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Abstract


Semistructured databases, unlike relational and object-oriented databases, do not have a fixed


schema known in advance and stored separately from the data. Broadly speaking,


semistructured data is self-describing and can model heterogeneity more naturally than either


relational or object-oriented data. Examples of such self-describing data are tagged


documents like XML.


Indexing schemes for semistructured data have been developed in recent years to


optimize path query processing by summarizing path information. However, most of these


indexing schemes can only be applied to some query processing stages whereas others only


support a limited class of queries. To overcome these limitations we developed ToXin, an


indexing scheme for XML data that fully exploits the overall path structure of the database in


all query processing stages. ToXin synthesizes ideas from object-oriented path indexes and


extends them to the semistructured realm of XML data.


In this thesis we study recent proposals for indexing XML data, present the ToXin


architecture, describe its current implementation, and discuss comparative performance


results.
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Chapter 1


Introduction


Traditional database systems have rigid schemas and force all data to conform to


them. In contrast, many new applications that appeared in recent years contain data that


evolve rapidly or contain irregularities, making the use of a-priori rigid schemas unfeasible.


Such data is no longer structured in the traditional sense and is often called semistructured


data [Abi97].


Semistructured databases, unlike traditional databases, do not have a fixed schema


known in advance and stored separately from the data. Broadly speaking, semistructured data


is self-describing and can model heterogeneity more naturally than either relational or object-


oriented data. Examples of such self-describing data are tagged documents such as XML


[W3C00]. The data model proposed for this type of data consists of an edge-labeled graph in


which nodes corresponds to objects or values and edges to elements or attributes. Figure 1.1


shows a semistructured database modeled as an edge-labeled graph. This data model carries


both data and schema information, being naturally suitable to represent semistructured data.


In Sections 1.1 and 1.2 we present semistructured data and XML in more detail.


Yet, semistructured data models pose new challenges in many areas. Let us consider


query evaluation for instance. Navigation over a semistructured graph is a fundamental part
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of query evaluation. Due to the lack of information about the schema, a naïve evaluation that


scans the whole database in the search of those paths that satisfy a given query is


prohibitively expensive. In addition, since navigating the graph is essentially pointer traversal


and the objects may be scattered across the disk or even stored at different locations, some


queries may require many disk accesses and cause significant performance degradation.


Figure 1.1: The SIGMOD Record database.
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Index structures for semistructured data have been developed in recent years in order


to address these problems by reducing the portion of the database to be scanned during query


processing. Examples of such index structures are dataguides [GW97], 1-indexes and 2-


indexes [MS99], T-indexes [MS99], and reversed dataguides [LS00]. They keep record of


existing paths in the database summarizing path information. We give a brief overview of


these methods here, and discuss some of them in detail in Chapter 2.


In object-oriented databases, several indexing schemes have been proposed for


answering path queries efficiently, namely path indexes [BK89, SB96] and Access Support


Relations [KM90, KM92], which materialize frequently traversed paths in the database.


Since these approaches are based on the paths found in the schema, it is not possible to use


them for the typical schema-less XML documents.


Dataguides, on the one hand, are general path indexes that summarize all paths in the


database that start from the root. Figure 1.2 shows a dataguide that corresponds to the Figure


1.1 database. T-indexes, on the other hand, are specialized path indexes that only summarize


a limited class of paths specified by a given path template.


Dataguides and 1-indexes reduce the portion of the database to be scanned for path


queries and are useful for navigating the semistructured graph from the root. However, since


they do not provide any information about the parent-child relationship between source


nodes, they cannot be used for navigation from any arbitrary node. For example, from Figure


1.2 we know all the objects reached by article.authors.author, but we cannot tell exactly the


author objects that correspond to each article object. As a result, in the case of general path


queries that require at some point backward navigation, e.g., “find all articles written by a


given author” , we need to use additional index structures to optimize the query evaluation.
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Figure 1.2: A dataguide for the SIGMOD Record database.


The Lore system [MAG+97] attempts to address this problem by using two additional


indexes for backward navigation. These indexes, however, do not exploit the database


structure as dataguides do: the nodes, edges and values are stored regardless of the overall


path schema of the database. Although using such indexes reduces to some degree the


number of pointer traversal operations for backward navigation, the forward navigation from


any node remains unsupported. Reversed dataguides are also helpful for backward navigation


from the leaves of the tree, but they do not support either forward or backward navigation


from a generic node.
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The goal of this thesis is to synthesize some ideas from dataguides and Access


Support Relations and extend them so that we can optimize both forward and backward


navigation for any general path query over semistructured data such as XML. To that end we


have developed ToXin1, an indexing scheme that fully exploit the overall path structure of the


database in all query processing stages. ToXin summarizes all paths in the database and can


be used for both forward and backward navigation starting from any node. We provide as


well experimental results based on our implementation for tree data sources.


1.1 Semistructured data


In recent years there has been an increasing number of applications that needs to


handle fast evolving, irregular data which does not conform to traditional, rigid data models.


We use the term semistructured data to refer to data that presents such characteristics


[ABS99].


Semistructured data conforms to no fixed schema known in advance and stored


separately, being better suited for modeling heterogeneity than either relational or object-


oriented data models. Examples of such self-describing data are tagged documents such as


XML. In addition to these data-embedded schemas, semistructured data may present some of


the following characteristics:


• The schema is large w.r.t. the size of the data. This is a direct consequence of the data


heterogeneity, contrasting with relational or object-oriented data in which the schema is


often many orders of magnitude smaller than the data.


• The schema is not static. Since the schema may be implicit in the data, updating the


schema is as easy as updating the data itself. For instance, in a tagged document


containing bibliographical information, each new addition not only has information about


                                                       
1 ToXin was developed within the ToX (Toronto XML Engine) project at University of Toronto.
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the publication but also the corresponding tags. This means that adding publications to


the database may cause implicit schema updates if the new publication does not conform


to the previous structure.


• The schema is descriptive rather than prescriptive. Therefore, it has to be recomputed or


incrementally updated every time there is a change in the data.


Semistructured data arises from a wide range of applications such as integration of


heterogeneous sources, modeling biological databases, digital li braries, and the World Wide


Web. Several aspects of managing semistructured data have been extensively studied over


the past several years. This research has addressed, among others, data models [BDFS97,


CACS94], query languages [AM98, AQM+97, BDHS96, FFLS97, BFS00], and query


processing and optimization [CCM96, FS98, MW97].


Most semistructured data models organize data into directed graphs, where each


vertex represents an object and each labeled edge represents a relationship between objects.


The data in the graph is self-describing. Some objects are atomic and others are complex.


The value of an atomic object is one of the base types (e.g., integer, real, string, etc) whereas


the value of a complex object is a set of object identifiers. The object identifiers (OIDs) are


used to reference nodes in the data graph. They are pointers to either memory or disk


locations where nodes are stored. In the web context, they may even be URLs or any other


means of locating nodes distributed across several sites. In the XML context, however, we


restrict the types of atomic objects to strings.


1.2 XML


Extensible Markup Language (XML) is fast emerging as the standard for representing


and interchanging data over the Web. It is a hierarchical data format derived from SGML that







7


models a document as an augmented tree structure. In contrast to HTML, which is also


derived from SGML, XML has been designed as a general data structuring language capable


of modeling not only standard documents but also semistructured data in general. Another


feature that makes XML more powerful for general data management applications is the


separation between content and presentation. XML deals only with content and therefore


allows changes in the formatting aspects of a document without modifying its underlying


structure.


