
ToXgene: An extensible template-based data generator for XML

Denilson Barbosa1 Alberto Mendelzon1 John Keenleyside2 Kelly Lyons2

1 Department of Computer Science
University of Toronto

{dmb,mendel }@db.toronto.edu

2 IBM Toronto Lab
{keenley,klyons }@ca.ibm.com

Abstract

Synthetic collections of XML documents are useful in many applications, such as benchmarking (e.g.,
XMach-1, Xmark), and algorithm testing and evaluation. We present ToXgene a template-based generator for
large, consistent collections of synthetic XML documents. Templates are annotated XML Schema specifications
describing both the structure and the content of the data to be generated. Our tool was designed to be declar-
ative, and general enough to generate complex XML content and to capture most common requirements, such
as those embodied in current benchmarks. The paper gives an overview of the ToXgene template specification
language and the extensibility of our tool; and reports preliminary experiments with ToXgene carried out at the
IBM Toronto Lab, which show that our tool can closely reproduce the data sets for the Xmark and the TPC-H
benchmarks.

1 Introduction
Synthetic collections of XML documents have many applications in benchmarking, testing and evaluating var-

ious algorithms, tools and systems. Moreover, different applications require different documents, with different
complexities, sizes, etc. For instance, a benchmark for data-intensive applications might require a large and rel-
atively homogeneous document, with many references among elements, while an adequate test suite for a parser
might be an heterogeneous collection with thousand of documents with varying sizes. Given the complexity of
writing and/or customizing hard-coded synthetic data generators for specific scenarios, we believe a declarative
tool for generating synthetic XML documents will prove useful.

ToXgene is a template-based tool for generating large, consistent synthetic collections of complex XML docu-
ments. The ToXgene template specification language is a subset of the XML Schema [5] notation augmented with
annotations for specifying certain properties of the intended data, such as probability distributions, the vocabulary
used for generatingCDATAcontent, etc.

We give an overview of our template specification language, and the kinds of XML content our tool can gener-
ate; we discuss how our tool can be extended to generate data for specific domains; and we report on experiments
carried out at the IBM Toronto Lab, showing that ToXgene can closely reproduce the characteristics of synthetic
data used in existing benchmarks. This work is part of the ToX project, recently started at the University of Toronto;
more on ToX can be found in [2].

1.1 Related work
A general purpose generator for synthetic XML documents is presented in [1]. Our work differs from that in the

following ways. First, the data generation process in centered on a conceptual description of the intended data (a
template). Thus, ToXgene gives the user total control over the data to be generated, unlike the method in [1], where
both the structure and the content of the documents are randomly generated. We note that our tool allows some
controlled randomness on input templates, thus it can generate documents with fairly irregular structure. Second,
our tool generates more complex XML content, including elements with mixed content; attributes; non-gibberish
text; and different numerical and date values. Also, our tool supports different probability distributions.

1

The IBM XML Generator [7] is also a declarative tool, and is similar to ToXgene in the sense it also requires
a conceptual description of the data to be generated: a annotated Document Type Definition (DTD) specifying the
structure and the characteristics of the data. There are many limitations to that tool, however. For instance, it allows
one tolimit the maximum depth of the document tree, or the number ofID andIDREF attributes in the documents,
but it does not allow one tospecifyactual values for these properties. Moreover, unlike ToXgene, that tool does not
allow the use of different probabilities of occurrence on aper elementbasis, nor the generation ofCDATAcontent
of different datatypes (e.g., strings, dates, etc.). On the other hand, the IBM generator deals with certain aspects of
the XML standard that are not addressed in ToXgene, such asENTITY declarations and processing instructions [4].

Furthermore, our tool differs from both approaches above in the following ways. First, ToXgene allows element
sharing, i.e., the values of some elements (or attributes) can be shared among different elements (or attributes) in
the same (or in different) XML documents. This allows the generation of collections of correlated documents
(i.e., documents that can bejoined by value). Second, ToXgene can produce data conforming to user-specified
integrity constraints. Most common constraints are supported; for example, our tool allows the generation of
consistent references within and across documents. Third, ToXgene allows the use of existing data when generating
documents; thus, one can grow an existing collection of synthetic documents while maintaining its consistency,
or mix real and synthetic data in the generation process (e.g., use real country names as in XMark). Finally, our
tool can be easily extended to allow the generation of domain-specific content, whenever the built-in tools are
insufficient.

