELSE blocks, which can be nested.
The decision on which branch to take is made based on the logical value of the expression defined
by the expr attribute in the IF statement. Such expression is declared in the same way as a integrity
constraint (see Section 8.3). The ELSE block is optional.

� tox-alternatives, tox-option: these annotations provide a way to randomly choose one processing
path among various options. Each tox-option has a content descriptor (e.g., an element declaration)
and the odds with which that option will be chosen as follows. Let ��Æ�'?�,Ç�'BLBLBL�'?�,È be the odds forÉ tox-option elements (an error occurs if ÊÌËp� Ë ÁÍµB5V5). The ��ÆÎ'BLBLBL�'?�PÈ values yield the following
probability ranges:

@ Ë ½
ÏÐÑ ÐÒ � 50'?� Ë 1Ó' Ô�½Õµ

[Ê Ë�Ö Æ×Ø-Ù � × 'pÊ Ë�Ö Æ×Ø-Ù � × CÚ� Ë 1Ó'ÛµyÀÜÔ¤À É
[Ê Ë�Ö Æ×Ø-Ù � × '�µB5V5�1Ó' Ô�½ É

For Example, suppose the odds are 30,30,20 (no need to sum up to 100); the brackets will be� 50'AÄ/5�1ÓÝ��ÞÄ/50'Aß/5�1ÓÝ��Þß.50'�µB5.5�1 (the last option is always assigned all probability mass left). The processing
of a tox-alternatives consists then of simply generating a random number according to the given

23

probability distribution and determining in which bracket this number falls, and thus, which option
to process. The content of the options need not be related in any way: one can declare completely
different structures and/or genes for describing the XML content to be generated. Also, a tox-option

might be empty, thus allowing the specification of optional content (see example below).

Example 18. Alternative ways of specifying optional content in ToXgene:

<!-- the first method uses a random number generator and an IF-THEN-ELSE construct-->
<simpleType name="rand">

<restriction base="nonNegativeInteger">
<maxInclusive="100"/>

</restriction>
</simpleType>
...

<tox-if expr=”GT(´ rand,50)”>
<element name="my element" type="my type"/>

</tox-if/>
...
<!-- the second method uses alternatives/options -->

<tox-alternatives>
<tox-option odds="50">

<element name="my element" type="my type"/>
</tox-option>
<tox-option odds="50"/>

</tox-alternatives>

10 Using user-defined CDATA generators

ToXgene can be extended to allow the use of other CDATA generators than the ones that come with it by
default. This section explains how this can be done.

All ToXgene’s CDATA generators must implement the following interface:

package genes.literals;

public interface Cdata à
public void setRandomSeed(int seed);
public String getCdata(int length);á

The first method gives a random seed that should be used by the CDATA generator. This aims at allowing
the generation of the exact same content when the same master random seed is specified (recall the -s �
command line option).

The second method should return a string literal to be used in the data that is output by ToXgene. If
length is positive, the string to be returned must be exactly length characters long. If length is -1,
the CDATA generator can return a string of any length. This last mode is useful when the user wants to
bypass the specification of minLenght and maxLength values and, thus, avoid truncating strings.

For example, suppose we provide a CDATA generator for email addresses that outputs strings of min-
inum lenght 5 and maximum length 20. Suppose we use this CDATA generator in a template which specifies
minLength and maxLength to these values. When processing this template, ToXgene will set length
to a number uniformly distributed between 5 and 20, say 10, and pass it to the CDATA generator. However,
it could be the case that the email address generated at that iteration has more than 10 characters and must
be truncated.

24

All registered string types in ToXgene are listed in a file called setup/cdata.cfgwhich is bundled
in the toxgene.jar file. Each line in this file associates a CDATA type name to a given Java class, and
default values for minLength and maxLength for that type. By default, this file contains the following
entries:

text;util.cdata.tpch.Text;1;200
xmrk_text;util.cdata.xmark.Text;1;200
email;util.cdata.xmark.Emails;-1;-1
fname;util.cdata.xmark.FirstNames;-1;-1
lname;util.cdata.xmark.LastNames;-1;-1
city;util.cdata.xmark.Cities;-1;-1
country;util.cdata.xmark.Countries;-1;-1
province;util.cdata.xmark.Provinces;-1;-1
domain;util.cdata.xmark.InetDomains;-1;-1
word;util.cdata.xmark.Names;-1;-1

Note the -1’s specified as minLength and maxLength for most of the types. For these types, ToX-
gene will pass -1 as lenght for the respective CDATA generators.

