
Thesis.pdf

ToXin: An Indexing Scheme for XML Data

by

Flavio Rizzolo

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

 Copyright by Flavio Rizzolo 2001

ii

Abstract

Semistructured databases, unlike relational and object-oriented databases, do not have a fixed

schema known in advance and stored separately from the data. Broadly speaking,

semistructured data is self-describing and can model heterogeneity more naturally than either

relational or object-oriented data. Examples of such self-describing data are tagged

documents like XML.

Indexing schemes for semistructured data have been developed in recent years to

optimize path query processing by summarizing path information. However, most of these

indexing schemes can only be applied to some query processing stages whereas others only

support a limited class of queries. To overcome these limitations we developed ToXin, an

indexing scheme for XML data that fully exploits the overall path structure of the database in

all query processing stages. ToXin synthesizes ideas from object-oriented path indexes and

extends them to the semistructured realm of XML data.

In this thesis we study recent proposals for indexing XML data, present the ToXin

architecture, describe its current implementation, and discuss comparative performance

results.

iii

Acknowledgments

First and foremost, I would like to thank my advisor Alberto Mendelzon for his invaluable

support and advice. Alberto’s patience and insight to point out my mistakes forced me to

become more rigorous in my reasoning. His guidance was always invaluable, especially at

the late stages of my thesis work.

I would also like to thank Renee Mil ler for being the second reader of my thesis, and

the administrative staff of the Department of Computer Science for their permanent

will ingness to help.

I am also grateful to the Natural Sciences and Engineering Research Council of

Canada, and the Department of Computer Science for their generous financial support that

made my research possible.

Special thanks go to Jose Maria Turull Torres, my friend and mentor, who first

introduced me to the fascinating world of the scientific research and encouraged me to pursue

graduate studies. I could never thank Jose Maria enough for his guidance in the first steps of

my research career and for being an invaluable source of inspiration. I consider myself lucky

for having the chance to work with him.

I also wish to express my gratitude to my off icemates Alfredo, Sebastian, and Carlos,

and to all my friends in Toronto, especially to Lorena, Hernan, Patricia, Gustavo, Lily, and

Diego for helping me and my wife to make this beautiful city our home.

I am also in debt with my parents, Ofelia and Juan Carlos, for helping me to become

who I am. I owe them much, and regret that I missed my best opportunities to repay. I

dedicate this thesis to them.

Above all, I have to thank a thousand times to my wife, Mariana, the person without

whom this thesis could have never been written. Her support and unconditional love are

beyond words. It is hard to know who I would be without her; I intend never to have the

occasion to find out.

iv

Contents

CHAPTER 1: INTRODUCTION 1

1.1 Semistructured data 5

1.2 XML 6
Well -formed and Valid XML documents 9
XML and Semistructured data models 9

1.3 Path queries and XSLT 10

1.4 Motivation for path indexing 12

CHAPTER 2: PATH INDEXES 15

2.1 First Approach to Path Indexes 16

2.2 Dataguides 19

2.3 1-index 22

2.4 2-index 24

2.5 Access Support Relations 25

2.6 T-indexes 29

CHAPTER 3: TOXIN 31

3.1 Overview 31

3.2 Implementation 36
The Document Object Model 36

3.2 Navigation Language 38
Query evaluation 40

CHAPTER 4: EXPERIMENTS 45

4.1 Experimental Setup 45

4.2 Experimental Results 49

v

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 59

5.1 Summary 59

5.2 Future Work 60
Adding order 60
Extending the graph index with IDRefs 60
Making the index persistent 61
Extending ToXin with DOM functionality 62

APPENDIX 1: COMPLETE EXAMPLE 64

APPENDIX 2: ADDITIONAL ALGORITHMS 66

APPENDIX 3: COMPARATIVE PERFORMANCE RESULTS 68

APPENDIX 4: TREE SCHEMAS OF DOCUMENT SAMPLES 72

REFERENCES 76

1

Chapter 1

Introduction

Traditional database systems have rigid schemas and force all data to conform to

them. In contrast, many new applications that appeared in recent years contain data that

evolve rapidly or contain irregularities, making the use of a-priori rigid schemas unfeasible.

Such data is no longer structured in the traditional sense and is often called semistructured

data [Abi97].

Semistructured databases, unlike traditional databases, do not have a fixed schema

known in advance and stored separately from the data. Broadly speaking, semistructured data

is self-describing and can model heterogeneity more naturally than either relational or object-

oriented data. Examples of such self-describing data are tagged documents such as XML

[W3C00]. The data model proposed for this type of data consists of an edge-labeled graph in

which nodes corresponds to objects or values and edges to elements or attributes. Figure 1.1

shows a semistructured database modeled as an edge-labeled graph. This data model carries

both data and schema information, being naturally suitable to represent semistructured data.

In Sections 1.1 and 1.2 we present semistructured data and XML in more detail.

Yet, semistructured data models pose new challenges in many areas. Let us consider

query evaluation for instance. Navigation over a semistructured graph is a fundamental part

2

of query evaluation. Due to the lack of information about the schema, a naïve evaluation that

scans the whole database in the search of those paths that satisfy a given query is

prohibitively expensive. In addition, since navigating the graph is essentially pointer traversal

and the objects may be scattered across the disk or even stored at different locations, some

queries may require many disk accesses and cause significant performance degradation.

Figure 1.1: The SIGMOD Record database.

3

Index structures for semistructured data have been developed in recent years in order

to address these problems by reducing the portion of the database to be scanned during query

processing. Examples of such index structures are dataguides [GW97], 1-indexes and 2-

indexes [MS99], T-indexes [MS99], and reversed dataguides [LS00]. They keep record of

existing paths in the database summarizing path information. We give a brief overview of

these methods here, and discuss some of them in detail in Chapter 2.

In object-oriented databases, several indexing schemes have been proposed for

answering path queries efficiently, namely path indexes [BK89, SB96] and Access Support

Relations [KM90, KM92], which materialize frequently traversed paths in the database.

Since these approaches are based on the paths found in the schema, it is not possible to use

them for the typical schema-less XML documents.

Dataguides, on the one hand, are general path indexes that summarize all paths in the

database that start from the root. Figure 1.2 shows a dataguide that corresponds to the Figure

1.1 database. T-indexes, on the other hand, are specialized path indexes that only summarize

a limited class of paths specified by a given path template.

Dataguides and 1-indexes reduce the portion of the database to be scanned for path

queries and are useful for navigating the semistructured graph from the root. However, since

they do not provide any information about the parent-child relationship between source

nodes, they cannot be used for navigation from any arbitrary node. For example, from Figure

1.2 we know all the objects reached by article.authors.author, but we cannot tell exactly the

author objects that correspond to each article object. As a result, in the case of general path

queries that require at some point backward navigation, e.g., “find all articles written by a

given author” , we need to use additional index structures to optimize the query evaluation.

4

Figure 1.2: A dataguide for the SIGMOD Record database.

The Lore system [MAG+97] attempts to address this problem by using two additional

indexes for backward navigation. These indexes, however, do not exploit the database

structure as dataguides do: the nodes, edges and values are stored regardless of the overall

path schema of the database. Although using such indexes reduces to some degree the

number of pointer traversal operations for backward navigation, the forward navigation from

any node remains unsupported. Reversed dataguides are also helpful for backward navigation

from the leaves of the tree, but they do not support either forward or backward navigation

from a generic node.

5

The goal of this thesis is to synthesize some ideas from dataguides and Access

Support Relations and extend them so that we can optimize both forward and backward

navigation for any general path query over semistructured data such as XML. To that end we

have developed ToXin1, an indexing scheme that fully exploit the overall path structure of the

database in all query processing stages. ToXin summarizes all paths in the database and can

be used for both forward and backward navigation starting from any node. We provide as

well experimental results based on our implementation for tree data sources.

1.1 Semistructured data

In recent years there has been an increasing number of applications that needs to

handle fast evolving, irregular data which does not conform to traditional, rigid data models.

We use the term semistructured data to refer to data that presents such characteristics

[ABS99].

Semistructured data conforms to no fixed schema known in advance and stored

separately, being better suited for modeling heterogeneity than either relational or object-

oriented data models. Examples of such self-describing data are tagged documents such as

XML. In addition to these data-embedded schemas, semistructured data may present some of

the following characteristics:

• The schema is large w.r.t. the size of the data. This is a direct consequence of the data

heterogeneity, contrasting with relational or object-oriented data in which the schema is

often many orders of magnitude smaller than the data.

• The schema is not static. Since the schema may be implicit in the data, updating the

schema is as easy as updating the data itself. For instance, in a tagged document

containing bibliographical information, each new addition not only has information about

1 ToXin was developed within the ToX (Toronto XML Engine) project at University of Toronto.

6

the publication but also the corresponding tags. This means that adding publications to

the database may cause implicit schema updates if the new publication does not conform

to the previous structure.

• The schema is descriptive rather than prescriptive. Therefore, it has to be recomputed or

incrementally updated every time there is a change in the data.