Annotated XML Schema specifications have also been used for defining relational storage methods for XML
documents [3].

The remainder of the paper is organized as follows. Next section presents an overview of the template spec-
ification language and illustrates the kinds of documents ToXgene can produce. The extensibility mechanisms of
ToXgene are discussed in Section 3 and a summary of experimental results with ToXgene are presented in Section 4;
a more detailed analysis of the experiments is given in the appendix. We conclude in Section 5.

2 ToXgene template specification language
Among the various languages for specifying XML content, we chose XML Schema as the basis for our template

language for two reasons: it is a W3C standard, thus it is expected to become familiar to XML practitioners; and it
allows a more detailed description of XML content than DTDs. In particular, it allows the specification of types, for
describing literals (i.e.,CDATAcontent), elements and attributes. However, we note that having an XML Schema
specification alone is not enough for generating useful synthetic data; at the very least, we need to annotate the
schema for specifying which type should be used as the type for the root element of the documents to be generated.

We also define annotations for other purposes, such as specifying probability distributions of occurrences of
elements and attributes; defining element sharing; defining integrity constraints over XML elements; and providing
some controlled randomness in the structure of the data to be generated. More details on the ToXgene template
language can be found in [8].

Types and genes. A typeis a specification of some valid XML content, and can be either asimpleType or a
complexType [5]; instancesof a simpleType areCDATAliterals, while instances of acomplexType are
either XML elements,CDATAliterals, or a mix of both.

A geneis a specification of either an element (anelementgene) or an attribute (anattributegene), and contains
a name and a type; aninstanceof an element gene with namen and typet is an element whose opening and closing
tags are labeled withn and whose content is an instance oft; similarly, aninstanceof an attribute gene with name
n and typet is an is an attribute whose name isn and whose content is an instance oft. An attribute gene can only
be declared within acomplexType , and its type must be asimpleType . As we will see in the examples, the
genes are the building blocks of templates.

2.1 Specifying probability distributions, types andgenes
Figure 1 contains the examples we use to illustrate the discussion in this section. All ToXgene-specific annota-

tions are prefixed by the keywordtox and presented in a different font.

2

<tox-distribution name=”c1”
type=”exponential” minInclusive=”5”
maxInclusive=”100” mean=”35” >

(a) Declaration of an exponential
probability distribution.

<simpleType name="isbn type">
<restriction base="string">

<pattern value="[0-9] {10}"/>
</restriction>

</simpleType>

<simpleType name="my float">
<restriction base="float">

<tox-number tox-distribution=”c1” />
</restriction>

</simpleType>

(b) Specification of asimpleType .

<complexType name="my book">
<attribute name="isbn" type="isbn type"/>
<element name="title" type="string">

<tox-string type=”text” maxLength=”30” />
</element>
<element name="author" type="my author"

minOccurs="1" maxOccurs="5"/>
<element name="price">

<complexType mixed="true">
<attribute name="currency">

<simpleType>
<restriction base="string">

<tox-value >CDN</ tox-value >
</restriction>

</simpleType>
</attribute>
<tox-number minInclusive=”5”
maxInclusive=”100” />

</complexType>
</element>

</complexType>

(c) A complexType declaration.

Figure 1: Notation for specifying types, genes and probability distributions in ToXgene.

Specifying probability distributions. A probability distribution is declared using thetox-distribution annota-
tion, as shown in Figure 1(a), and referenced via its name, as shown in Figure 1(b). A single template might specify
multiple probability distributions, which can be used to determine, for example, the number of occurrence of el-
ements and attributes, the length of string literals, and instances of numerical types, as in Figure 1(b). ToXgene
currently supports the uniform, normal, exponential and log-normal distributions, as well as arbitrary discrete dis-
tributions, where the user provides all possible outcomes together with their respective probabilities of occurrence.
In order to allow the static checking of the consistency of the templates, we require each probability distribution to
have a maximum and a minimum value; all values outside this interval have null probability of occurrence.