When a given string type is referenced in a template, ToXgene will try to load the associated class and
immediately after that call setRandomSeed. An error will occur if the specified class cannot be found
by the Java class loader. One important note here is that ToXgene will create only 1 Cdata generator of
each type, thus minimizing the amount of memory used. The gibberish string generator is integrated into
ToXgene’s code directly.

For convenience, we provide the source code of all default CDATA generators that come with ToXgene
in the src directory.

11 Using a persistent object manager

ToXgene can make use a Persistent Object Manager (POM) the “temporary” data that must be kept in tox-
list elements is too large to fit in main memory. As discussed earlier, this feature is activated by passing the
-o [� [� [�]]] command line option when invoking ToXgene.

The optional parameters � , � and � specify: the path where to store the files containing the temporary
data; the fraction of the memory that should be used for buffering; and the size in kilobytes of the buffer
pages, respectively. The default values for these parameters are ”.” (i.e., the files will be placed in the
directory where ToXgene is being executed), 50%, and 8KB.

All files used by the POM are placed in the directory specified by � (the default value of � is the directory
from where you invoke ToXgene. All such files are called tg file G , where G is an identifier used by the
POM. The value of � is completely irrelevant to ToXgene itself. Thus, one can specify a directory residing
in a different file system and take advantage of parallel I/O.

Note that using a POM has several performance implications. Note that ToXgene has no control on how
the POM does memory management. In fact, ToXgene competes with the POM for memory for generat-
ing new random data and for processing queries. Also, accessing data via a POM requires expensive I/O
operations. On top of that, there is the overhead imposed by the POM bookeeping operations as well. The� and � parameters allow the user to adjust the working of the POM in two ways. First, the closer � is to
1, the more buffering will be effective. However, high values of � mean that ToXgene has less “working
memory” and thus might not be able to process the template without swapping (done automatically by the
Java virtual machine). Similarly, higher � values mean the POM will perform I/O over larger chunks of data.

25

For queries that perform sequential access to data items (see Section 8), this will mean fewer cache misses
due to locality of reference.

ToXgene tries to use memory and execute queries as efficiently as possible. However, the optimal values
for � and � are, of course, template dependent. Some “guidelines” for choosing these values are. If your
template does mostly sequential scans and performs “simple” queries, use high values for � and � ; otherwise,
experiment with lower values. We also note that, whenever possible, allowing some extra memory to the
Java virtual machine and not using the POM will yield much better overall performance.

Note on uniqueness constraints. As discussed in Section 8, one can specify uniqueness constraints over
elements in the lists. Therefore, during the generation of the list, ToXgene keeps an index that contains the
keys that have been used. We note that, even when using a POM, this index is kept in primary memory, due
to high I/O costs of dynamically maintaining an index on secondary memory. This also applies for when a
list is read from a file.

Of cours, one way of generating keys for datasets that do not fit in memory without the uniqueness
constraint is by using sequentially incremented numbers. In fact, this is the way used by most benchmarks.
In doing so, one saves both memory, by avoiding the materialization of a key index, and also time, since
uniqueness is guaranteed by construction.

26

References

[1] D. C. Fallside. XML schema part 0: Primer - W3C candidate recommendation. Available at
http://www.w3.org/TR/xmlschema-0/, October 24 2000.

[2] Java SDK - DateFormat class documentation. Available at
http://java.sun.com/j2se/1.3/docs/api/java/text/DateFormat.html.

[3] Java SDK - DecimalFormat class documentation. Available at
http://java.sun.com/j2se/1.3/docs/api/java/text/DecimalFormat.html.

[4] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103, CWI, Amsterdam, The Netherlands, April 2001.

[5] Transaction Processing Performance Council. TPC Benchmark H - Decision Support, 1999. Revision
1.3.0.

27

Appendix

A Credits and contact information

ToXgene is the data generator for the ToX project, developed at the University of Toronto. This tool was
developed by Denilson Barbosa under the supervision of Alberto Mendelzon, both from the University of
Toronto, in cooperation with John Keenleyside and Kelly Lyons, from the IBM Toronto Lab.

This work was partly funded by the Department of Computer Science of the University of Toronto, the
Natural Sciences and Engineering Research Council of Canada, Bell University Laboratories, IBM Corpo-
ration, the IBM Centre for Advanced Studies and the IRIS Network of Centres of Excellence.