We wil l briefly discuss next the concept of document markup. Broadly speaking,


markup is information about the document schema embedded in the document content in a


way that can be identified during the interpretation of the document. In that sense, we need to


define some kind of special character or string so that we can distinguish the schema from the


data. Such special characters or strings are called markup.


Using markup, structural information is defined in terms of elements, the basic


components of an XML document. In order to identify such elements as schema rather than


data, the element names must appear between markup delimiters, which mark the start and


end of the markup for an element. Each element name together with its markup delimiters is


called a tag. The markup delimiters in XML are the characters “<” and “>” . Figure 1.3


shows an XML document for the SIGMOD record database depicted in Figure 1.1. The


strings <issue> and <article> are tags and therefore part of the document schema. A pair of


tags containing the element name delimits each element. The first one, which has the format


<element_name> is called start tag, whereas the second has the format </element_name>


and is called end tag. The string between a start tag and an end tag is called an element


content or value. For instance, title in Figure 1.3 is an element delimited by the start tag


<title> and the end tag </title>, and its value is the string “A Framework for Implementing


Hypothetical Queries”.
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In order to append additional element information without including it in the element


content, XML defines an additional component: attributes. Attributes allow us to include any


additional information within an element start tag. In Figure 1.3, position is an attribute of


the author element and contains additional information regarding the order in which the


authors appear in a given publication.


<SigmodRecord>


<issue>


<volume>26</volume>


<number>2</number>


<articles>


<article>


<title>A Framework for Implementing Hypothetical Queries</title>


<initPage>231</initPage>


<endPage>242</endPage>


<authors>


<author position="00">Timothy Griffin</author>


<author position="01">Richard Hull</author>


</authors>


</article>


<article>


<title>A Toolkit for Negotiation Support Interfaces to Multi-Dimensional Data.</title>


<initPage>348</initPage>


<endPage>356</endPage>


<authors>


<author position="00">Michael Gebhardt</author>


<author position="01">Matthias Jarke</author>


<author position="02">Stephan Jacobs</author>


</authors>


</article>


…


</articles>


</issue>


...


</SigmodRecord>


Figure 1.3: XML document of the SIGMOD Record database.
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We must point out that element names are not necessarily unique, e.g., the authors


element in our example has two nested author elements. Attribute names, in contrast, are


unique within a given element, e.g., one author element cannot have more than one position


attribute.


But not all attributes are created equal. XML defines two particular attributes, usually


called ID and IDREF, associated to unique identifiers so that they may be used to link


elements beyond the relationship given by the tree structure of the document. This


mechanism allows us to define documents that have a graph structure rather than a tree.


Well-formed and Valid XML documents


XML documents must satisfy syntactic constraints. An XML document is called well -


formed if it is syntactically correct, in other words, if all its elements are neatly nested and


each attributes is unique within each element. For instance, we need to end an articles


element before ending an issue element. A valid document, on the other hand, is a well-


formed XML document that has also been validated against a DTD. A DTD [W3C98] is a


context-free grammar for the document and may be used as an external schema.


XML and Semistructured data models


The XML data model is similar to that for semistructured data in the sense that both


represent data as a directed graph that can be interpreted either as node-labeled or edge-


labeled. An important difference, however, is that the XML data model has order while


semistructured data is usually unordered. In addition, XML has a component usually not


present in the semistructured data model: the attributes. As we discussed before, XML
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defines attributes as being part of elements rather than having a separate identity by


themselves. Yet, an XML document can be modeled as a semistructured data edge-labeled


graph by simply considering XML attributes as edges pointing to atomic objects. Therefore,


both XML elements and attributes are described as edges. Since both models are equivalent


to represent XML data, we choose the edge-labeled model because it is the prevalent one for


semistructured data.


Many important issues about XML have been studied from the database point of


view, in particular query languages [BC00] and optimization techniques [Lie99, NW99].


1.3 Path queries and XSLT


An XSLT stylesheet [W3C99b] is a set of transformation rules that allows the


transformation of one XML document into another. Each rule consists of a pattern and a


template. The XSLT processor identifies the nodes to which the template will be applied by


using the pattern. During stylesheet processing, the pattern is matched against the nodes of


the XML source and the template is instantiated to produce the XML result. It works as


follows. The XSLT processor starts from the root and tries to apply the pattern to that node.


A pattern specifies the conditions that a given node must satisfy in order to be processed. A


node that satisfies the condition matches the pattern; similarly, a node that does not satisfy


the condition does not match the pattern. When a node matches the pattern, the XSL


processor executes the template of that rule. Each template element specifies one


transformation rule. The pattern of that rule is specif ied by the match attribute. The template


used to produce a tree fragment is described in the content of the template element, also


called a rule body. The process is then repeated over each of the remaining nodes recursively


in a breadth-first fashion.
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XSL patterns are specified by XPath [W3C99a], a simple query language for


identifying nodes in an XML document based on their names and values as well as the


relationship between nodes. Paths may be specified as absolute or relative. Absolute paths


are those that start from the root of the tree, whereas relative paths start from any given node


defined as context node. The hierarchical relationship between nodes are expressed by


operators “ /” and “ //” . The former specifies a parent-child relationship between two nodes


whereas the later specifies an ancestor-descendant relationship between two nodes at any


depth. For instance, the query “ find all the titles of articles that appear in the database” can


be expressed in XPath as //article/title. The section between brackets of a XPath expression is


called a filter section. A filter is a predicate that is applied to the nodes that match the path


expression before it (i.e. the pre-filter section). The evaluation of the rest of the pattern (i.e.,


post-filter section) continues only for those nodes that matches the pre-filter section and


satisfies the filter. XPath also includes a wildcard operator “*” , that matches any node at its


location in the path expression, and a disjunction operator “ |” . Figure 1.4 shows an XSLT


stylesheet that transforms the XML document from Figure 1.3 into another XML document


that contains only the title of the papers that appeared in the issue Number 2 of Volume 26.


The content of the match attribute in the second rule is an XSL pattern. The xsl:apply-


templates directive invokes the application of templates (the second rule in Figure 1.3


example). The xsl:value-of directive constructs the result with information from the XSL


pattern.


<xsl: template>


<xsl:apply-templates>


</xsl: template>


<xsl: template match=”//issue[/volume=26 and number=2]/articles/article/title” >


<result>


<xsl:value-of/>


</result>


</xsl: template>


Figure 1.4 XSLT stylesheet
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Let us see how the Figure 1.4 stylesheet is applied to the Figure 1.3 database. First,


the XSLT processor starts the evaluation from <SIGMOD_Record> and attempts to match


the pattern to it. When a rule does not have a match attribute, like the first one, the template


matches any node. The next step is evaluating the body of the matching rules, only the first


one in this case. The rule body has only one instruction, <xsl: apply-templates/>, which


implies the recursive processing of the subelements of all matched elements, i.e. volume,


number, and articles. Once again, only the first rule matches and we repeat the process on the


elements that have further nested structure, i.e. the element articles. After two more steps we


reach a node that matches the second rule: title.  Applying the rule’s body, the XSLT


processor generates a result element with the value of the current node: “A Framework for


Implementing Hypothetical Queries”. The process described above is then repeated over the


remaining articles. The result of the query is shown in Figure 1.5.