Specifying simpleType s. A simpleType is a specialization of abasetype, e.g., string, integer, etc.; the
domainof a simpleType is a subset of the domain of the base type it is built upon; and an instance of asim-
pleType is an element chosen from its domain. For example, theisbn type , specified in Figure 1(b), is
a specialization of the string base type; its domain is the set of strings that conform to the given pattern; and
1234567890 is one of its instances.simpleType s are the basic content specification tools for defining genes.

The tox-number , tox-string andtox-date annotations are used to refine a type definition (e.g., to specify that
instances ofmy float in Figure 1(b) obey the probability distributionc1, and that the content of instances of
the title element in Figure 1(c) are non-gibberish strings1, no more than 30 characters long), or to specify the
generation of elements with mixed content (e.g., theprice element in Figure 1(c)). We also provide thetox-value
annotation, for specifying constants.

Specifying complexType s and genes. A complexType specification (see Figure 1(c)) contains definitions
of element genes, attribute genes, or annotations definingCDATAliterals, required for defining elements of mixed
content. Both named and anonymous types are allowed in ToXgene, as shown in the figure. Our tool supports all
element content models defined in [4]: character data, as in theisbn element; elements, as in thebook element;
and mixed, as in theprice element.

1Our tool supports two built-in string types:gibberish , andtext , as defined in [9]. However, ToXgene allows can produce strings using
a different vocabulary, as discussed in the appendix.

3

<tox-list name=”book list” unique=”[book/isbn]” >
<element name="b rec" minOccurs="200">

<element name="isbn" type="isbn type"/>
<element name="author id" type="integer"

maxOccurs="5">
<tox-sample path=”[author list/author]”

duplicates=”no” >
<tox-expr value=”[id/!]” />

</ tox-sample >
</element>

</element>
</tox-list >

(a) Declaration of a list with 200 book records. Each record
has a unique ISBN value and up to 5author id values,
sampled (without repetition) from a list of authors, declared
elsewhere.

<element name="book" minOccurs="200">
<complexType>

<tox-scan path=”[book list/b rec]” name=”a” >
<attribute name="isbn" type="isbn type">

<tox-expr value=”[isbn/!]” />
</attribute>
<element name="title" type="string"/>
<attribute name="authors" type="IDREFS"

tox-maxOccurs=”unbounded” >
<tox-scan path=”[$a/author id]” >

<tox-expr value=”’author’#[!]” />
</ tox-scan >

</attribute>
</ tox-scan >

</complexType>
</element>

(b) Specifying queries over lists; the symbol# in the expression
corresponds to the string concatenation operation.

Figure 2: Defining and querying lists.

2.2 Specifying element sharing and integrity constraints in ToXgene
ToXgene allowselement sharingboth within and across documents; i.e., different elements (or attributes), in

the same or in different documents, can have the sameCDATAcontent. This allows the generation of collections
of correlateddocuments (i.e., documents that can bejoined by value). In our tool, element sharing is achieved
by generating all shared content prior to generating any documents. The shared content is kept in what we call
tox-list s; such lists are queried at document generation time. Integrity constraints over the contents of a list, such
as uniqueness of certain values, can be specified, thus ensuring the consistency of the collections.

Specifying lists. Lists are declared bytox-list annotations. Each list has a unique name, an element gene that
defines its contents, and, optionally, some integrity constraints. Figure 2(a) shows the specification of a list of
books, each containing an ISBN and up to 5 references to author elements, stored in another list. The number of
elements in a list is determined by the gene defining it (exactly 200 in the example in the figure). Theunique
constraint in the list in Figure 2(a) ensures that no duplicate ISBN values are stored in the list; more complex
integrity constraints can be specified usingwhereclauses (see [8] for details).