Acknowledgments. Of course ToXgene would not have been possible without the use of other people’s
code. For copyright (and gratitude) reasons, we state that:

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product uses PoBoy – A Package of Persistent Object Java Collections, developed by NorthBranch-
Logic (http://enteract.com/˜wagman/NorthBranchLogic.html and distributed according
to the GNU Lesser General Public License.

A.1 Other ToXgene resources� ToXgene websites:

http://www.cs.toronto.edu/tox/toxgene/
http://www.alphaworks.ibm.com/tech/toxgene

� ToXgene discussion forum:

http://www.alphaworks.ibm.com/forum/toxgene.nsf/main

� ToXgene related publications:

– Denilson Barbosa, Alberto Mendelzon, John Keenleyside and Kelly Lyons. ToXgene: a template-
based data generator for XML. In Proceedings of the Fifth International Workshop on the Web
and Databases (WebDB 2002). Madison, Wisconsin - June 6-7, 2002.

– Denilson Barbosa, Alberto Mendelzon, John Keenleyside and Kelly Lyons. ToXgene: A template-
based data generator for XML. In Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data – Demo program. Madison, Wisconsin - June 4-6, 2002.

Please report bugs by email to toxgene-bugs@cs.toronto.edu

28

B A DTD for TSL

The following DTD is used to validate the templates by ToXgene.

<!ELEMENT tox-template (tox-distribution|simpleType|complexType|tox-list|
tox-document)*>

<!-- ***
XML Schema definitions needed
*** -->

<!-- Just a copy of what’s in the XML Schema specifications -->

<!ELEMENT simpleType (restriction)>
<!ATTLIST simpleType name CDATA #IMPLIED>

<!-- tox-string, tox-number and tox-value are all "literals", thus can go
inside a restriction definition -->

<!ELEMENT restriction ((tox-value | pattern) |
((minLength |maxLength)*,tox-string) |
((minInclusive | maxInclusive | minExclusive |

maxExclusive | tox-format)*, (tox-number|tox-date)?) |
(tox-scan|tox-sample|tox-foreach))>

<!-- Here we have ALL 45 XML Schema datatypes! -->
<!ATTLIST restriction base (string|integer|long|unsignedLong|int|unsignedInt|

short|byte|nonNegativeInteger|positiveInteger|
nonPositiveInteger|negativeInteger|decimal|
float|double|date) #REQUIRED>

<!ELEMENT pattern EMPTY>
<!ATTLIST pattern value CDATA #REQUIRED>

<!ELEMENT minInclusive EMPTY>
<!ATTLIST minInclusive value CDATA #REQUIRED>

<!ELEMENT maxInclusive EMPTY>
<!ATTLIST maxInclusive value CDATA #REQUIRED>

<!ELEMENT minExclusive EMPTY>
<!ATTLIST minExclusive value CDATA #REQUIRED>

<!ELEMENT maxExclusive EMPTY>
<!ATTLIST maxExclusive value CDATA #REQUIRED>

<!ELEMENT minLength EMPTY>
<!ATTLIST minLength value CDATA #REQUIRED>

<!ELEMENT maxLength EMPTY>
<!ATTLIST maxLength value CDATA #REQUIRED>

<!ELEMENT tox-format EMPTY>
<!ATTLIST tox-format value CDATA #REQUIRED>

<!-- The tox-percent gives the probability of that particular element being
chose from the list -->

<!ELEMENT enumeration EMPTY>
<!ATTLIST enumeration value CDATA #REQUIRED

tox-percent CDATA #REQUIRED>

<!-- This is an simplified version of the XML Schema definition of element,
but this will do for our needs -->

<!ELEMENT complexType ((tox-alternatives|tox-scan|tox-sample|tox-foreach|

29

tox-if|attribute|element|tox-string|tox-number|
tox-value|tox-expr)*)>

<!ATTLIST complexType name CDATA #IMPLIED
mixed (true|false) ’false’>

<!-- These elements are like the XML Schema elements, and are used to define
data types and tox-files -->

<!ELEMENT element ((simpleType|complexType|tox-expr*)?)>
<!ATTLIST element name CDATA #REQUIRED

type CDATA #IMPLIED
minOccurs CDATA ’1’
maxOccurs CDATA ’1’
tox-distribution IDREF #IMPLIED
tox-recursionLevels CDATA #IMPLIED
tox-reset (yes|no) ’no’
tox-omitTag (yes|no) ’no’>