Semistructured data arises from a wide range of applications such as integration of

heterogeneous sources, modeling biological databases, digital li braries, and the World Wide

Web. Several aspects of managing semistructured data have been extensively studied over

the past several years. This research has addressed, among others, data models [BDFS97,

CACS94], query languages [AM98, AQM+97, BDHS96, FFLS97, BFS00], and query

processing and optimization [CCM96, FS98, MW97].

Most semistructured data models organize data into directed graphs, where each

vertex represents an object and each labeled edge represents a relationship between objects.

The data in the graph is self-describing. Some objects are atomic and others are complex.

The value of an atomic object is one of the base types (e.g., integer, real, string, etc) whereas

the value of a complex object is a set of object identifiers. The object identifiers (OIDs) are

used to reference nodes in the data graph. They are pointers to either memory or disk

locations where nodes are stored. In the web context, they may even be URLs or any other

means of locating nodes distributed across several sites. In the XML context, however, we

restrict the types of atomic objects to strings.

1.2 XML

Extensible Markup Language (XML) is fast emerging as the standard for representing

and interchanging data over the Web. It is a hierarchical data format derived from SGML that

7

models a document as an augmented tree structure. In contrast to HTML, which is also

derived from SGML, XML has been designed as a general data structuring language capable

of modeling not only standard documents but also semistructured data in general. Another

feature that makes XML more powerful for general data management applications is the

separation between content and presentation. XML deals only with content and therefore

allows changes in the formatting aspects of a document without modifying its underlying

structure.

We wil l briefly discuss next the concept of document markup. Broadly speaking,

markup is information about the document schema embedded in the document content in a

way that can be identified during the interpretation of the document. In that sense, we need to

define some kind of special character or string so that we can distinguish the schema from the

data. Such special characters or strings are called markup.

Using markup, structural information is defined in terms of elements, the basic

components of an XML document. In order to identify such elements as schema rather than

data, the element names must appear between markup delimiters, which mark the start and

end of the markup for an element. Each element name together with its markup delimiters is

called a tag. The markup delimiters in XML are the characters “<” and “>” . Figure 1.3

shows an XML document for the SIGMOD record database depicted in Figure 1.1. The

strings <issue> and <article> are tags and therefore part of the document schema. A pair of

tags containing the element name delimits each element. The first one, which has the format

<element_name> is called start tag, whereas the second has the format </element_name>

and is called end tag. The string between a start tag and an end tag is called an element

content or value. For instance, title in Figure 1.3 is an element delimited by the start tag

<title> and the end tag </title>, and its value is the string “A Framework for Implementing

Hypothetical Queries”.

8

In order to append additional element information without including it in the element

content, XML defines an additional component: attributes. Attributes allow us to include any

additional information within an element start tag. In Figure 1.3, position is an attribute of

the author element and contains additional information regarding the order in which the

authors appear in a given publication.

<SigmodRecord>

<issue>

<volume>26</volume>

<number>2</number>

<articles>

<article>

<title>A Framework for Implementing Hypothetical Queries</title>

<initPage>231</initPage>

<endPage>242</endPage>

<authors>

<author position="00">Timothy Griffin</author>

<author position="01">Richard Hull</author>

</authors>

</article>

<article>

<title>A Toolkit for Negotiation Support Interfaces to Multi-Dimensional Data.</title>

<initPage>348</initPage>

<endPage>356</endPage>

<authors>

<author position="00">Michael Gebhardt</author>

<author position="01">Matthias Jarke</author>

<author position="02">Stephan Jacobs</author>

</authors>

</article>

…

</articles>

</issue>

...

</SigmodRecord>

Figure 1.3: XML document of the SIGMOD Record database.

9

We must point out that element names are not necessarily unique, e.g., the authors

element in our example has two nested author elements. Attribute names, in contrast, are

unique within a given element, e.g., one author element cannot have more than one position

attribute.

But not all attributes are created equal. XML defines two particular attributes, usually

called ID and IDREF, associated to unique identifiers so that they may be used to link

elements beyond the relationship given by the tree structure of the document. This

mechanism allows us to define documents that have a graph structure rather than a tree.

Well-formed and Valid XML documents

XML documents must satisfy syntactic constraints. An XML document is called well -

formed if it is syntactically correct, in other words, if all its elements are neatly nested and

each attributes is unique within each element. For instance, we need to end an articles

element before ending an issue element. A valid document, on the other hand, is a well-

formed XML document that has also been validated against a DTD. A DTD [W3C98] is a

context-free grammar for the document and may be used as an external schema.

XML and Semistructured data models

The XML data model is similar to that for semistructured data in the sense that both

represent data as a directed graph that can be interpreted either as node-labeled or edge-

labeled. An important difference, however, is that the XML data model has order while

semistructured data is usually unordered. In addition, XML has a component usually not

present in the semistructured data model: the attributes. As we discussed before, XML

10

defines attributes as being part of elements rather than having a separate identity by

themselves. Yet, an XML document can be modeled as a semistructured data edge-labeled

graph by simply considering XML attributes as edges pointing to atomic objects. Therefore,

both XML elements and attributes are described as edges. Since both models are equivalent

to represent XML data, we choose the edge-labeled model because it is the prevalent one for

semistructured data.

Many important issues about XML have been studied from the database point of

view, in particular query languages [BC00] and optimization techniques [Lie99, NW99].

1.3 Path queries and XSLT

An XSLT stylesheet [W3C99b] is a set of transformation rules that allows the

transformation of one XML document into another. Each rule consists of a pattern and a

template. The XSLT processor identifies the nodes to which the template will be applied by

using the pattern. During stylesheet processing, the pattern is matched against the nodes of

the XML source and the template is instantiated to produce the XML result. It works as

follows. The XSLT processor starts from the root and tries to apply the pattern to that node.

A pattern specifies the conditions that a given node must satisfy in order to be processed. A

node that satisfies the condition matches the pattern; similarly, a node that does not satisfy

the condition does not match the pattern. When a node matches the pattern, the XSL

processor executes the template of that rule. Each template element specifies one

transformation rule. The pattern of that rule is specif ied by the match attribute. The template

used to produce a tree fragment is described in the content of the template element, also

called a rule body. The process is then repeated over each of the remaining nodes recursively

in a breadth-first fashion.

11

XSL patterns are specified by XPath [W3C99a], a simple query language for

identifying nodes in an XML document based on their names and values as well as the

relationship between nodes. Paths may be specified as absolute or relative. Absolute paths

are those that start from the root of the tree, whereas relative paths start from any given node

defined as context node. The hierarchical relationship between nodes are expressed by

operators “ /” and “ //” . The former specifies a parent-child relationship between two nodes

whereas the later specifies an ancestor-descendant relationship between two nodes at any

depth. For instance, the query “ find all the titles of articles that appear in the database” can

be expressed in XPath as //article/title. The section between brackets of a XPath expression is

called a filter section. A filter is a predicate that is applied to the nodes that match the path

expression before it (i.e. the pre-filter section). The evaluation of the rest of the pattern (i.e.,

post-filter section) continues only for those nodes that matches the pre-filter section and

satisfies the filter. XPath also includes a wildcard operator “*” , that matches any node at its

location in the path expression, and a disjunction operator “ |” . Figure 1.4 shows an XSLT

stylesheet that transforms the XML document from Figure 1.3 into another XML document

that contains only the title of the papers that appeared in the issue Number 2 of Volume 26.

The content of the match attribute in the second rule is an XSL pattern. The xsl:apply-

templates directive invokes the application of templates (the second rule in Figure 1.3

example). The xsl:value-of directive constructs the result with information from the XSL

pattern.

<xsl: template>

<xsl:apply-templates>

</xsl: template>

<xsl: template match=”//issue[/volume=26 and number=2]/articles/article/title” >

<result>

<xsl:value-of/>

</result>

</xsl: template>

Figure 1.4 XSLT stylesheet

12

Let us see how the Figure 1.4 stylesheet is applied to the Figure 1.3 database. First,

the XSLT processor starts the evaluation from <SIGMOD_Record> and attempts to match

the pattern to it. When a rule does not have a match attribute, like the first one, the template

matches any node. The next step is evaluating the body of the matching rules, only the first

one in this case. The rule body has only one instruction, <xsl: apply-templates/>, which

implies the recursive processing of the subelements of all matched elements, i.e. volume,

number, and articles. Once again, only the first rule matches and we repeat the process on the

elements that have further nested structure, i.e. the element articles. After two more steps we

reach a node that matches the second rule: title. Applying the rule’s body, the XSLT

processor generates a result element with the value of the current node: “A Framework for

Implementing Hypothetical Queries”. The process described above is then repeated over the

remaining articles. The result of the query is shown in Figure 1.5.

<result> A Framework for Implementing Hypothetical Queries. </result>

<result> A Toolkit for Negotiation Support Interfaces to Multi-Dimensional.</result>

…

Figure 1.5: Result of the Figure 1.3 XSLT stylesheet

1.4 Motivation for path indexing

In order to process path queries like XPath patterns we need to navigate the graph

structure of the XML document. As we said before, since navigating the graph is essentially

pointer traversal, a query processing strategy that scans the whole database in the search of

those paths that satisfies a given query is very expensive.

13

In order to ill ustrate the problem let us consider again the SIGMOD database from

Figure 1.3. Let us suppose that we want to find the volume in which a given article appears.