<result> A Framework for Implementing Hypothetical Queries. </result>


<result> A Toolkit for Negotiation Support Interfaces to Multi-Dimensional.</result>


…


Figure 1.5: Result of the Figure 1.3 XSLT stylesheet


1.4 Motivation for path indexing


In order to process path queries like XPath patterns we need to navigate the graph


structure of the XML document. As we said before, since navigating the graph is essentially


pointer traversal, a query processing strategy that scans the whole database in the search of


those paths that satisfies a given query is very expensive.
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In order to ill ustrate the problem let us consider again the SIGMOD database from


Figure 1.3. Let us suppose that we want to find the volume in which a given article appears.


We submit then the following query:


Q1.1= //issue[//title=”A Framework for Implementing Hypothetical Queries”]/volume


The query processor will match the query pattern in all possible ways to the data


graph. It will traverse it from the root and return all nodes reachable via a path matching the


regular expression specified by the pattern. To do that following the naïve approach, it will


traverse the entire database in the search of paths that satisfy the regular expression


//issue//title from query Q1.1. Next, we select those nodes having the value ”A Framework for


Implementing Hypothetical Queries” out of the nodes reachable via those paths. Then, from


each selected node we will first traverse title/article/articles backward and then volume


forward to complete the query. If we do not use any auxiliary structure, this back and forth


navigation has to be done over the XML source.


On the other hand, if we construct an index precomputing some paths of the graph we


may process general path queries much more eff iciently. Such index will basically


summarize path information of the data graph. For instance, we may want to materialize a


view containing all nodes that are reachable via the path


SIGMOD_Record/issue/articles/article/title if we know that a query such as Q = //issue//title


is posed frequently. Then, we may use that information during query processing rather than


navigating the data source. Or we may wish to store every path present in the database along


with the set of nodes reachable via the path.


In order to reduce the portion of the database to be scanned, schema-independent


index structures have been developed in recent years. We already introduced some of them,


which we will describe in the next chapter in more detail.
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The reminder of this thesis is organized as follows. Chapter 2 presents the related


work. An overview of ToXin and its current implementation is discussed in Chapter 3.


Chapter 4 describes the experiment setting and the results. In Chapter 5, we present our


conclusions and possible directions for future work.
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Chapter 2


Path indexes


In the subsequent chapters, we will need a common formalism to describe ToXin and


other related path index schemes. We begin by introducing some definitions.


Definition: let D be an XML document. A XML-graph XD = (N, vo, E, A, ψ, Σ, λ, <) is a


rooted ordered graph induced by D, where N is a set of nodes; vo∈N is a distinguished node


called a root; E is a set of edges containing an edge for each XML element and attribute in D;


A ⊂ E is a distinguished set of edges containing an edge for each attribute in D; ψ is an


incidence function mapping E to N × N; Σ is a finite set of XML element and attribute names


called an alphabet; λ is a labeling function mapping E to Σ, and < is a partial order relation


on E such that for every pair of edges e1 and e2 emanating from node n, e1 < e2 iff e1 occurs


before e2 in n.


Definition: let ε be the empty string, φ be the empty set, and Σ be a finite alphabet disjoint


from { ε, φ} . We define regular path expressions over Σ as follows:


a) The empty string ε, the empty set φ, and each a∈Σ are regular path expressions.


b) if R1 and R2 are regular path expressions, then R1| R2, R1/ R2 and (R1)* are regular path


expressions.
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Let R1 and R2 be regular path expressions over Σ. The expression (R1|R2) is the


alternation of R1 and R2, (R1/ R2) is the concatenation of R1 and R2, and (R1)* is the kleene


closure of R1. According to the XPath notation, we use (* ) to denote the alternation of all


elements of Σ, and (R1//R2) to denote (R1/(* )* /R2).


Each regular path expression R denotes a set L(R) of strings of symbols from an alphabet


Σ. L(R) is defined as follows: L(ε) = { ε} ; L(φ) = φ ; L(a) = a, for a∈Σ ; L(R1|R2) =


L(R1)∪L(R2) = { string s | s ∈ L(R1) or s ∈ L(R2)} ; L(R1/R2) = L(R1)/L(R2) = { string s1/s2 | s1


∈ L(R1) and s2 ∈ L(R2)} ; L(R*) = i
i RL )(0


� ∞
= , where L(R)0 = { ε} and )(/)()( 1 RLRLRL i −= .


Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph and p =(v0, e1, v1, …, en, vn),


where vi ∈ N, 0 ≤ i ≤ n, and ej ∈ E, 1 ≤ j ≤ n be a path in XD. We call the string λ(e1)/ λ(e2)/ ...


/λ(en) the label path of p, denoted by λ(p).


Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. A query path QR on XD is an


expression of the form xRy where x,y are variables and R is a regular path expression over Σ.


The answer set to a query path QR(XD), denoted ans(QR(XD)), is defined as the set of pairs


(x,y) s.t. there is a path p = ( x , e1 , … , en , y ) in XD and λ(p) ∈ L(R).


2.1 First Approach to Path Indexes


Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. For each node v∈N let Lv(XD) be the set


of label paths from root v0 to node v:


Lv(XD) = { λ(p)  |  p = ( v0 , e1 , … , en , v ) }
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We define an equivalence relation over nodes in N as follows. Let v,w be nodes in N. We say


that v ≡ w iff Lv(XD) = Lw(XD). We denote by [v] the equivalence class of v in N.


We call the set of nodes that belongs to the equivalence class [v] the extent of [v],


denoted ext([v]). Then, we construct the index as follows. First, we compute the family of


equivalence classes [v1], [v2], … , [vk] that defines a partition of N, and then we attach to each


of them the regular expression corresponding to languages )(
1 Dv XL , … , )( Dv XL


k
. We also


store, for each class [v], its extent ext([v]).


Given a query path Q and the index constructed as described above, query evaluation


can be performed by simply iterating over all classes [vi], 1 ≤ i ≤ k, and for each class testing


if the corresponding language )( Dv XL
i


 has a non empty intersection with L(Q).


Consequently, ans(Q) will be the union of all extents where that intersection is not empty:


ans(Q) = { � i ivext ])([  | φ≠∩ )()( QLDBL
iv }


The index constructed as described above is inefficient because computing the


equivalent classes [v] is a PSPACE complete problem [MS99]. In addition, given that the


regular languages corresponding to each class [vi] may overlap, the index size may be much


larger than the database.


Two proposals have addressed these problems: dataguides [GW97] and 1-indexes


[MS99]. Dataguides consist of a more concise representation of the equivalence classes [vi]


based on a deterministic automaton. 1-indexes, on the other hand, are based in the use of a


different equivalence relation to compute the equivalence classes. The resulting index, when


viewed as a finite state automaton, is non-deterministic. Next, we will discuss both


approaches in more detail. We wil l use a cyclic data graph corresponding to a generic


publications database (Figure 2.1).
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Figure 2.1: A generic publications database.
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2.2 Dataguides


Dataguides are a concise and accurate summary of the path structure of a


semistructured database. It is accurate because every label path in the data source appears in


the data guide and conversely every label path in the data guide appears in the data source. It


is concise because the data guide describes every label path of the source exactly once.