Querying lists. ToXgene defines a language for specifying expressions that are evaluated at content generation
time. This language allows arithmetic and string operations; operands can be the results of queries, instances of
simpleType s generated “on-the-fly”, or constants. Moreover, all expressions are typed, and type checking and
casting mechanisms are implemented. Expressions are useful for defining conditional instantiation of genes (see
Section 2.4), for specifying where clauses in list definitions and selection conditions on cursors (see below). Due to
space limitations, we focus on expressions defining queries only; for details, see [8].

The contents of a list are retrieved usingcursorsandqueries, both of which are specified usingpath expressions.
A path expression is a sequence ofnamesseparated by ’/ ’; a name can be one of: a list name, an element name,
a cursor name, or! , which is shorthand forCDATA. All path expressions are enclosed by squared brackets. The
elements over which a cursor iterates are specified by a path expression rooted at a list or at another cursor, and,
optionally, a selection condition. Different cursors might iterate over the same content, using different access
patterns. ToXgene provides cursors for sequential scans (using thetox-scan annotation), and sampling with or
without repetition (using thetox-sample annotation).

Queries are expressions (declared usingtox-expr annotations) that extract the actualCDATAcontent of the ele-
ments in a cursor. Moreover, queries are always evaluated against the current element of the cursor they reference;
by default, queries refer to their closest ancestor cursor declaration. Explicit references to a cursor can be made by

4

<tox-document name=”books” copies=”1”
<complexType>

<element name="books">
<complexType>

<element name="book" type="book"
minOccurs="200" maxOccurs="200">
<tox-scan path=”[book list/b rec]” >

...
</complexType>

</element>
<complexType>

</ tox-document >

(a) Single file, multiplebook elements.

<tox-document name=”book” copies=”200”
<complexType>

<element name="book" type="book">
<tox-scan path=”[book list/b rec]” >
...

</element>
<complexType>

</ tox-document >

(b) Collection of files, each having a singlebook
element.

Figure 3: Declaring single documents and collections of documents in ToXgene.

rooting a path expression at a cursor name (see Figure 2(b)).
Cursors are always declared within genes, and are updated whenever these genes are instantiated. Thus, the

queries defining the contents of each of the 200 instances of thebook element gene in Figure 2(b) will be evaluated
against differentb rec elements. Therefore, the output of the template in Figure 2(b) will be 200book elements,
each with a distinct value for itsisbn attribute2. Cursors can be nested (see Figure 2(b)); the name of the parent
cursor ($a in the example) is used as the starting node of the path expression defining the nested cursor.

Consider theauthors attribute gene specified in Figure 2(b); its content is obtained by querying theau-
thor id values of the currentb rec element in the outer cursor. Recall that up to 5 author id’s are generated per
book. Thetox-maxOccurs=”unbounded” annotation in the gene specification determines that ToXgene should
generate as many instances of the gene as there are elements in the cursor defining its content. Therefore, the
resulting attribute will be a comma separated list of author id’s.

The ToXgene query language also defines useful aggregate and string manipulation functions.

2.3 Specifying XML documents
Documents are specified bytox-document annotations, as shown in Figure 3(a). Similarly to a list, a document

specification contains a name and a gene, whose instance will be theroot element of the document. Collections of
documents are specified by declaring thecopies attribute in a document declaration (see Figure 3(b)).

ToXgene’s output for the specification in Figure 3(a) is a single XML document, calledbooks.xml , and
whose root is an element calledbooks , whose children are 200book elements copied from a list. ToXgene’s out-
put for the specification in Figure 3(b) is a collection with 200 XML documents, calledbook0.xml , book1.xml ,
etc.; each document has an element calledbook as root, and its contents are copied from the same list. We note
that theith book inbooks.xml corresponds to thebook i.xml document in the collection.