We submit then the following query:

Q1.1= //issue[//title=”A Framework for Implementing Hypothetical Queries”]/volume

The query processor will match the query pattern in all possible ways to the data

graph. It will traverse it from the root and return all nodes reachable via a path matching the

regular expression specified by the pattern. To do that following the naïve approach, it will

traverse the entire database in the search of paths that satisfy the regular expression

//issue//title from query Q1.1. Next, we select those nodes having the value ”A Framework for

Implementing Hypothetical Queries” out of the nodes reachable via those paths. Then, from

each selected node we will first traverse title/article/articles backward and then volume

forward to complete the query. If we do not use any auxiliary structure, this back and forth

navigation has to be done over the XML source.

On the other hand, if we construct an index precomputing some paths of the graph we

may process general path queries much more eff iciently. Such index will basically

summarize path information of the data graph. For instance, we may want to materialize a

view containing all nodes that are reachable via the path

SIGMOD_Record/issue/articles/article/title if we know that a query such as Q = //issue//title

is posed frequently. Then, we may use that information during query processing rather than

navigating the data source. Or we may wish to store every path present in the database along

with the set of nodes reachable via the path.

In order to reduce the portion of the database to be scanned, schema-independent

index structures have been developed in recent years. We already introduced some of them,

which we will describe in the next chapter in more detail.

14

The reminder of this thesis is organized as follows. Chapter 2 presents the related

work. An overview of ToXin and its current implementation is discussed in Chapter 3.

Chapter 4 describes the experiment setting and the results. In Chapter 5, we present our

conclusions and possible directions for future work.

15

Chapter 2

Path indexes

In the subsequent chapters, we will need a common formalism to describe ToXin and

other related path index schemes. We begin by introducing some definitions.

Definition: let D be an XML document. A XML-graph XD = (N, vo, E, A, ψ, Σ, λ, <) is a

rooted ordered graph induced by D, where N is a set of nodes; vo∈N is a distinguished node

called a root; E is a set of edges containing an edge for each XML element and attribute in D;

A ⊂ E is a distinguished set of edges containing an edge for each attribute in D; ψ is an

incidence function mapping E to N × N; Σ is a finite set of XML element and attribute names

called an alphabet; λ is a labeling function mapping E to Σ, and < is a partial order relation

on E such that for every pair of edges e1 and e2 emanating from node n, e1 < e2 iff e1 occurs

before e2 in n.

Definition: let ε be the empty string, φ be the empty set, and Σ be a finite alphabet disjoint

from { ε, φ} . We define regular path expressions over Σ as follows:

a) The empty string ε, the empty set φ, and each a∈Σ are regular path expressions.

b) if R1 and R2 are regular path expressions, then R1| R2, R1/ R2 and (R1)* are regular path

expressions.

16

Let R1 and R2 be regular path expressions over Σ. The expression (R1|R2) is the

alternation of R1 and R2, (R1/ R2) is the concatenation of R1 and R2, and (R1)* is the kleene

closure of R1. According to the XPath notation, we use (*) to denote the alternation of all

elements of Σ, and (R1//R2) to denote (R1/(*)* /R2).

Each regular path expression R denotes a set L(R) of strings of symbols from an alphabet

Σ. L(R) is defined as follows: L(ε) = { ε} ; L(φ) = φ ; L(a) = a, for a∈Σ ; L(R1|R2) =

L(R1)∪L(R2) = { string s | s ∈ L(R1) or s ∈ L(R2)} ; L(R1/R2) = L(R1)/L(R2) = { string s1/s2 | s1

∈ L(R1) and s2 ∈ L(R2)} ; L(R*) = i
i RL)(0

� ∞
= , where L(R)0 = { ε} and)(/)()(1 RLRLRL i −= .

Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph and p =(v0, e1, v1, …, en, vn),

where vi ∈ N, 0 ≤ i ≤ n, and ej ∈ E, 1 ≤ j ≤ n be a path in XD. We call the string λ(e1)/ λ(e2)/ ...

/λ(en) the label path of p, denoted by λ(p).

Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. A query path QR on XD is an

expression of the form xRy where x,y are variables and R is a regular path expression over Σ.

The answer set to a query path QR(XD), denoted ans(QR(XD)), is defined as the set of pairs

(x,y) s.t. there is a path p = (x , e1 , … , en , y) in XD and λ(p) ∈ L(R).

2.1 First Approach to Path Indexes

Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. For each node v∈N let Lv(XD) be the set

of label paths from root v0 to node v:

Lv(XD) = { λ(p) | p = (v0 , e1 , … , en , v) }

17

We define an equivalence relation over nodes in N as follows. Let v,w be nodes in N. We say

that v ≡ w iff Lv(XD) = Lw(XD). We denote by [v] the equivalence class of v in N.

We call the set of nodes that belongs to the equivalence class [v] the extent of [v],

denoted ext([v]). Then, we construct the index as follows. First, we compute the family of

equivalence classes [v1], [v2], … , [vk] that defines a partition of N, and then we attach to each

of them the regular expression corresponding to languages)(
1 Dv XL , … ,)(Dv XL

k
. We also

store, for each class [v], its extent ext([v]).

Given a query path Q and the index constructed as described above, query evaluation

can be performed by simply iterating over all classes [vi], 1 ≤ i ≤ k, and for each class testing

if the corresponding language)(Dv XL
i

 has a non empty intersection with L(Q).

Consequently, ans(Q) will be the union of all extents where that intersection is not empty:

ans(Q) = { � i ivext])([| φ≠∩)()(QLDBL
iv }

The index constructed as described above is inefficient because computing the

equivalent classes [v] is a PSPACE complete problem [MS99]. In addition, given that the

regular languages corresponding to each class [vi] may overlap, the index size may be much

larger than the database.

Two proposals have addressed these problems: dataguides [GW97] and 1-indexes

[MS99]. Dataguides consist of a more concise representation of the equivalence classes [vi]

based on a deterministic automaton. 1-indexes, on the other hand, are based in the use of a

different equivalence relation to compute the equivalence classes. The resulting index, when

viewed as a finite state automaton, is non-deterministic. Next, we will discuss both

approaches in more detail. We wil l use a cyclic data graph corresponding to a generic

publications database (Figure 2.1).

18

Figure 2.1: A generic publications database.

19

2.2 Dataguides

Dataguides are a concise and accurate summary of the path structure of a

semistructured database. It is accurate because every label path in the data source appears in

the data guide and conversely every label path in the data guide appears in the data source. It

is concise because the data guide describes every label path of the source exactly once.

Notice that the automaton that describes the language � i Dv XL
i

)(is a non

deterministic finite automaton (NFA). The construction of a dataguide from a data graph is

equivalent to the conversion of a NFA into a deterministic finite automaton (DFA)

[NUWC97]. This conversion takes linear time when the source is a tree and exponential time

(in the worst case) when the source is a graph. It is important to note that a data graph does

not necessarily have a unique dataguide in the general case. Since one NFA may have

multiple equivalent DFA [HU79], a single data graph may also have several dataguides. In

contrast, there is a unique one that is the smallest possible, and it is called minimal dataguide.

Two possible dataguides for the Figure 2.1 data graph are shown in Figure 2.2.

Figure 2.2: Two dataguides corresponding to the publications data graph.

20

However, not all dataguides are suitable for indexing purposes without additional

structures. For instance, the paths publications/issue/articles/article and

publications/issue/articles/article/references do not belong to the same equivalence class and

yet they reach the same node in the Dataguide 2 from Figure 2.2. This is so because

dataguides guarantee that each label path in the data graph reaches one node in the dataguide

but do not prevent multiple label paths from reaching the same dataguide node. There is only

one type of dataguide which guarantees that all label paths that reach the same node in the

dataguide belong to the same equivalence class [v], and it is called strong dataguide

(Dataguide 1 in Figure 2.2). Since each node represents a different equivalence class, we can

add the extents to the nodes to use the strong dataguide as a path index, as shown in Figure

2.3. Strong dataguides are the only type of dataguides that can be used for indexing purposes

without needing additional structures.

Figure 2.3: Strong dataguide with extents for the publications data graph

21

We define next strong dataguides more precisely in the context of the XML-graph

formalism.

Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A strong dataguide

DX = (NI , x0 , EI , ψI , Σ, λI , XD, ext) is a rooted graph where NI is a set of nodes; xo∈ NI is a

distinguished node called root; EI is a set of edges; ψI is an incidence function mapping EI to

NI × NI ; Σ is the alphabet of XD; λI is a labeling function mapping EI to Σ; ext is a function

mapping NI to 2N defined as ext(x)={ v | ∀pI = (x0 , … , x), ∃p = (v0 , … , v) s.t. λI (pI)=λ(p) } ;

and the following two conditions are satisfied:

1. For every pair of paths p = (v0 , … , v), p’ = (v0 , … , v’) s.t. λ(p) = λ(p’), there is exactly

one path pI = (x0 , … , x) s.t. λI (pI) = λ(p) = λ(p’).