Notice that the automaton that describes the language � i Dv XL
i


)(  is a non


deterministic finite automaton (NFA). The construction of a dataguide from a data graph is


equivalent to the conversion of a NFA into a deterministic finite automaton (DFA)


[NUWC97]. This conversion takes linear time when the source is a tree and exponential time


(in the worst case) when the source is a graph. It is important to note that a data graph does


not necessarily have a unique dataguide in the general case. Since one NFA may have


multiple equivalent DFA [HU79], a single data graph may also have several dataguides. In


contrast, there is a unique one that is the smallest possible, and it is called minimal dataguide.


Two possible dataguides for the Figure 2.1 data graph are shown in Figure 2.2.


Figure 2.2: Two dataguides corresponding to the publications data graph.
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However, not all dataguides are suitable for indexing purposes without additional


structures. For instance, the paths publications/issue/articles/article and


publications/issue/articles/article/references do not belong to the same equivalence class and


yet they reach the same node in the Dataguide 2 from Figure 2.2. This is so because


dataguides guarantee that each label path in the data graph reaches one node in the dataguide


but do not prevent multiple label paths from reaching the same dataguide node. There is only


one type of dataguide which guarantees that all label paths that reach the same node in the


dataguide belong to the same equivalence class [v], and it is called strong dataguide


(Dataguide 1 in Figure 2.2). Since each node represents a different equivalence class, we can


add the extents to the nodes to use the strong dataguide as a path index, as shown in Figure


2.3. Strong dataguides are the only type of dataguides that can be used for indexing purposes


without needing additional structures.


Figure 2.3: Strong dataguide with extents for the publications data graph
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We define next strong dataguides more precisely in the context of the XML-graph


formalism.


Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A strong dataguide


DX = (NI , x0 , EI , ψI , Σ, λI , XD, ext) is a rooted graph where NI is a set of nodes; xo∈ NI is a


distinguished node called root; EI is a set of edges; ψI is an incidence function mapping EI to


NI × NI ; Σ is the alphabet of XD; λI is a labeling function mapping EI to Σ; ext is a function


mapping NI to 2N defined as ext(x)={ v | ∀pI = (x0 , … , x), ∃p = (v0 , … , v) s.t. λI (pI)=λ(p) } ;


and the following two conditions are satisfied:


1. For every pair of paths p = (v0 , … , v), p’ = (v0 , … , v’ ) s.t. λ(p) = λ(p’ ), there is exactly


one path pI = (x0 , … , x) s.t. λI (pI) = λ(p) = λ(p’ ).


2. For every pI = (x0 , … , x), there is a path p = (v0 , … , v) s.t. λI (pI) = λ(p).


One of the problems that we face when we construct a dataguide of a deeply nested,


cyclic graph is that, in the worst case, we may end up creating a node for every subset of


nodes in the data source. As a result, the size of the data guide wil l grow exponentially in


terms of the number of objects in the source. When the source is a tree, however, the size of


the dataguide is equal to that of the source in the worst case. A comprehensive study of the


theoretical foundations behind dataguides can be found in [NUWC97].


Algorithm 2.1 below constructs a strong dataguide from an XML-graph. It is based in


the subset construction algorithm from [ASU86].
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Algorithm 2.1: construction of a strong dataguide from a XML-graph
INPUT:


XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)


OUTPUT:
Strong dataguide DX = (NI , x0 , EI , ψI , Σ, λI , XD, ext)


METHOD:


EI ← φ
NI ← new node x0


ext(x0) ← { v0 }


Extents ← unmarked set ext(x0)
while there is a set S∈Extents do


mark S


for each symbol a∈Σ do
T ← { y | (x,y)∈ans(Qa(XD)),  x∈S }


if T ∉Extents then


Extents ← Extents + unmarked set T
NI ← NI ∪ { new node y }


ext(y) ← T


else
y ← node y∈N s.t. ext(y) = T


fi


EI ← EI  ∪ { new edge e }
x ← node x∈N s.t. ext(x) = S


ψI (e) ← (x,y)


λI (e) ← a
od


od


2.3 1-index


Like dataguides, 1-indexes are intended to be used by queries that search the database


from the root for nodes matching some arbitrary path expression R. A 1-index therefore,


represents the same set of paths that dataguides do, although using a different approach. The


basic idea behind the index construction is the generation of a non-deterministic automaton


(NFA) to get a more compact structure than dataguides (DFA).
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To construct the 1-index of a data graph we compute for each node the equivalence


class using a bisimulation as equivalence relation. We define bisimulation next.


Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. A binary relation ~ on nodes


in N is called a bisimulation if it satisfies the following. If v ~ v’ , then for any edge e, ψ(e) =


(u, v), λ(e) = a, there exists an edge e’ , ψ(e’) = (u’ , v’ ), λ(e’ ) = a s.t. u ~ u’ . Conversely, If v ~


v’ , then for any edge e’ , ψ(e’ ) = (u’ , v’ ), λ(e’ ) = a, there exists an edge e, ψ(e) = (u, v), λ(e) =


a s.t. u ~ u’ .


We say that two nodes v, u are bisimilar (noted v ≈ u) iff there exists a bisimulation ~ s.t.


v ~ u.


Using bisimulation we can tackle the index size and the construction cost problems that


dataguides yield, obtaining an index structure in which extents are disjoint. As we mentioned


before, the type of dataguides used for indexing purposes are the strong dataguides. Since


they are constructed over the power set of nodes in the database, the size of the dataguide


graph may be as large as exponential in that of the database, while for 1-index it is at most


linear. In addition, given that dataguide target sets may overlap (due to the power set


construction), the total size of the target sets may be as large as exponential on the size of the


database in the worst case, while for 1-index is again at most linear.


We construct the index as follows. Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph.


The nodes of the index will be the family of equivalence classes [vi] computed by


bisimulation, which defines a partition of N. The index I has an edge e, ψ(e) = ([vi], [vj]), λ(e)


= a iff data graph D contains an edge e’ , ψ(e’) = (v, v’ ), λ(e) = a for some v∈ [vi] and v’ ∈ [vj].


We can think of 1-indexes, when seen as finite state automata, as a non-deterministic version


of dataguides (Figure 2.4).
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Figure 2.4: A 1-index for the publications data graph.


2.4 2-index


2-indexes are intended to be used by queries that search the database for pairs of


nodes matching some arbitrary path expression R. Similarly to 1-indexes, we have to define a


language equivalence to construct equivalence classes of nodes. We define next a language


between pairs of nodes in N.







25


Let XD = (N, vo, E, A, ψ, Σ, λ, <) be a XML-graph. For each pair of nodes v,w in N let


Lv,w(XD) be the set of label paths from root v to node w:


Lv,w(XD) = { λ(p)  |  p = ( v , e1 , … , en , w ) }


Then, we define an equivalence relation over nodes in N, as follows. Let v,w,v’ ,w’  be


nodes in N. We say that pairs (v,w) ≡ (v’ ,w’)  iff Lv,w(DB) = Lv’ ,w’(DB). As in language


equivalence for single nodes, we denote by [(v,w)] the equivalence class of (v,w) in N.