2.4 Specifying irregular structures and recursive elements
ToXgene templates can also have control statements that impose conditions on the instantiation of genes. Each

control statement contains one or moreblocksof genes; at evaluation time, exactly one such block is chosen,
depending on conditions specified in the control statement. Only genes in the chosen block are instantiated. We
provide IF-THEN-ELSE statements, which can be nested arbitrarily, and also a “lottery” control statement, in which
the chosen block is randomly selected, according to a probability distribution. Since different blocks might define
completely different genes, the control statements provide some controlled randomness in the structure of the XML
documents produced by our tool.

2Note that ISBN values are unique inbook list .

5

<element name="person" maxOccurs="500"
tox-recDistribution=”r1” >
<complexType>

<element name="name" type="name type"/>
<element name="age" type="age type"/>
...
<element name="children">

<complexType>
<element name="person" maxOccurs="5"/>

</complexType>
...

</complexType>
</element>

(a) Specification of a recursive gene.

age name children

person

age name children

person person

Level 0

Level 1

(b) Structure of resulting XML elements.

Figure 4: Specification and instantiation of recursive element genes.

Recursion in element genes. ToXgene also allows recursive element generation, as illustrated by Figure 4. The
example defines a gene for up to 500person elements, each of which might have otherperson elements as their
descendants, under thechildren element. However, eachperson can have no more than 5person elements
as their descendants. The depth of the XML tree generated by that gene is determined by distributionr1 .

3 Extending ToXgene
ToXgene is a general purpose tool, and as such provides built-in tools for generating XML content conforming

to the most common datatypes. Although preliminary experimentation with our tool shows it can easily reproduce
the synthetic data used in complex benchmarks, using a combination of queries and string operations, ToXgene was
designed to allow the use of user-definedCDATAgenerators. For example, one might want to use pseudo-random
DNA sequences, generated by a given algorithm. In fact, one is not restricted to using randomCDATAcontent; one
might want to use readings from a sensor, or the results of queries over the Web, in synthetic XML documents.

ToXgene was implemented in Java 2, and its architecture was designed in a way that Java classes implementing
generators of instances of newsimpleType s could be added with little effort: all that is required is registering
the new code in the Gene Factory Module; of course, the added class has to implement the interface defined in our
code, which consists of a single method. The Java code that produces instances ofsimpleType s is not intended
for producing elements (i.e., strings containing element tags). However, there is nothing in our code that enforces
this behavior. Thus, if one needed XML elements with random tag names, it would suffice to encapsulate the data
generator in [1] as a newsimpleType in ToXgene. Our tool can also be coupled with external tools, since it has
the ability of storing and reading lists from files.

4 Experimental results
Our goal with ToXgene was the generation of consistent collections of complex XML documents. To test our

tool, we reproduced the synthetic data produced by the data generators of the TPC-H (dbgen) and the XMark
benchmarks (xmlgen). For the TPC-H experiment, we generated several XML documents, each corresponding to
a relation in the TPC-H database, and loaded the data in these documents into a relational database on DB2 using
IBM’s XML Extender [6]. The data produced by our tool did not violate any integrity constraints, and the results
of the queries in the TPC-H workload using our ToXgene data anddbgen data were comparable. For the XMark
experiment, we generated a single XML document containing thousands of internal references among elements; our
document parsed without problems. We executed some of the queries in the Xmark workload using our data and
xmlgen data, and obtained comparable results. More details on these experiments can be found in Appendix A.

6

5 Conclusions and future work
In this paper we introduced ToXgene: an extensible template-based generator for consistent collections of

correlated synthetic XML documents. We presented an overview of our template specification language, which is
based on XML Schema, and used for describing both the structure and the content of the documents to be generated;
we discussed some of the novel features of our tool, such as element sharing, and described how ToXgene can be
extended or coupled with other tools. Finally, we reported on preliminary experiments we conducted with our tool.

Development of ToXgene is continuing. We intend to provide a mechanism to allow the generation of text ac-
cording to different vocabularies, grammars, and character encoding schemes. This would be of capital importance
for generating testing data for text-intensive applications. With respect to further validating our tool, we plan to
try to reproduce other benchmarking data sets, and by doing so, we expect to identify limitations and opportunities
for improving our tool. We also intend to improve the performance of ToXgene; in particular, we are interested in
exploiting possible parallelism in the data generation.