2. For every pI = (x0 , … , x), there is a path p = (v0 , … , v) s.t. λI (pI) = λ(p).

One of the problems that we face when we construct a dataguide of a deeply nested,

cyclic graph is that, in the worst case, we may end up creating a node for every subset of

nodes in the data source. As a result, the size of the data guide wil l grow exponentially in

terms of the number of objects in the source. When the source is a tree, however, the size of

the dataguide is equal to that of the source in the worst case. A comprehensive study of the

theoretical foundations behind dataguides can be found in [NUWC97].

Algorithm 2.1 below constructs a strong dataguide from an XML-graph. It is based in

the subset construction algorithm from [ASU86].

22

Algorithm 2.1: construction of a strong dataguide from a XML-graph
INPUT:

XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)

OUTPUT:
Strong dataguide DX = (NI , x0 , EI , ψI , Σ, λI , XD, ext)

METHOD:

EI ← φ
NI ← new node x0

ext(x0) ← { v0 }

Extents ← unmarked set ext(x0)
while there is a set S∈Extents do

mark S

for each symbol a∈Σ do
T ← { y | (x,y)∈ans(Qa(XD)), x∈S }

if T ∉Extents then

Extents ← Extents + unmarked set T
NI ← NI ∪ { new node y }

ext(y) ← T

else
y ← node y∈N s.t. ext(y) = T

fi

EI ← EI ∪ { new edge e }
x ← node x∈N s.t. ext(x) = S

ψI (e) ← (x,y)

λI (e) ← a
od

od

2.3 1-index

Like dataguides, 1-indexes are intended to be used by queries that search the database

from the root for nodes matching some arbitrary path expression R. A 1-index therefore,

represents the same set of paths that dataguides do, although using a different approach. The

basic idea behind the index construction is the generation of a non-deterministic automaton

(NFA) to get a more compact structure than dataguides (DFA).

23

To construct the 1-index of a data graph we compute for each node the equivalence

class using a bisimulation as equivalence relation. We define bisimulation next.

Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. A binary relation ~ on nodes

in N is called a bisimulation if it satisfies the following. If v ~ v’ , then for any edge e, ψ(e) =

(u, v), λ(e) = a, there exists an edge e’ , ψ(e’) = (u’ , v’), λ(e’) = a s.t. u ~ u’ . Conversely, If v ~

v’ , then for any edge e’ , ψ(e’) = (u’ , v’), λ(e’) = a, there exists an edge e, ψ(e) = (u, v), λ(e) =

a s.t. u ~ u’ .

We say that two nodes v, u are bisimilar (noted v ≈ u) iff there exists a bisimulation ~ s.t.

v ~ u.

Using bisimulation we can tackle the index size and the construction cost problems that

dataguides yield, obtaining an index structure in which extents are disjoint. As we mentioned

before, the type of dataguides used for indexing purposes are the strong dataguides. Since

they are constructed over the power set of nodes in the database, the size of the dataguide

graph may be as large as exponential in that of the database, while for 1-index it is at most

linear. In addition, given that dataguide target sets may overlap (due to the power set

construction), the total size of the target sets may be as large as exponential on the size of the

database in the worst case, while for 1-index is again at most linear.

We construct the index as follows. Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph.

The nodes of the index will be the family of equivalence classes [vi] computed by

bisimulation, which defines a partition of N. The index I has an edge e, ψ(e) = ([vi], [vj]), λ(e)

= a iff data graph D contains an edge e’ , ψ(e’) = (v, v’), λ(e) = a for some v∈ [vi] and v’ ∈ [vj].

We can think of 1-indexes, when seen as finite state automata, as a non-deterministic version

of dataguides (Figure 2.4).

24

Figure 2.4: A 1-index for the publications data graph.

2.4 2-index

2-indexes are intended to be used by queries that search the database for pairs of

nodes matching some arbitrary path expression R. Similarly to 1-indexes, we have to define a

language equivalence to construct equivalence classes of nodes. We define next a language

between pairs of nodes in N.

25

Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. For each pair of nodes v,w in N let

Lv,w(XD) be the set of label paths from root v to node w:

Lv,w(XD) = { λ(p) | p = (v , e1 , … , en , w) }

Then, we define an equivalence relation over nodes in N, as follows. Let v,w,v’ ,w’ be

nodes in N. We say that pairs (v,w) ≡ (v’ ,w’) iff Lv,w(DB) = Lv’ ,w’(DB). As in language

equivalence for single nodes, we denote by [(v,w)] the equivalence class of (v,w) in N.

As before, pairs (v,w), (v’ ,w’) in N2 may be distinguished by a query path, iff (v,w)

∉ [(v’ ,w’)]. Using the previous language definition, we construct the index as follows. We

compute the family of equivalence classes [(v1,w1)], [(v2,w2)], … , [(vk,wk)] that defines a

partition of N2, and then we attach to each of them the regular expression corresponding to

languages)(
11 Dwv XL , … ,)(Dwv XL

kk
. In addition, we also store the extent for each class,

consisting of all pairs (v,w) in the class [(v,w)].

Since computing equivalence pairs of nodes is expensive, we may consider using

bisimulation, as we did for 1-indexes.

2.5 Access Support Relations

Access Support Relations [KM90] are general indexing structures for object-oriented

databases. They are designed to support functional join along arbitrary reference chains

leading from one object instance to another. They also support collection-valued attributes

within the attribute chain by materializing frequently traversed reference chains of arbitrary

length. Since access support relations are based on the paths found in the schema, it is not

possible to use them in a straight-forward manner for the typical schema-less XML

26

documents. However, we present them here because some of the techniques behind them can

be combined with other path index schemes for indexing XML data.

Access Support Relations are a generalization of the binary join indices originally

proposed for the relational model [Val87]. One fundamental difference, however, is that

rather than relating only two relations (or object types), Access Support Relations materialize

access paths of arbitrary length. For comprehensive coverage of the object-oriented data

model, we refer the reader to [KKS92].

Definition: A path expression on object o has the form p = o. A1. A2 … An, where o is an

object that contains the attribute A1, o.A1 refers to an object or set of objects that have an

attribute A2, and so on. Since Access Support Relations are typed, we give next a formal

definition of path expressions based on types. For simplicity, we assume that types are not

being defined as a subtype of any other type.

Definition: [KM92] let t0 ... tn be (not necessarily distinct) types. A path expression p on t0 is

an expression p = t0 . A1. A2 … An if for each 1≤ i ≤ n one of the following two conditions

holds:

1. The type ti-1 is defined as type ti-1 is [..., Ai : ti, ...], i.e., ti-1 is a tuple with an attribute Ai of

type ti.

2. The type ti-1 is defined as type ti-1 is [..., Ai : ti’, ...] and the type ti’ is defined as type ti’ is {

ti }. i.e., ti’ is a set type containing elements that are instances of ti. In this case, we say

that there is a set occurrence at Ai in the path p = t0 . A1. A2 … An.

According to this definition, we can represent the SIGMOD Record database as shown in

Figure 2.5. Each level from top to bottom corresponds to a different type and the rectangular

boxes represent the objects.

27

Figure 2.5: object-oriented representation of the SIGMOD Record database

Having defined the concept of path in this object-oriented data model, we may define Access

Support Relations as following.

Definition: [KM92]: let t0 ... tn be (not necessarily distinct) types and p = t0. A1. A2 … An be a

path expression on t0. Then the Access Support Relation [t0. A1. A2 … An] is of arity n+1 and

its tuples have the form [S0, ... , Sn]. The domain of the attributes Si is the set of OIDs of

objects of type ti, 1≤ i ≤ n. If tn is an atomic type then the domain of Sn is tn, i.e. values are

stored directly in the ASR.

28

Access Support Relations may be maintained in four different extensions, which define

the amount of information kept in the index structure. The four possible extensions are the

following:

1. The canonical extension, denoted [t0. A1. A2 … An]can , which contains only complete

paths, i.e. paths from t0 ending in tn.

2. The left-complete extension, denoted [t0. A1. A2 … An] left , which contains all paths

originating in type t0 but not necessarily ending in type tn.

3. The right-complete extension, denoted [t0. A1. A2 … An]right , which contains paths ending

in tn but possibly originating in some object of type tj that is not referenced by any object

of type tj-1 via attribute Aj.

4. The full extension, denoted [t0. A1. A2 … An] full , which contains all partial paths.

Figure 2.6 shows a full extension of an Access Support Relation for the path

SIGMOD_Record/issue/articles/article/title on the Figure 2.5 database. It contains all paths

corresponding to the indexed path expression.

Figure 2.6: Access Support Relation (full extension).

For storage, Access Support Relations use an approach similar to binary join indexes

[Val87]. Each relation is redundantly stored in two B+-trees: the first keyed on the left-most

attribute and the second keyed on the right-most attribute. For the relations of Figure 2.6,

there is a B+-tree on SIGMOD_Record and another one on title. This storage schema is well

suited for traversing paths forward and backward.

29

2.6 T-indexes

Since 1-indexes and 2-indexes are not tailored to specific paths in the database, when

faced with very irregular, cyclic data the index may become too large and inefficient.

Restricting the class of queries supported by the index structure can reduce the index

complexity and yield better performance. This approach is similar to that of Access Support

Relations.

Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A generalized query path

QR’ on XD is an expression of the form x0R1x1R2... Rnxn , where xi, 0 ≤ i ≤ n, are variables and

Rj, 1 ≤ j ≤ n are regular path expression over Σ. The answer set to a generalized query path

QR’ (XD), denoted ans(QR’ (XD)), is defined as the set of tuples (x0, ..., xn) s.t. for all pairs (xj-1,

xj), there is a path pj = (xj-1 , e1 , … , ek , xj) in XD and λ(pj) ∈ L(Rj).

In order to define T-indexes, the concept of path template was introduced [MS99]. A

path template t has the form v0T1x1... Tnxn where xi, 1≤ i ≤ n are variables and each Ti, 1≤ i ≤ n,

is either a regular path expression or a generic place holder P that represents any path. By

instantiating each of the place holders P with a concrete path expression we get a concrete

generalized query path. For instance, the path template v0 publications x1 P x2 title x3 has

several possible instantiations, two of them are:

i1 = v0 publications x1 // x2 title x3

i2 = v0 publications x1 //article x2 title x3

Once defined a path template t, a T-index is constructed to support path queries that

are instances of t. As in Access Support Relations, templates are used to guide the indexing

mechanism on the more frequently queried part of the database. Special cases of T-indexes

are 1-indexes and 2-indexes. The template that corresponds to a 1-index is t1= v0Px1 and the

one that corresponds to a 2-index is t2= v0 // x1 P x2.

30

For the construction of the index, we proceed in a manner similar to 1 and 2-indexes.

We first define the language equivalence to be the equivalence relation on nodes, this time a

tuple (x1,... ,xn). Then, we compute the equivalence classes defined by the language

equivalence. For a comprehensive discussion of T-indexes, we refer the reader to [MS99].

31

Chapter 3

ToXin

3.1 Overview

In order to speed up query processing for regular path queries we have developed an

index scheme we call ToXin. Our original goal when designing ToXin was to have an index

that supports navigation of the XML graph both backward and forward to answer any regular

path query. At the same time, we wanted to keep the size of the index schema linear (in the

worst case) w.r.t. the size of the XML graph. In addition, we needed data structures to help

locate nodes that not only satisfy regular path expressions but also predicates over values.

Previous index schemes developed for OODB and semistructured data satisfy only some of

these requirements. We have described some of them in previous chapters. Strong dataguides

store only paths from the root and do not help in backward navigation. They also have the

additional problem of exponential growth when indexing deeply nested, cyclic data graphs.

Access Support Relations and T-indexes, on the other hand, store only a predefined subset of

paths and, therefore, support only a limited class of path queries. ToXin borrows some ideas

from these techniques and extends them in several ways.

32

ToXin consists of two different types of index structures: the value index and the path

index. The path index has two components: the index tree, which is a minimal dataguide, and

a set of instance functions, one for each edge in the index tree. Each instance function keeps

track of the parent-child relationship between the pair of nodes that defines each XML

element. Since the instance functions play the role of the extents, we can relax the condition

requiring that all l abel paths that reach the same node in the dataguide belong to the same

equivalence class. That is the reason why we are able to use a minimal dataguide instead of a

strong dataguide.

The storage structure of the instance functions is similar to that of Access Support

Relations (see Section 2.5). Each instance function is stored in two redundant hash tables: a

forward instance table for forward navigation and a backward instance table for backward

navigation. The value index, on the other hand, consists of a set of value relations that store

the XML nodes and values corresponding to an index edge. For each edge in the index

schema that corresponds to a set of XML nodes containing values, there is a value relation.

Each relation is implemented as a B+-trees keyed on the values, which are always strings.

Value and path indexes combined can be used to answer regular path queries with predicates

over values such as those expressed using XPath.

We present below a definition of the path index. This definition does not interpret

IDRef attributes as links, hence the resulting index schema has a tree structure.

Definition: let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A path index tree

IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ) is a tree where NI is a set of nodes; xo∈ NI is a

distinguished node called root; EI is a set of edges; ψI is an incidence function mapping EI to

NI × NI ; Σ is the alphabet of XD; λI is a labeling function mapping EI to Σ; σ is an instance

function mapping EI × N to 2N defined as

σ(eI , v) = { w | ∃p = (v0 , … , v, e, w) ∃pI = (x0 , … , x, eI , y), and λI (pI)=λ(p) } ; and the

following two conditions are satisfied:

33

1. For every pair of paths p = (v0 , … , v), p’ = (v0 , … , v’) s.t. λ(p) = λ(p’), there is exactly

one path pI = (x0 , … , x) s.t. λI (pI) = λ(p) = λ(p’).

2. For every pI = (x0 , … , x), there is a path p = (v0 , … , v) s.t. λI (pI) = λ(p).

We wil l present next an algorithm for computing the ToXin tree from an XML-graph.

It performs a depth-first traversal of the tree defined by the natural element nesting in the

XML-graph. For each element visited it first checks whether the corresponding edge has

already been added to the index and adds it if it was not. Then, it defines the instance

function σ for the edge and the current element. Since the algorithm traverses the underlying

tree defined by the element nesting, it terminates after traversing all edges exactly once. Note

that it does not follow the edges defined by the attributes.

Algorithm 3.1: construction of a ToXin tree from a XML-graph
INPUT:

XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
OUTPUT:

ToXin Tree IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ)

METHOD:
EI ← φ
NI ← new node x0

Index(x0, v0)

procedure Index(x, v) // x∈NI , v∈N

for each edge e∈(E-A) s.t. ψ(e) = (v, w) do
if there is no edge eI∈EI s.t. ψI (eI) = (x, y) and λI (eI) = λ(e) then

EI ← EI ∪ { new edge eI }

NI ← NI ∪ { new node y }
λI (eI) ← λ(e)
ψI (eI) ← (x, y)

fi
σ (eI , v) ← w

Index(y,w)

od
end

34

Let us see with an example how ToXin works. Figures 3.1, 3.2 and 3.2 show the ToXin tree

and the tables for the XML document from Figure 2.1. The VT boxes in Figure 3.1 represent

the value tables and the IT boxes the instance tables. In contrast to dataguides and 1-indexes,

which index only paths which start from the root, all paths in the database are represented in

ToXin. For instance, not only do we find the paths that match x/publications/issue/y

(represented by the reference chains in tables publications and publications/issue) but also

those that match x/issue/y (represented by the table publications/issue). This way we can use

ToXin for both forward and backward navigation starting from any node in the index.

Figure 3.1: ToXin tree for the publication data graph.

35

Figure 3.2: ToXin instance tables for Figure 3.1 index tree.

Figure 3.3: ToXin value tables for Figure 3.1 index tree.

36

3.2 Implementation

The Document Object Model

In the previous sections we explained how to construct a path index from an XML-

graph. Next, we show how to process an XML document in order to obtain the XML-graph.

To process an XML document we need to use APIs and our choice was the document

object model (DOM). DOM is a tree structure-based API from a W3C Recommendation

[W3C98]. An XML document is represented in DOM as a tree structure whose nodes are

elements. The DOM tree corresponding to the data graph of Figure 2.1 is depicted in Figure

3.4. DOM provides a set of APIs to access and manipulate the nodes in a DOM tree.

Figure 3.4: DOM tree for the publications data graph

37

We implemented the prototype of ToXin in Java and we use the IBM parser XML4J

to create the DOM tree from the XML document. We based our implementations on the

DOM tree generated by the XML4J parser. Since our model requires an edge-labeled graph,

first we compute the XML-graph from the DOM tree and then we build the index according

to Algorithm 3.1.

For each XML element containing values, DOM creates an extra node called text.

Therefore, the DOM tree contains more nodes than the number of XML elements in the

documents. As a consequence, the XML-graph presents additional text edges as well. If

indexed as normal edges, this extra layer of text edges induces a significant overhead for both

building and querying the index tree and the XML-graph. Figure 3.5 shows the ToXin tree

for XML-graphs presenting text edges. The value tables and instance tables for Figure 3.5 are

shown in Appendix 1.

Figure 3.5: Index tree for the publications data graph (with text edges)

38

Our first implementation of ToXin regards text edges in the XML-graph as normal

edges and computes the index tree accordingly. For the second implementation, we eliminate

the text edges from the XML-graph and move the nodes at the end of such edges one level up

using the following algorithm:

for each edge e∈E, ψ(e) = (v, w), s.t. λ(e) = text do

for each edge e’∈E, s.t. ψ(e’) = (u, v) do

ψ(e’) = (u, w)

remove edge e from E

remove node v from N

od

od

Applying this procedure, we obtain the more compact and natural structure of Figure

3.1. It is easy to see that the XML-graph is always larger in the first implementation than in

the second one and, consequently, so is the index graph.

3.2 Navigation Language

For testing ToXin performance, we needed a language that supports path expressions

and predicates over values. This functionality is provided by a number of query languages for

XML, such as XML-QL [DFF+99], XSLT [W3C99b], XQL [RLS98] and XPath. In addition,

most of these languages also provide complex mechanisms for restructuring and updating

documents, functionality we did not require for our experiments. Our final choice was XPath

because it is simple to implement and yet powerful enough for testing ToXin capabil ities in

speeding up queries involving tree navigation and value selection. Nevertheless, since the

39

current ToXin implementation does not support order, we did not implement the XPath

functionality for supporting queries involving order.