As before, pairs (v,w), (v’ ,w’ ) in N2 may be distinguished by a query path, iff (v,w)


∉ [(v’ ,w’ )]. Using the previous language definition, we construct the index as follows. We


compute the family of equivalence classes [(v1,w1)], [(v2,w2)], … , [(vk,wk)] that defines a


partition of N2, and then we attach to each of them the regular expression corresponding to


languages )(
11 Dwv XL , … , )( Dwv XL


kk
. In addition, we also store the extent for each class,


consisting of all pairs (v,w) in the class [(v,w)].


Since computing equivalence pairs of nodes is expensive, we may consider using


bisimulation, as we did for 1-indexes.


2.5 Access Support Relations


Access Support Relations [KM90] are general indexing structures for object-oriented


databases. They are designed to support functional join along arbitrary reference chains


leading from one object instance to another. They also support collection-valued attributes


within the attribute chain by materializing frequently traversed reference chains of arbitrary


length. Since access support relations are based on the paths found in the schema, it is not


possible to use them in a straight-forward manner for the typical schema-less XML
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documents. However, we present them here because some of the techniques behind them can


be combined with other path index schemes for indexing XML data.


Access Support Relations are a generalization of the binary join indices originally


proposed for the relational model [Val87]. One fundamental difference, however, is that


rather than relating only two relations (or object types), Access Support Relations materialize


access paths of arbitrary length. For comprehensive coverage of the object-oriented data


model, we refer the reader to [KKS92].


Definition: A path expression on object o has the form p = o. A1. A2 … An, where o is an


object that contains the attribute A1, o.A1 refers to an object or set of objects that have an


attribute A2, and so on.  Since Access Support Relations are typed, we give next a formal


definition of path expressions based on types. For simplicity, we assume that types are not


being defined as a subtype of any other type.


Definition: [KM92] let t0 ... tn be (not necessarily distinct) types. A path expression p on t0 is


an expression p = t0 . A1. A2 … An if for each 1≤ i ≤ n one of the following two conditions


holds:


1. The type ti-1 is defined as type ti-1 is [..., Ai : ti, ... ], i.e., ti-1 is a tuple with an attribute Ai of


type ti.


2. The type ti-1 is defined as type ti-1 is [..., Ai : ti’, ... ] and the type ti’ is defined as type ti’ is {


ti }. i.e., ti’ is a set type containing elements that are instances of ti. In this case, we say


that there is a set occurrence at Ai in the path p = t0 . A1. A2 … An.


According to this definition, we can represent the SIGMOD Record database as shown in


Figure 2.5. Each level from top to bottom corresponds to a different type and the rectangular


boxes represent the objects.
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Figure 2.5: object-oriented representation of the SIGMOD Record database


Having defined the concept of path in this object-oriented data model, we may define Access


Support Relations as following.


Definition: [KM92]: let t0 ... tn be (not necessarily distinct) types and p = t0. A1. A2 … An be a


path expression on t0. Then the Access Support Relation [t0. A1. A2 … An] is of arity n+1 and


its tuples have the form [S0, ... , Sn]. The domain of the attributes Si is the set of OIDs of


objects of type ti, 1≤ i ≤ n. If tn is an atomic type then the domain of Sn is tn, i.e. values are


stored directly in the ASR.
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Access Support Relations may be maintained in four different extensions, which define


the amount of information kept in the index structure. The four possible extensions are the


following:


1. The canonical extension, denoted [t0. A1. A2 … An]can , which contains only complete


paths, i.e. paths from t0 ending in tn.


2. The left-complete extension, denoted [t0. A1. A2 … An] left , which contains all paths


originating in type t0 but not necessarily ending in type tn.


3. The right-complete extension, denoted [t0. A1. A2 … An]right , which contains paths ending


in tn but possibly originating in some object of type tj that is not referenced by any object


of type tj-1 via attribute Aj.


4. The full extension, denoted [t0. A1. A2 … An] full , which contains all partial paths.


Figure 2.6 shows a full extension of an Access Support Relation for the path


SIGMOD_Record/issue/articles/article/title on the Figure 2.5 database. It contains all paths


corresponding to the indexed path expression.


Figure 2.6: Access Support Relation (full extension).


For storage, Access Support Relations use an approach similar to binary join indexes


[Val87]. Each relation is redundantly stored in two B+-trees: the first keyed on the left-most


attribute and the second keyed on the right-most attribute. For the relations of Figure 2.6,


there is a B+-tree on SIGMOD_Record and another one on title. This storage schema is well


suited for traversing paths forward and backward.
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2.6 T-indexes


Since 1-indexes and 2-indexes are not tailored to specific paths in the database, when


faced with very irregular, cyclic data the index may become too large and inefficient.


Restricting the class of queries supported by the index structure can reduce the index


complexity and yield better performance. This approach is similar to that of Access Support


Relations.


Definition: Let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A generalized query path


QR’ on XD is an expression of the form x0R1x1R2... Rnxn , where xi, 0 ≤ i ≤ n, are variables and


Rj, 1 ≤ j ≤ n are regular path expression over Σ. The answer set to a generalized query path


QR’ (XD), denoted ans(QR’ (XD)), is defined as the set of tuples (x0, ..., xn) s.t. for all pairs (xj-1,


xj),  there is a path pj = (xj-1 , e1 , … , ek , xj ) in XD and λ(pj) ∈ L(Rj).


In order to define T-indexes, the concept of path template was introduced [MS99]. A


path template t has the form v0T1x1... Tnxn where xi, 1≤ i ≤ n are variables and each Ti, 1≤ i ≤ n,


is either a regular path expression or a generic place holder P that represents any path. By


instantiating each of the place holders P with a concrete path expression we get a concrete


generalized query path. For instance, the path template v0 publications x1 P x2 title x3 has


several possible instantiations, two of them are:


i1 = v0 publications x1 // x2 title x3


i2 = v0 publications x1 //article x2 title x3


Once defined a path template t, a T-index is constructed to support path queries that


are instances of t. As in Access Support Relations, templates are used to guide the indexing


mechanism on the more frequently queried part of the database. Special cases of T-indexes


are 1-indexes and 2-indexes. The template that corresponds to a 1-index is t1= v0Px1 and the


one that corresponds to a 2-index is t2= v0 // x1 P x2.
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For the construction of the index, we proceed in a manner similar to 1 and 2-indexes.


We first define the language equivalence to be the equivalence relation on nodes, this time a


tuple (x1,... ,xn). Then, we compute the equivalence classes defined by the language


equivalence. For a comprehensive discussion of T-indexes, we refer the reader to [MS99].
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Chapter 3


ToXin


3.1 Overview


In order to speed up query processing for regular path queries we have developed an


index scheme we call ToXin. Our original goal when designing ToXin was to have an index


that supports navigation of the XML graph both backward and forward to answer any regular


path query. At the same time, we wanted to keep the size of the index schema linear (in the


worst case) w.r.t. the size of the XML graph. In addition, we needed data structures to help


locate nodes that not only satisfy regular path expressions but also predicates over values.


Previous index schemes developed for OODB and semistructured data satisfy only some of


these requirements. We have described some of them in previous chapters. Strong dataguides


store only paths from the root and do not help in backward navigation. They also have the


additional problem of exponential growth when indexing deeply nested, cyclic data graphs.