As future research, we identify the extraction of ToXgene templates from existing documents as an interesting
problem. The obvious application of this research would be generating synthetic data closely reproducing the
characteristics of real documents. This would be especially important for the cases where one has no access to the
real data, say for security reasons. Also, templates capture considerable information about the data they describe,
and thus are valuable metadata in themselves.

References
[1] A. Aboulnaga, J. F. Naughton, and C. Zhang. Generating synthetic complex-structured XML data. InProceed-

ings of the Fourth International Workshop on the Web and Databases, pages 79–84, Santa Barbara, CA, USA,
May 24-25 2001.

[2] D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila, F. Rizzolo, and P. Rodriguez-Gianolli. ToX - the Toronto
XML engine. In Proceedings of the International Workshop on Information Integration on the Web, pages
66–73, Rio de Janeiro, Brazil, April 9-11 2001.

[3] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML Schema to Relations: A Cost-based Approach to
XML Storage. InProceedings of the 18th International Conference on Data Engineering (ICDE), 2002.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible markup language (XML) 1.0 (second
edition) - W3C recommendation. Available athttp://www.w3.org/TR/2000/REC-xml-20001006 ,
October 6 2000.

[5] D. C. Fallside. XML Schema part 0: Primer - W3C candidate recommendation. Available from
http://www.w3.org/TR/xmlschema-0/ , October 24 2000.

[6] IBM DB2 Universal Database XML Extender - administration and programming. Available athttp://www-
4.ibm.com/software/data/db2/ extenders/xmlext/ , 1999.

[7] IBM XML Generator. Available fromhttp://www.alphaworks.ibm.com/tech/xmlgenerator .

[8] ToXgene- the ToX XML data generator.http://www.cs.toronto.edu/tox/toxgene , 2001.

[9] Transaction Processing Performance Council.TPC Benchmark H - Decision Support, 1999. Revision 1.3.0.

A Detailed experimental results
In this section we give more details on the results of preliminary experiments with ToXgene, conducted at the

IBM Toronto Lab. We compare our tool with the data generators of both TPC-H [9] (dbgen) and Xmark (xmlgen).
We decided to use TPC-H in our experiments because it is a widely used relational benchmark and because it defines
many non-trivial integrity constraints over its database. Xmark was chosen because it was designed specifically for
XML applications, and defines a complex document, with different levels of nesting, and thousands of references
among its elements.

7

Query sizes ratio
ToXgene dbgen size time

q14 1 1 1.0000 1.0366
q12 2 2 1.0000 1.0000
q3 10 10 1.0000 1.0972
q20 21 15 0.7143 0.9276
q2 44 54 1.2273 1.2665
q16 2762 2789 1.0098 1.2853

Table 1: Comparison between ToXgene anddbgen , using queries from the TPC-H workload.

Feature Target ToXgene dbgen

average length of comments for suppliers 63 61 61
average length of supplier addresses 25 24 25
average balance on supplier accounts 4500 4450.81 4473.30
average balance on customer accounts 4500 4510.06 4470.50
average size of parts 25 25.00 25.00
average available quantity of parts 5000 5004.00 5000.00
average supply cost of parts 5000 499.74 499.69
average tax per item in each order 0.04 0.04 0.04

Table 2: Comparison between ToXgene anddbgen , usingad-hocqueries.

All experiments were run on a 4-way 500 Mhz Pentium III Xeon machine that has a total of 3Gb of RAM and
18Gb of disk storage.

Experimental methodology. For each benchmarking data, we run two queries: queries chosen from the bench-
mark workload, andad-hocqueries. Our goal in executing the queries of the workload is to verify whether the data
we generate offers the same “level of difficulty” as the data produced by the respective data generators. Thead-hoc
queries are designed to verify whether the distributions of certain properties of the data are comparable.

We report the results of each experiment on a separate table. For each query, we report the size of its result on
each data set, the relative size of the result sets (defined assize(tg)/size(gen), wheretg is a value measured using
the data produced by ToXgene, andgen is the value obtained using the other data generator), and the relative time
to execute that query (computed similarly as the size ratio).