The navigation language we designed consists of a set of navigation and filtering

functions that support tree traversal, both forward and backward, and selection of nodes

satisfying a certain value. Functions navigateDown and navigateUp accept a set of nodes N

and a regular path expression R as input and return the set of nodes that are reachable by

paths matching R. The only difference between them is the direction in the evaluation of the

regular path expression R. The function selectNodes, on the other hand, accepts a set of nodes

N and a value v as input and returns the set of nodes whose value is exactly v. For instance,

the following query:

Q3.1 = publications/issue[year = “1990”]/articles/article/title

may be expressed in our navigation language as a composition of four subqueries as follows:

Q3.2.1 = navigateDown(v0, “publications/issue/year”)

Q3.2.2 = selectNodes(Q3.2.1, “1990”)

Q3.2.3 = navigateUp(Q3.2.2, “year”)

Q3.2.4 = navigateDown(Q3.2.3, “articles/article/title”)

The ToXin index scheme was designed to speed-up all query processing stages.

According to our query decomposition strategy mentioned above we define three stages in

the query evaluation. The first stage (called pre-selection stage) comprises the first

navigation down the tree for the pre-filtering section. The second stage (called selection

stage) consists of the value selection performed by the filter section. Finally, the third stage

(called post-selection stage) spans the navigation up after the selection stage and the last

navigation down. We classified ToXin along with other path indexes scheme explained in

40

Chapter 2 with regards to the query evaluation stages in which they can be used. The

classification is shown in Table 3.8.

Scheme name pre-selection

stage

selection

stage

post-selection

stage

Dataguides Yes - -

1-index Yes - -

2-index Yes - -

Dataguides + Value

Index (Lore)

Yes Yes -

General Path

Indexes

ToXin Yes Yes Yes

ASR Yes Yes YesPath-specific

Indexes
T-index Yes - -

Table 3.8: Classification of the indexing schemes described in Chapters 2 and 3.

Query evaluation

Let IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ) be a ToXin tree and let QR=xRy be a query

path. We have two evaluation strategies depending on whether the variable x is instantiated

with the index root x0 or not. We describe first the evaluation strategy for the general case in

which x is not instantiated with the root. Starting from node x, we follow the reference chains

over the instance tables that belong to the edges in the paths matching R. The answer ans(QR)

contains the set of nodes that are at the end of those reference chains. The procedure is the

same for both forward and backward navigation; the only difference is the instance tables

used for computing the reference chains (forward or backward instance tables respectively).

Let us consider now the special case in which x is instantiated with the index root x0.

In this case, we can avoid following the reference chains over the instance tables. Since there

41

is no previous filtering involved and we are computing over an index tree, we can simplify

the computation as follows. First, we follow the paths over the index schema that match the

regular path expression R. Then we select the last instance tables of each path and we

compute the union of the child column of the selected instance tables. This special case of the

evaluation strategy is closely related to query processing over dataguides, where the child

column of the instance tables are the equivalent to the extents of dataguides nodes.

In order to present the algorithm that computes the navigateDown and navigateUp

functions according to the evaluation strategies described above, we need to define first a

formalism called query graphs. Query graphs are transition graphs constructed from the NFA

corresponding to a regular path expression. By using Thompson’s construction [ASU86] we

compute first the NFA corresponding to a regular path expression and then we construct the

transition graph associated with it.

Definition: let P = (S, Σ, δ, so, F) be an NFA corresponding to a regular path expression. The

query graph associated with P is a directed graph Q = (S, s0, EQ, ψQ, Σ, λQ, F) where S is a set of

states; s0 ∈ S is a distinguished node called initial state; EQ is a set of edges; ψQ is an incidence

function that maps EQ to S × S; Σ is the alphabet of Q; λQ is a labeling function mapping EQ

to Σ; and F ∈ S is a set of final states. If state t ∈ δ(s, a) for s, t ∈ S and a∈Σ, then there is

and edge e ∈ EQ with ψQ (e) = (s, t) and λQ (e) = a.

Algorithm 3.2 implements navigateDown for the general case in which the input node

x is not the root. The algorithm is related to that in WebOQL for computing the navigation of

a tree in a web [Aro97]. Algorithm 3.3, on the other hand, implements navigateDown for the

case in which the navigation starts from the root x0.

42

Algorithm 3.2 (navigateDown v1.0): computation of a forward navigation over a ToXin
tree.

INPUT:

ToXin tree IX = (NI , x0 , EI , ψI , Σ, λI , XD , σ), where XD = (N, v0 , E, ψ, Σ, λ, <)
query graph Q = (S, s0, EQ, ψQ, Σ, λQ, F)

xi, vi

OUTPUT:
ans(Q(XD))

METHOD:

Result ← φ
Added ← φ
Visited ← φ
Selected ← vi

SearchDown(xi , si , Selected)

procedure SearchDown(x, s, Selected)
Visited ← Visited ∪ {(v, s)}

for each edge e∈ EI s.t. ψI (e) = (x, y) do

for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λI (e) do
if t∈F and e∉Added then

Added ← Added ∪ {e}

Result ← Result ∪ Follow(e, Selected)
fi

if (y, t)∉Visited then

Selected ← Follow(e, Selected)
SearchDown (y, t, Selected)

fi

od
od

end

procedure Follow(e, X)

Y ← φ
for each x∈X do

Y ← Y ∪ σ(e, x)

od

Follow ← Y
end

43

Algorithm 3.3 (navigateDown v2.0): computation of a forward navigation from the root

over a ToXin tree.

INPUT:
ToXin tree IX = (NI , x0 , EI , ψI , Σ, λI , XD , σ), where XD = (N, v0 , E, ψ, Σ, λ, <)

query-graph Q = (S, s0, EQ, ψQ, λQ, F)

OUTPUT:
ans(Q(XD))

METHOD:

Result ← φ
Added ← φ
Visited ← φ
Selected ← v0

SearchDown(x0 , s0)

procedure SearchDown(x, s)
Visited ← Visited ∪ {(x, s)}

for each edge e∈ EI s.t. ψI (e) = (x, y) do

for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λI (e) do
if t∈F and e∉Added then

Added ← Added ∪ {e}

Result ← Result ∪ Child(e)
fi

if (y, t)∉Visited then

SearchDown (y, t)
fi

od

od
end

procedure Child(e)
Y ← φ
for each x∈N s.t. σ(e, x) is defined do

Y ← Y ∪ σ(e, x)
od

Child ← Y

end

44

In order to perform the comparative experiments we have also implemented

navigateDown for the XML-graph and Strong dataguides. The algorithms are presented in

Appendix 2.

45

Chapter 4

Experiments

4.1 Experimental Setup

We implemented the ToXin prototype in Java 2 and we used the IBM parser XML4J

to create the DOM tree from the XML document. All the experiments presented herein were

conducted in a Sun SPARCstation running Solaris 2.5. Both Index and DOM were kept in

memory in the experiments.

In order to study the tradeoffs of a set of indexing schemes we carried out a series of

comparative performance experiments. We use query processing time as performance metric.

The experiments evaluate the effect of several parameters on the performance of the query

evaluation using ToXin, dataguides, dataguides + value index, and the XML source itself.

The parameters can be classified into data source-specific and query-specific. The data

source-specific parameters are document size, number of XML nodes and values, path

complexity (degree of nesting), and average value size (short or long strings). Those query-

specific are selectiveness of the path constraints (queries expressed with or without // and *

operators), size of the query answer (small or large), and number of elements selected in the

filter section (small or large).

46

Our benchmark consists of four data sources: the conference papers from the DBLP

database [Ley00], a sample of movies from the Internet Movies Database [IMDB00], the

four religious texts from [Bos98] and twenty Shakespeare plays from [Bos99]. The choice of

the document samples was aimed at determining the impact of nesting and average value size

on the index performance. DBLP is a classical example of a bibliographical database

containing deeply nested data. IMDB presents a flat structure typical of a straight-forward

mapping from relational data. The values contained in both the DBLP and IMDB documents

are short strings. The religious texts and the Shakespeare works, on the other hand, are

exponents of text databases: the former containing in average longer string values than the

latter and yet similar degree of nesting. The path structures of the tested documents are

shown in Appendix 4.

We use DBLP and IMDB to explore the impact of nesting. To study the effects of

different value sizes, we use the religion texts and the Shakespeare works. In addition, to test

the index performance with different document sizes and similar path structures, we created

two XML documents for each data source, one larger than the other one. Table 4.1 shows

some parameters of the benchmark.