Access Support Relations and T-indexes, on the other hand, store only a predefined subset of


paths and, therefore, support only a limited class of path queries. ToXin borrows some ideas


from these techniques and extends them in several ways.
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ToXin consists of two different types of index structures: the value index and the path


index. The path index has two components: the index tree, which is a minimal dataguide, and


a set of instance functions, one for each edge in the index tree. Each instance function keeps


track of the parent-child relationship between the pair of nodes that defines each XML


element. Since the instance functions play the role of the extents, we can relax the condition


requiring that all l abel paths that reach the same node in the dataguide belong to the same


equivalence class. That is the reason why we are able to use a minimal dataguide instead of a


strong dataguide.


The storage structure of the instance functions is similar to that of Access Support


Relations (see Section 2.5). Each instance function is stored in two redundant hash tables: a


forward instance table for forward navigation and a backward instance table for backward


navigation. The value index, on the other hand, consists of a set of value relations that store


the XML nodes and values corresponding to an index edge. For each edge in the index


schema that corresponds to a set of XML nodes containing values, there is a value relation.


Each relation is implemented as a B+-trees keyed on the values, which are always strings.


Value and path indexes combined can be used to answer regular path queries with predicates


over values such as those expressed using XPath.


We present below a definition of the path index. This definition does not interpret


IDRef attributes as links, hence the resulting index schema has a tree structure.


Definition: let XD = (N, vo, E, A, ψ, Σ, λ, <) be an XML-graph. A path index tree


IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ ) is a tree where NI is a set of nodes; xo∈ NI is a


distinguished node called root; EI is a set of edges; ψI is an incidence function mapping EI to


NI × NI ; Σ is the alphabet of XD; λI is a labeling function mapping EI to Σ; σ is an instance


function mapping EI × N to 2N defined as


σ(eI , v) = { w | ∃p = (v0 , … , v, e, w) ∃pI = (x0 , … , x, eI , y), and λI (pI)=λ(p) } ; and the


following two conditions are satisfied:
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1. For every pair of paths p = (v0 , … , v), p’ = (v0 , … , v’ ) s.t. λ(p) = λ(p’ ), there is exactly


one path pI = (x0 , … , x) s.t. λI (pI) = λ(p) = λ(p’ ).


2. For every pI = (x0 , … , x), there is a path p = (v0 , … , v) s.t. λI (pI) = λ(p).


We wil l present next an algorithm for computing the ToXin tree from an XML-graph.


It performs a depth-first traversal of the tree defined by the natural element nesting in the


XML-graph. For each element visited it first checks whether the corresponding edge has


already been added to the index and adds it if it was not. Then, it defines the instance


function σ for the edge and the current element. Since the algorithm traverses the underlying


tree defined by the element nesting, it terminates after traversing all edges exactly once. Note


that it does not follow the edges defined by the attributes.


Algorithm 3.1: construction of a ToXin tree from a XML-graph
INPUT:


XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
OUTPUT:


ToXin Tree IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ )


METHOD:
EI ← φ
NI ← new node x0


Index(x0, v0)


procedure Index(x, v) // x∈NI , v∈N


for each edge e∈(E-A)  s.t. ψ(e) = (v, w) do
if there is no edge eI∈EI s.t. ψI (eI) = (x, y) and λI (eI) = λ(e) then


EI ← EI ∪ { new edge eI }


NI ← NI ∪ { new node y }
λI (eI) ← λ(e)
ψI (eI) ← (x, y)


fi
σ (eI , v) ← w


Index(y,w)


od
end
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Let us see with an example how ToXin works. Figures 3.1, 3.2 and 3.2 show the ToXin tree


and the tables for the XML document from Figure 2.1. The VT boxes in Figure 3.1 represent


the value tables and the IT boxes the instance tables. In contrast to dataguides and 1-indexes,


which index only paths which start from the root, all paths in the database are represented in


ToXin. For instance, not only do we find the paths that match x/publications/issue/y


(represented by the reference chains in tables publications and publications/issue) but also


those that match x/issue/y (represented by the table publications/issue). This way we can use


ToXin for both forward and backward navigation starting from any node in the index.


Figure 3.1: ToXin tree for the publication data graph.
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Figure 3.2: ToXin instance tables for Figure 3.1 index tree.


Figure 3.3: ToXin value tables for Figure 3.1 index tree.
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3.2 Implementation


The Document Object Model


In the previous sections we explained how to construct a path index from an XML-


graph. Next, we show how to process an XML document in order to obtain the XML-graph.


To process an XML document we need to use APIs and our choice was the document


object model (DOM). DOM is a tree structure-based API from a W3C Recommendation


[W3C98]. An XML document is represented in DOM as a tree structure whose nodes are


elements. The DOM tree corresponding to the data graph of Figure 2.1 is depicted in Figure


3.4. DOM provides a set of APIs to access and manipulate the nodes in a DOM tree.


Figure 3.4: DOM tree for the publications data graph
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We implemented the prototype of ToXin in Java and we use the IBM parser XML4J


to create the DOM tree from the XML document. We based our implementations on the


DOM tree generated by the XML4J parser. Since our model requires an edge-labeled graph,


first we compute the XML-graph from the DOM tree and then we build the index according


to Algorithm 3.1.


For each XML element containing values, DOM creates an extra node called text.


Therefore, the DOM tree contains more nodes than the number of XML elements in the


documents. As a consequence, the XML-graph presents additional text edges as well. If


indexed as normal edges, this extra layer of text edges induces a significant overhead for both


building and querying the index tree and the XML-graph. Figure 3.5 shows the ToXin tree


for XML-graphs presenting text edges. The value tables and instance tables for Figure 3.5 are


shown in Appendix 1.


Figure 3.5: Index tree for the publications data graph (with text edges)
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Our first implementation of ToXin regards text edges in the XML-graph as normal


edges and computes the index tree accordingly. For the second implementation, we eliminate


the text edges from the XML-graph and move the nodes at the end of such edges one level up


using the following algorithm:


for each edge e∈E, ψ(e) = (v, w), s.t. λ(e) = text  do


for each edge e’∈E, s.t. ψ(e’) = (u, v) do


ψ(e’) = (u, w)


remove edge e from E


remove node v from N


od


od


Applying this procedure, we obtain the more compact and natural structure of Figure


3.1. It is easy to see that the XML-graph is always larger in the first implementation than in


the second one and, consequently, so is the index graph.


3.2 Navigation Language


For testing ToXin performance, we needed a language that supports path expressions


and predicates over values. This functionality is provided by a number of query languages for


XML, such as XML-QL [DFF+99], XSLT [W3C99b], XQL [RLS98] and XPath. In addition,


most of these languages also provide complex mechanisms for restructuring and updating


documents, functionality we did not require for our experiments. Our final choice was XPath


because it is simple to implement and yet powerful enough for testing ToXin capabil ities in


speeding up queries involving tree navigation and value selection. Nevertheless, since the
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current ToXin implementation does not support order, we did not implement the XPath


functionality for supporting queries involving order.


The navigation language we designed consists of a set of navigation and filtering


functions that support tree traversal, both forward and backward, and selection of nodes


satisfying a certain value. Functions navigateDown and navigateUp accept a set of nodes N


and a regular path expression R as input and return the set of nodes that are reachable by


paths matching R. The only difference between them is the direction in the evaluation of the


regular path expression R. The function selectNodes, on the other hand, accepts a set of nodes


N and a value v as input and returns the set of nodes whose value is exactly v. For instance,


the following query:


Q3.1 = publications/issue[year = “1990”]/articles/article/title


may be expressed in our navigation language as a composition of four subqueries as follows:


Q3.2.1 = navigateDown(v0, “publications/issue/year”)


Q3.2.2 = selectNodes(Q3.2.1, “1990”)


Q3.2.3 = navigateUp(Q3.2.2, “year”)


Q3.2.4 = navigateDown(Q3.2.3, “articles/article/title”)


The ToXin index scheme was designed to speed-up all query processing stages.