For the TPC-H experiment, we generated data for a 100Mb relational database (i.e., we use a scaling factor of
0.1), corresponding to over 400Mb of XML content, divided into 6 documents. The data generation process for
TPC-H takes about 1 hour and uses no more than 750Mb of RAM for storing the lists. We loaded this data into an
empty relational database in DB2 V7.1 using DB2’s XML Extender [6]; the schema of this database was identical
to the one populated bydbgen , thus the same integrity constraints are defined in both databases. The metric for
answer sizes was the number of tuples in the result set of each query.

For Xmark, we generated a 100Mb document (i.e., we use a scaling factor of 1). On average, it takes about 25
minutes to generate such a document on the machine we used; 250Mb was the maximum amount of memory used.
We used Kweelt3 to execute both the queries from the Xmark workload and ourad-hocqueries. We specified all
queries in a way such that each data value is output in a separate line in the answer document. Thus, we can use the
number of lines in the answer as the metric for comparing the sizes of the results of the queries. We comment on
these results below.

A.1 TPC-H results
The TPC-H database defines small (25 tuples) and large (150,000 tuples) tables; several integrity constraints

are defined over these tables. The data generated by ToXgene was loaded successfully, which indicates that no
3Available athttp://http://kweelt.sourceforge.net/ .

8

Query sizes ratio
ToXgene xmlgen size time

q11 7661 7661 1.0000 1.0086
q1 12 12 1.0000 1.0097
q20 25 25 1.0000 0.9736
q17 25595 25535 1.0023 1.0100
q2 35425 34841 1.0168 1.0200
q12 1358 1436 0.9457 0.9888
q14 236 173 1.3642 0.8689

Table 3: Comparison between ToXgene andxmlgen , using queries from the Xmark workload.

Feature Target ToXgene xmlgen

average price in closed auctions 100.00 100.58 96.83
average number of bids per open auction 5 5.01 4.96
average “happiness” of customers with closed autions 5.50 5.48 5.43
percentage of items in Europe that have “United States” as location 0.75 0.7553 0.7447
percentage of items in Asia that can be purchased with credit card 0.50 0.5020 0.4945
percentage of persons that have a profile 0.50 0.5043 0.5029
average income of customers 42,500 42,543.68 42,604.98

Table 4: Comparison between ToXgene andxmlgen , usingad-hocqueries.

referential integrity constraint was violated. Table 1 shows the results of some queries from the TPC-H workload,
the first three queries in the table return a fixed number of tuples. Table 2 shows thead-hocqueries we ran. All
random values in the TPC-H data set are generated using uniform probability distributions.

A.2 Xmark results
Xmark defines an auction database whose main objects are items, persons, categories, and auctions (both open

and closed). There are thousands of references among elements in these categories (e.g., each auction corresponds
to one particular item and has one person as the seller). We validated the document generated by ToXgene using the
DTD provided with the benchmark without problems. Moreover, the time required for parsing both our document
and the one generated byxmlgen was around 22 seconds.

Generating Xmark text. Most of the textual content in this benchmark is generated by sampling from 17000
most common words in the Shakespeare’s plays, according to their frequency of occurrence in those documents.
We obtain similar content by loading the list of words used byxmlgen into a list, which is sampled accordingly.
Sentences are formed by concatenating these words. We generate the final text by copying these sentences into
emph, bold andkeyword elements in a recursive fashion, so that we can havebold sentences nested within
emph sentences.

Table 3 shows the results of the queries selected from the Xmark workload. The top three queries have fixed
output size. As shown in the table, the relative result sizes and execution times for the queries are very close, except
for q14, which returns the number of occurrences of a given word inside elements having textual content.

Finally, Table 4 compares some properties of both documents w.r.t. the expected values as defined by the
benchmark. The features presented in that table are determined by different probability distributions. For instance,
the average prices of items in closed auctions obey an exponential distribution, while the number of items that can
be bought with a credit card obey a uniform distribution.

9