47

DBLP IMDB Shakespeare Religion

Doc 1 Doc 2 Doc 1 Doc 2 Doc 1 Doc 2 Doc 1 Doc 2

File size (Mb) 1.8 8.9 0.8 3.9 1.1 4.4 1.0 7.0

Index generation

time (sec)

17.2 80.2 5.5 41.5 4.1 25.7 1.3 9.3

of XML nodes 90040 405103 57854 293183 45776 181438 16810 95594

of XML values 44027 190232 27084 137296 20437 81779 8283 46334

of index nodes

(ToXin 1)

47 73 14 14 52 62 25 78

of index nodes

(ToXin 2)

27 40 8 8 31 37 17 49

Avg. Value Size Short Short Short Short Long Long Long Long

Degree of Nesting High High Low Low High High High High

Table 4.1: Parameters of the benchmark

The queries we used for our experiments test the performance of simple selection of

nodes by value and tree navigation. We tested each query in two versions: one with very

selective path constraints so that the portion of the index scanned is smaller, and the other

with more relaxed constraints with a resulting extensive index navigation. We present next

the queries grouped by document sample:

DBLP

q1’= //[year = “1998”]//title

q1 = /dblp/conference/issues/issue/inproceedings[year = “1998”]/title

q2’ = //conference[title = “VLDB”]/*//title

q2 = /dblp/conference[title = “VLDB”]/issues/issue/inproceedings/title

q3’ = //[author = “Serge Abiteboul”]//title

48

q3 = /dblp/conference/issues/issue/inproceedings[author = “Serge Abiteboul”]/title

IMDB

q4’ = //[genre = “Drama”]//title

q4 = /movies/movie[genre = “Drama”]/title

q5’ = //[title = “Bolero”]//year

q5 = /movies/movie[title = “Bolero”]/year

q6’ = //[year = “1950”]//title

q6 = /movies/movie[year = “1950”]/title

Shakespeare Works

q7’ = //[speaker = “Mark Anthony”]//line

q7 = /shakespeare/play/act/*/speech[speaker = “Mark Anthony”]/line

q8’ = //[title = “The Tragedy of Anthony and Cleopatra”]/act//line

q8 = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”]/act/*/speech/line

q9’ = //[title = “The Tragedy of Anthony and Cleopatra”]//persona

q9 = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”]/personae/persona

Religious Texts

q10’ = //[bktshort = “Matthew”]//v

q10 = /religion/book/bookcoll/book/[bktshort = “Matthew”]/chapter/v

q11’ = /[title = “The New Testament”]//bktlong

q11 = /religion/book[titlepg/title = “The New Testament”]/bktcoll/book/bktlong

To compare query performance across different documents we classify the queries

with regards to the selectiveness of its path constraints and the sizes of the query answer and

node selection in the filter section. The following table shows the classification according

with these criteria:

49

Query Type Query Characteristics

LL q1, q4, q7 Large query answer

Large filter selection

LL* q1’ , q4’ , q7’ Large query answer

Large filter selection

Relaxed path constraints

LS q2, q8, q10 Large query answer

Small filter selection

LS* q2’ , q8’ , q10’ Large query answer

Small filter selection

Relaxed path constraints

SS q3, q5, q6, q9, q11 Small query answer

Small filter selection

SS* q3’ , q5’ , q6’ , q9’ , q11’ Small query answer

Small filter selection

Relaxed path constraints

Table 4.2: Query classification

4.2 Experimental Results

Figures 4.3, 4.4, 4.5, and 4.6 show the execution time for each stage of every query

type of Figure 4.2. The rows represent the performance of each query evaluation stage over

the XML-graph (XML), the first ToXin implementation with text edges (ToXin 1) and the

second implementation without text edges (ToXin 2). The first three columns of each table

correspond to the small documents and the second three columns to the large ones. This way

we can appreciate the impact of using a path index in each query processing stage.

50

Table 4.3: Performance results of DBLP queries

51

Table 4.4: Performance results of IMDB queries

52

Table 4.5: Performance results of Shakespeare works queries

53

Table 4.6: Performance of religious texts queries

The results suggest that the first stage (pre-selection) generally benefits the most by

the use of a path index scheme. All query types, except LS, SS in the Shakespeare works, and

religious texts, have shown important performance improvements when using an index in the

first stage. In some queries the performance of third stage (post-selection) is also

considerably improved by using the index. Those query types with large query answers

benefit the most by the use of a path index during the third query processing stage. From the

results we can also conclude that, when using an index, the closer to the root the filter section

starts, the better the improvement in the performance of the third stage and the worse that of

54

the first stage. Since dataguides support only the first stage, using only a dataguide without

additional structures can do little to improve the performance of the entire query evaluation

when the filter section is close to the root.

Regarding the results when using a value index, except for queries with small number

of values selected in the filter section, the improvement is also considerable. Nevertheless, it

is important to note that in none of the tested queries does the selection stage play an

important role in the total performance of the query evaluation.

Figures 4.7, 4.8, 4.9, and 4.10 summarize the performance of four different index

schemas: both versions of ToXin, dataguides, and dataguides with value indexes. In all of

them ToXin outperforms the other two schemes, in some cases by one order of magnitude.

55

Figure 4.7: Comparative performance of selected index schemes with DBLP.

56

Figure 4.8: Comparative performance of selected index schemes with IMDB.

57

Figure 4.9: Comparative performance of selected index schemes with Shakespeare works.

58

Figure 4.10: Comparative performance of selected index schemes with the religious texts.

59

Chapter 5

Conclusions and Future Work

5.1 Summary

In this thesis we presented ToXin, an indexing scheme that supports path queries over

XML data. We discussed its architecture, related work and presented performance results.

The motivation for this work was to overcome some limitations of current indexing proposals

for semistructured data, such as the lack of support for all query processing stages

(dataguides, 1-indexes and 2-indexes), and the need for an explicit specification of the paths

to index (T-indexes). To that end, we combined ideas from dataguides and access support

relations in a way that allows us to use the index in all the query evaluation stages for any

general path query.

60

5.2 Future Work

The work presented in this thesis can be extended en several ways. The main

directions are: adding order to the index structure; implementing the ToXin graph, by

extending the ToXin tree with the semantic of the IDRefs; making the index persistent; and

investigating ways to extend ToXin so it can be used as an alternative to DOM for storing,

querying and updating XML documents. We give next a brief overview of these possible

extensions.

Adding order

We are considering two options for this extension. One is to replace the Hash

structures in the instance tables with a data structure that supports order, such as B-trees.

Other option is to give the index more flexibil ity by keeping the order information in a

separate structure that may be added or not depending on the particular user’s needs. This

new order tables would be attached to the ToXin nodes and would contain information about

the order in which the elements of the instance and value tables appear in the original XML

document. With this addition, ToXin will support queries involving order of XML elements

and attributes.

Extending the graph index with IDRefs

In order to construct the ToXin graph from the XML graph we use Algorithm 5.1. It

performs a depth-first search of the underlying tree (the element nesting tree) and for each

edge checks whether it is an attribute or an element. Since attributes do not have further

structure, when the algorithm finds an attribute it simply adds it to the index and does not

continue with the recursive search.

61

Algorithm 5.1: construction of a ToXin graph from an XML-graph
INPUT:

XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
OUTPUT:

ToXin Graph IX = (NI , x0 , EI , AI, ψI , Σ, λI , XD, σ)
METHOD:

EI ← φ
NI ← new node x0

Index(x0, v0)

procedure Index(x, v) // x∈NI , v∈N
for each edge e∈E s.t. ψ(e) = (v, w) do

if there is no edge eI∈EI s.t. ψI (eI) = (x, y) and λI (eI) = λ(e) then

EI ← EI ∪ { new edge eI }
NI ← NI ∪ { new node y }

λI (eI) ← λ(e)

ψI (eI) ← (x, y)
fi

σ (eI , v) ← w

If e∈A then
AI ← AI ∪ { eI }

else

Index(y,w)
fi

od

end

Making the index persistent

In its current implementation ToXin is kept in main memory. To make the index

persistent we are currently considering two approaches: mapping the index to a RDBMS or

to an OODBMS. Some hybrid scheme is also possible, since the value and instance tables are

more naturally suited to be stored in relational tables whereas the schema graph can be best

described using an object-oriented data model. A number of methods for storing XML

62

documents using relational and object-oriented databases have been proposed over the past

few years (see [Bar00] for a survey). Some of these approaches can be adapted for storing

ToXin, and we plan to study in particular two of them: Ozone [WLA99] and Edge Tables

[FK99].

Extending ToXin with DOM functionality

Since the DOM tree is used only to populate the instance and value tables and all

further query processing is done over the index, once we add order to ToXin we can discard

the DOM structure for query purposes. However, if we want to have the full DOM

functionality, we need to implement the core class interfaces of DOM. Table 5.1 contains a

short description of the minimum set of class interfaces that needs to be implemented.

63

Class Interface Name Description

Attr It represents an attribute within an element object. DOM views

attributes as properties of elements rather than objects itself.

CDATASection It represents a CDATA section, primarily used for XML

fragments.

CharacterData It provides methods for string manipulation.

Comment It represents the content of an XML comment.

Document It represents the root of the DOM tree.

Document Fragment It represents a subtree or a set of subtrees of DOM tree.

DocumentType It provides access to the list of entities defined in the DTD.

Element It represents an element in an XML document.

Entity It represents an entity in an XML document.

NamedNodeMap It represents an unordered collection of nodes that can be

accessed by a name.

Node It represents a single node in the DOM tree.

NodeList It represents an ordered collection of nodes.

Notation It represents a notation defined in the DTD. A notation declares

the format of an unparsed entity.