According to our query decomposition strategy mentioned above we define three stages in


the query evaluation. The first stage (called pre-selection stage) comprises the first


navigation down the tree for the pre-filtering section. The second stage (called selection


stage) consists of the value selection performed by the filter section. Finally, the third stage


(called post-selection stage) spans the navigation up after the selection stage and the last


navigation down. We classified ToXin along with other path indexes scheme explained in
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Chapter 2 with regards to the query evaluation stages in which they can be used. The


classification is shown in Table 3.8.


Scheme name pre-selection


stage


selection


stage


post-selection


stage


Dataguides Yes - -


1-index Yes - -


2-index Yes - -


Dataguides + Value


Index (Lore)


Yes Yes -


General Path


Indexes


ToXin Yes Yes Yes


ASR Yes Yes YesPath-specific


Indexes
T-index Yes - -


Table 3.8: Classification of the indexing schemes described in Chapters 2 and 3.


Query evaluation


Let IX = (NI , x0 , EI , ψI , Σ, λI , XD, σ ) be a ToXin tree and let QR=xRy be a query


path. We have two evaluation strategies depending on whether the variable x is instantiated


with the index root x0 or not. We describe first the evaluation strategy for the general case in


which x is not instantiated with the root. Starting from node x, we follow the reference chains


over the instance tables that belong to the edges in the paths matching R. The answer ans(QR)


contains the set of nodes that are at the end of those reference chains. The procedure is the


same for both forward and backward navigation; the only difference is the instance tables


used for computing the reference chains (forward or backward instance tables respectively).


Let us consider now the special case in which x is instantiated with the index root x0.


In this case, we can avoid following the reference chains over the instance tables. Since there
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is no previous filtering involved and we are computing over an index tree, we can simplify


the computation as follows. First, we follow the paths over the index schema that match the


regular path expression R. Then we select the last instance tables of each path and we


compute the union of the child column of the selected instance tables. This special case of the


evaluation strategy is closely related to query processing over dataguides, where the child


column of the instance tables are the equivalent to the extents of dataguides nodes.


In order to present the algorithm that computes the navigateDown and navigateUp


functions according to the evaluation strategies described above, we need to define first a


formalism called query graphs. Query graphs are transition graphs constructed from the NFA


corresponding to a regular path expression. By using Thompson’s construction [ASU86] we


compute first the NFA corresponding to a regular path expression and then we construct the


transition graph associated with it.


Definition: let P = (S, Σ, δ, so, F) be an NFA corresponding to a regular path expression. The


query graph associated with P is a directed graph Q = (S, s0, EQ, ψQ, Σ, λQ, F) where S is a set of


states; s0 ∈ S is a distinguished node called initial state; EQ is a set of edges; ψQ is an incidence


function that maps EQ to S × S; Σ is the alphabet of Q; λQ is a labeling function mapping EQ


to Σ; and F ∈ S is a set of final states. If state t ∈ δ(s, a) for s, t ∈ S and a∈Σ, then there is


and edge e ∈ EQ with ψQ (e) = (s, t) and λQ (e) = a.


Algorithm 3.2 implements navigateDown for the general case in which the input node


x is not the root. The algorithm is related to that in WebOQL for computing the navigation of


a tree in a web [Aro97]. Algorithm 3.3, on the other hand, implements navigateDown for the


case in which the navigation starts from the root x0.
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Algorithm 3.2 (navigateDown v1.0): computation of a forward navigation over a ToXin
tree.


INPUT:


ToXin tree IX = (NI , x0 , EI , ψI , Σ, λI , XD , σ ), where XD = (N, v0 , E, ψ, Σ, λ, <)
query graph Q = (S, s0, EQ, ψQ, Σ, λQ, F)


xi, vi


OUTPUT:
ans(Q(XD))


METHOD:


Result ← φ
Added ← φ
Visited ← φ
Selected ← vi


SearchDown(xi , si , Selected)


procedure SearchDown(x, s, Selected)
Visited ← Visited ∪ {(v, s)}


for each edge e∈  EI s.t. ψI (e) = (x, y) do


for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λI (e) do
if t∈F and e∉Added then


Added ← Added ∪ {e}


Result ← Result ∪ Follow(e, Selected)
fi


if (y, t)∉Visited then


Selected ← Follow(e, Selected)
SearchDown (y, t, Selected)


fi


od
od


end


procedure Follow(e, X)


Y ← φ
for each x∈X do


Y ← Y ∪ σ(e, x)


od


Follow ← Y
end
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Algorithm 3.3 (navigateDown v2.0): computation of a forward navigation from the root


over a ToXin tree.


INPUT:
ToXin tree IX = (NI , x0 , EI , ψI , Σ, λI , XD , σ ), where XD = (N, v0 , E, ψ, Σ, λ, <)


query-graph Q = (S, s0, EQ, ψQ, λQ, F)


OUTPUT:
ans(Q(XD))


METHOD:


Result ← φ
Added ← φ
Visited ← φ
Selected ← v0


SearchDown(x0 , s0)


procedure SearchDown(x, s)
Visited ← Visited ∪ {(x, s)}


for each edge e∈  EI s.t. ψI (e) = (x, y) do


for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λI (e) do
if t∈F and e∉Added then


Added ← Added ∪ {e}


Result ← Result ∪ Child(e)
fi


if (y, t)∉Visited then


SearchDown (y, t)
fi


od


od
end


procedure Child(e)
Y ← φ
for each x∈N s.t. σ(e, x) is defined do


Y ← Y ∪ σ(e, x)
od


Child ← Y


end
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In order to perform the comparative experiments we have also implemented


navigateDown for the XML-graph and Strong dataguides. The algorithms are presented in


Appendix 2.
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Chapter 4


Experiments


4.1 Experimental Setup


We implemented the ToXin prototype in Java 2 and we used the IBM parser XML4J


to create the DOM tree from the XML document. All the experiments presented herein were


conducted in a Sun SPARCstation running Solaris 2.5. Both Index and DOM were kept in


memory in the experiments.


In order to study the tradeoffs of a set of indexing schemes we carried out a series of


comparative performance experiments. We use query processing time as performance metric.


The experiments evaluate the effect of several parameters on the performance of the query


evaluation using ToXin, dataguides, dataguides + value index, and the XML source itself.


The parameters can be classified into data source-specific and query-specific. The data


source-specific parameters are document size, number of XML nodes and values, path


complexity (degree of nesting), and average value size (short or long strings). Those query-


specific are selectiveness of the path constraints (queries expressed with or without // and *


operators), size of the query answer (small or large), and number of elements selected in the


filter section (small or large).
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Our benchmark consists of four data sources: the conference papers from the DBLP


database [Ley00], a sample of movies from the Internet Movies Database [IMDB00], the


four religious texts from [Bos98] and twenty Shakespeare plays from [Bos99]. The choice of


the document samples was aimed at determining the impact of nesting and average value size


on the index performance. DBLP is a classical example of a bibliographical database


containing deeply nested data. IMDB presents a flat structure typical of a straight-forward


mapping from relational data. The values contained in both the DBLP and IMDB documents


are short strings. The religious texts and the Shakespeare works, on the other hand, are


exponents of text databases: the former containing in average longer string values than the


latter and yet similar degree of nesting. The path structures of the tested documents are


shown in Appendix 4.