<!ELEMENT attribute (tox-expr|simpleType)>
<!ATTLIST attribute name CDATA #REQUIRED

type CDATA #IMPLIED
tox-minOccurs CDATA ’1’
tox-maxOccurs CDATA ’1’
tox-distribution IDREF #IMPLIED
separator CDATA #IMPLIED>

<!-- ***
ToXgene specific elements
*** -->

<!-- elements for defining skewed value distributions -->

<!ELEMENT tox-distribution (enumeration*)>
<!ATTLIST tox-distribution name ID #REQUIRED

type (constant | exponential | geometric |
lognormal | normal | uniform | user-defined)
’uniform’
minInclusive CDATA #REQUIRED
maxInclusive CDATA #REQUIRED
mean CDATA #IMPLIED
variance CDATA #IMPLIED>

<!-- These define string literals -->

<!ELEMENT tox-string EMPTY>
<!ATTLIST tox-string type CDATA ’gibberish’

minLength CDATA #IMPLIED
maxLength CDATA #IMPLIED
tox-distribution IDREF #IMPLIED>

<!-- These define numeric literals. This element will be extended in the
future to add things like different formatting for the numbers, according
to the XML Schema definitions for numeric datatypes. -->

<!ELEMENT tox-number EMPTY>
<!ATTLIST tox-number minInclusive CDATA #IMPLIED

maxInclusive CDATA #IMPLIED
tox-distribution IDREF #IMPLIED
sequential (yes|no) ’no’
format CDATA #IMPLIED>

<!-- These elements define date literals -->
<!ELEMENT tox-date EMPTY>
<!ATTLIST tox-date start-date CDATA #REQUIRED

end-date CDATA #REQUIRED
tox-distribution IDREF #IMPLIED
format CDATA #IMPLIED>

30

<!-- The tox-value element is used to specify user-defined constants -->
<!ELEMENT tox-value (#PCDATA)>

<!-- A tox list is a repository for literals that are shared by the files
in the template -->

<!ELEMENT tox-list (element)>
<!ATTLIST tox-list name ID #REQUIRED

unique CDATA #IMPLIED
where CDATA #IMPLIED
readFrom CDATA #IMPLIED
abort (yes|no) ’no’
dump (yes|no) ’no’>

<!ELEMENT tox-alternatives (tox-option*)>
<!ATTLIST tox-alternatives tox-distribution IDREF #IMPLIED>

<!ELEMENT tox-option ((attribute|element|tox-if|tox-alternatives|tox-expr|
tox-string)*)>

<!ATTLIST tox-option odds CDATA #REQUIRED>

<!-- These elements implement ToXgene’s query language -->

<!ELEMENT tox-scan ((tox-scan|tox-sample|tox-foreach|tox-expr|attribute|element|
tox-if|tox-alternatives)*)>

<!ATTLIST tox-scan path CDATA #REQUIRED
name CDATA #IMPLIED
where CDATA #IMPLIED>

<!ELEMENT tox-sample (((tox-scan|tox-sample|tox-foreach|tox-expr)*)|
(attribute|element)*)>

<!ATTLIST tox-sample path CDATA #REQUIRED
name CDATA #IMPLIED
where CDATA #IMPLIED
tox-distribution IDREF #IMPLIED
duplicates (yes|no) ’yes’>

<!-- this element allows the nesting of content -->
<!ELEMENT tox-foreach ((tox-scan|tox-sample|tox-foreach|tox-expr|attribute|element|

tox-if|tox-alternatives)*)>
<!ATTLIST tox-foreach path CDATA #REQUIRED

name CDATA #IMPLIED
where CDATA #IMPLIED>

<!ELEMENT tox-expr EMPTY>
<!ATTLIST tox-expr value CDATA #REQUIRED

format CDATA #IMPLIED>

<!ELEMENT tox-if (tox-then, tox-else?)>
<!ATTLIST tox-if expr CDATA #REQUIRED>
<!ELEMENT tox-then (tox-alternatives|tox-scan|tox-sample|tox-foreach|tox-if|

element|attribute)*>
<!ELEMENT tox-else (tox-alternatives|tox-scan|tox-sample|tox-foreach|tox-if|

element|attribute)*>

<!-- This element defines the actual XML documents that are generated. -->

<!ELEMENT tox-document (element)>
<!ATTLIST tox-document name CDATA #REQUIRED

copies CDATA ’1’
starting-number CDATA ’0’
DTD-file CDATA #IMPLIED
pad (yes|no) ’no’>

31