ProcessingInstruction It represents a processing instruction in an XML document. A

processing instruction contains processor-specific information

stored in the text of the document.

Text It represents the textual content of an element object or

attribute.

Table 5.1: DOM class interfaces.

64

Appendix 1

Complete Example

We present here the full extension of value and instance tables corresponding to

Figure 3.5.

Figure A1.1: Value tables for the index tree of Figure 3.5

65

Figure A1.2: Instance tables for the index tree of Figure 3.5

66

Appendix 2

Additional Algorithms

Algorithm A2.1 (navigateDown): computation of a forward navigation over an XML-graph

INPUT:

XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
query graph Q = (S, s0, EQ, ψQ, λQ, F)

OUTPUT:

ans(Q(XD))
METHOD:

Result ← φ
Added ← φ
Visited ← φ
SearchDown(v0 , s0)

procedure Navigate(v, s)

Visited ← Visited + (v, s)

for each edge e∈E s.t. ψ(e) = (v, w) do
for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λ(e) do

if t∈F and e∉Added then

Added ← Added ∪ {e}
Result ← Result ∪ {w}

fi

if (w, t)∉Visited then
SearchDown(w, t)

fi

od
od

end

67

Algorithm A2.2 (navigateDown): computation of a forward navigation over a dataguide

INPUT:

index-graph Dx = (NI , x0 , EI , ψI , Σ, λI , XD, ext), where XD = (N, v0 , E, ψ, Σ, λ, <)
query-graph Q = (S, s0, EQ, ψQ, λQ, F)

OUTPUT:

ans(Q(XD))
METHOD:

Result ← ext(x0)

Added ← φ
Visited ← φ
SearchDown(x0 , s0)

procedure Search(x, s)

Visited ← Visited ∪ {(x, s)}

for each edge eI∈ EI s.t. ψI (eI) = (x, y) do
for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λ(eI) do

if t∈F and eI ∉Added then

Added ← Added ∪ { eI }
Result ← Result ∪ ext(y)

fi

if (w, t)∉Visited then
SearchDown (w, t)

fi

od
od

end

68

Appendix 3

Comparative Performance Results

We present in this Appendix the complete results of the comparative performance

experiments summarized in Figure 4.7, 4.8, 4.9 and 4.10.

Figure A3.1: Comparative performance results of DBLP queries

69

Figure A3.2: Comparative performance results of IMDB queries

70

Figure A3.3: Comparative performance results of Shakespeare works queries

71

Figure A3.4: Comparative performance results of religious texts queries

72

Appendix 4

Tree Schemas of Document Samples

We include in this appendix the tree schemas of the documents used in the

experiments. These tree schemas show the general path structure of the document samples

(DBLP, IMDB, Shakespeare works and religious texts)

Figure A3.1: Tree schema of the International Movies Database sample

73

Figure A3.2: Tree schema of the DBLP sample

74

Figure A3.3: Tree schema of the Shakespeare Works sample

75

Figure A3.4: Tree schema of the Religious Texts sample

76

References

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from

relations to semistructured data and XML. Morgan Kaufmann, 1999.

[AM98] G. Arocena and A. Mendelzon, WebOQL: Restructuring documents,

databases and webs. Proceedings of the IEEE International Conference

on Data Engineering, pages 24-33, 1998.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. Wiener. The Lorel

query language for semistructured data. International Journal on Digital

Libraries, 1(1): 68-88, April 1997.

[Aro97] Gustavo Arocena. WebOQL: Exploiting Document Structure in Web

Queries. Master’s Thesis, Department of Computer Science, University

of Toronto, 1997.

[ASU86] Alfred Aho, Ravi Sethi and Jeffrey Ullman. Compilers: principles,

techniques and tools. Addison Wesley, 1986.

[Bar00] Denilson Barbosa. On Storage Alternatives for Semistructured Data. Oral

Qualifying Report, Department of Computer Science, University of

Toronto, 2000.

[BC00] Angela Bonifati, Stefano Ceri. Comparative analysis of five XML query

languages. SIGMOD Record 29(1): 68-79.

[BDFS97] P. Buneman, S. Davidson, G. Hillebrand and D. Suciu. Adding structure

to unstructured data. In Proceedings of the International Conference on

Database Theory, pages 336-350, 1997.

77

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand and D. Suciu. A query language

and optimization techniques for unstructured data. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages

505-516, 1996.

[BFS00] Peter Buneman, Mary F. Fernandez and Dan Suciu. UnQL: a query

language and algebra for semistructured data based on structural

recursion. VLDB Journal 9(1): 76-110, 2000.

[BK89] E. Bertino and W. Kim. Indexing techniques for queries on nested

objects. IEEE Transactions on Knowledge and Data Engineering, 1(2):

196-214, 1989.

[Bos98] Jon Bosak. Religious Texts in XML.

http://www.ibiblio.org/xml/examples/religion. 1998.

[Bos99] Jon Bosak. Complete Plays of Shakespeare in XML.

http://www.ibiblio.org/xml/examples/shakespeare. 1999.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet and M. Scholl . From structured

documents to novel query facil ities. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, pages 313-

324, 1994.

[CCM96] Vassil is Christophides, Sophie Cluet and Guido Moerkotte. Evaluating

queries with generalized path expressions. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, 413-422,

1996.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy adn D. Suciu. A query

language for XML. In Proceedings of the 8th International World Wide

Web Conference, WWW8, 1999.

[FFLS97] M. Fernandez, D. Florescu, A. Levy and D. Suciu. A query language for

a web-site management system. SIGMOD Record, 26(3): 4-11, 1997.

78

[FK99] Daniela Florescu and Donald Kossmann. Storing and querying XML data

using and RDBMS. IEEE Data Engineering Bulletin 22(3): 27-34, 1999.

[FS98] Mary Fernandez and Dan Suciu. Optimizing regular path expressions

using graph schemas. In Proceedings of the IEEE International

Conference on Data Engineering, pages 14-23, 1998.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: enabling query

formulation and optimization in semistructured databases. In Proceedings

of the International Conference on Very Large Databases, pages 436-

445, 1997.

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory, languages

and computation. Addison-Wesley, 1979.

[IMDB00] The Internet Movie Database. http://www.imdb.com. 2000.

[KKS92] M. Kifer, W. Kim and Y. Sagiv. Querying object-oriented databases. In

Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 393-402, 1992.

[KM90] Alfons Kemper and Guido Moerkotte. Advanced query processing in

object bases using access support relations. In Proceedings of the

International Conference on Very Large Databases, pages 294-305,

1990.

[KM92] Alfons Kemper and Guido Moerkotte. Access support relations: an

indexing method for object bases. Information Systems, 17(2): 117-145,

1992.

[Ley00] Michael Ley. DBLP database web site. http://www.informatik.uni-

trier.de/~ley/db. 2000.

[Lie99] Hartmut Liefke. Horizontal query optimization on ordered semistructured

data. Informal Proceedings of the International Workshop on the Web

and Databases, pages 61-66, 1999.

79

[LS00] Hartmut Liefke and Dan Suciu. XMil l: an efficient compressor for XML

data. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 153-164, 2000.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass and J. Widom. Lore: a

database management system for semistructured data. SIGMOD Record

26(3): 54-66, 1997.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In

Proceedings of the International Conference on Database Theory, pages

277-295, 1999.

[MW97] Jason McHugh and Jennifer Widom. Query optimization for

semistructured data. Technical Report, Stanford University, 1997.

[MW99] J. McHugh and J. Widom. Query Optimization for XML. Proceedings of

the International Conference on Very Large Databases, pages 315-326,

1999.

[NUWC97] Svetlozar Nestorov, Jeffrey Ullman, Janet Wiener and Sudarashan

Chawathe. Representative Objects: concise representations of

semistructured, hierarchical data. Proceedings of the IEEE International

Conference on Data Engineering, pages 79-90, 1997.

[RLS98] J. Robie, J. Lapp and D. Schach. XML Query Language (XQL). In

Proceedings of the Query Languages Workshop, 1998.

[SB96] B. Shidlowsky and E. Bertino. A graph-theoretic approach to indexing in

object-oriented databases. Proceedings of the IEEE International

Conference on Data Engineering, pages 230-237, 1996.

[Val87] P. Valduriez. Join indices. ACM Transactions on Database Systems,

12(2): 218-246, 1987.

80

[WLA99] J. Widom, T. Lahiri, S. Abiteboul. Ozone: Integrating structured and

semistructured data. In Proceedings of the International Conference on

Database Programming Languages, 1999.

[W3C98] W3C Recommendation. Document Object Model (DOM) Level 1

Specification. In http://www.w3.org/TR/REC-DOM-Level-1. 1998

[W3C99a] W3C Recommendation. XML Path Language (XPath) 1.0. In

http://www.w3.org/TR/xpath. 1999.

[W3C99b] W3C Recommendation. XSL Transformations (XSLT) 1.0. In

http://www.w3.org/TR/xslt. 1999.

[W3C00] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Eve Maler (Eds.). Extensible

Markup Language (XML) 1.0 (Second Edition). In

http://www.w3.org/TR/REC-xml.