We use DBLP and IMDB to explore the impact of nesting. To study the effects of


different value sizes, we use the religion texts and the Shakespeare works. In addition, to test


the index performance with different document sizes and similar path structures, we created


two XML documents for each data source, one larger than the other one. Table 4.1 shows


some parameters of the benchmark.
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DBLP IMDB Shakespeare Religion


Doc 1 Doc 2 Doc 1 Doc 2 Doc 1 Doc 2 Doc 1 Doc 2


File size (Mb) 1.8 8.9 0.8 3.9 1.1 4.4 1.0 7.0


Index generation


time (sec)


17.2 80.2 5.5 41.5 4.1 25.7 1.3 9.3


# of XML nodes 90040 405103 57854 293183 45776 181438 16810 95594


# of XML values 44027 190232 27084 137296 20437 81779 8283 46334


# of index nodes


(ToXin 1)


47 73 14 14 52 62 25 78


# of index nodes


(ToXin 2)


27 40 8 8 31 37 17 49


Avg. Value Size Short Short Short Short Long Long Long Long


Degree of Nesting High High Low Low High High High High


Table 4.1: Parameters of the benchmark


The queries we used for our experiments test the performance of simple selection of


nodes by value and tree navigation. We tested each query in two versions: one with very


selective path constraints so that the portion of the index scanned is smaller, and the other


with more relaxed constraints with a resulting extensive index navigation. We present next


the queries grouped by document sample:


DBLP


q1’= //[year = “1998”]//title


q1 = /dblp/conference/issues/issue/inproceedings[year = “1998”]/title


q2’ = //conference[title = “VLDB”]/*//title


q2 = /dblp/conference[title = “VLDB”]/issues/issue/inproceedings/title


q3’ = //[author = “Serge Abiteboul”]//title
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q3 = /dblp/conference/issues/issue/inproceedings[author = “Serge Abiteboul”]/title


IMDB


q4’ = //[genre = “Drama”]//title


q4 = /movies/movie[genre = “Drama”]/title


q5’ = //[title = “Bolero”]//year


q5 = /movies/movie[title = “Bolero”]/year


q6’ = //[year = “1950”]//title


q6 = /movies/movie[year = “1950”]/title


Shakespeare Works


q7’ = //[speaker = “Mark Anthony”]//line


q7 = /shakespeare/play/act/*/speech[speaker = “Mark Anthony”]/line


q8’ = //[title = “The Tragedy of Anthony and Cleopatra”]/act//line


q8 = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”]/act/*/speech/line


q9’ = //[title = “The Tragedy of Anthony and Cleopatra”]//persona


q9 = /shakespeare/play[title = “The Tragedy of Anthony and Cleopatra”]/personae/persona


Religious Texts


q10’ = //[bktshort = “Matthew”]//v


q10 = /religion/book/bookcoll/book/[bktshort = “Matthew”]/chapter/v


q11’ = /[title = “The New Testament”]//bktlong


q11 = /religion/book[titlepg/title = “The New Testament”]/bktcoll/book/bktlong


To compare query performance across different documents we classify the queries


with regards to the selectiveness of its path constraints and the sizes of the query answer and


node selection in the filter section. The following table shows the classification according


with these criteria:
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Query Type Query Characteristics


LL q1, q4, q7 Large query answer


Large filter selection


LL* q1’ , q4’ , q7’ Large query answer


Large filter selection


Relaxed path constraints


LS q2, q8, q10 Large query answer


Small filter selection


LS* q2’ , q8’ , q10’ Large query answer


Small filter selection


Relaxed path constraints


SS q3, q5, q6, q9, q11 Small query answer


Small filter selection


SS* q3’ , q5’ , q6’ , q9’ , q11’ Small query answer


Small filter selection


Relaxed path constraints


Table 4.2: Query classification


4.2 Experimental Results


Figures 4.3, 4.4, 4.5, and 4.6 show the execution time for each stage of every query


type of Figure 4.2. The rows represent the performance of each query evaluation stage over


the XML-graph (XML), the first ToXin implementation with text edges (ToXin 1) and the


second implementation without text edges (ToXin 2). The first three columns of each table


correspond to the small documents and the second three columns to the large ones. This way


we can appreciate the impact of using a path index in each query processing stage.







50


Table 4.3: Performance results of DBLP queries
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Table 4.4: Performance results of IMDB queries
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Table 4.5: Performance results of Shakespeare works queries
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Table 4.6: Performance of religious texts queries


The results suggest that the first stage (pre-selection) generally benefits the most by


the use of a path index scheme. All query types, except LS, SS in the Shakespeare works, and


religious texts, have shown important performance improvements when using an index in the


first stage. In some queries the performance of third stage (post-selection) is also


considerably improved by using the index. Those query types with large query answers


benefit the most by the use of a path index during the third query processing stage. From the


results we can also conclude that, when using an index, the closer to the root the filter section


starts, the better the improvement in the performance of the third stage and the worse that of







54


the first stage. Since dataguides support only the first stage, using only a dataguide without


additional structures can do little to improve the performance of the entire query evaluation


when the filter section is close to the root.


Regarding the results when using a value index, except for queries with small number


of values selected in the filter section, the improvement is also considerable. Nevertheless, it


is important to note that in none of the tested queries does the selection stage play an


important role in the total performance of the query evaluation.


Figures 4.7, 4.8, 4.9, and 4.10 summarize the performance of four different index


schemas: both versions of ToXin, dataguides, and dataguides with value indexes. In all of


them ToXin outperforms the other two schemes, in some cases by one order of magnitude.
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Figure 4.7: Comparative performance of selected index schemes with DBLP.
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Figure 4.8: Comparative performance of selected index schemes with IMDB.
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Figure 4.9: Comparative performance of selected index schemes with Shakespeare works.
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Figure 4.10: Comparative performance of selected index schemes with the religious texts.
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Chapter 5


Conclusions and Future Work


5.1 Summary


In this thesis we presented ToXin, an indexing scheme that supports path queries over


XML data. We discussed its architecture, related work and presented performance results.


The motivation for this work was to overcome some limitations of current indexing proposals


for semistructured data, such as the lack of support for all query processing stages


(dataguides, 1-indexes and 2-indexes), and the need for an explicit specification of the paths


to index (T-indexes). To that end, we combined ideas from dataguides and access support


relations in a way that allows us to use the index in all the query evaluation stages for any


general path query.
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5.2 Future Work


The work presented in this thesis can be extended en several ways. The main


directions are: adding order to the index structure; implementing the ToXin graph, by


extending the ToXin tree with the semantic of the IDRefs; making the index persistent; and


investigating ways to extend ToXin so it can be used as an alternative to DOM for storing,


querying and updating XML documents. We give next a brief overview of these possible


extensions.


Adding order


We are considering two options for this extension. One is to replace the Hash


structures in the instance tables with a data structure that supports order, such as B-trees.


Other option is to give the index more flexibil ity by keeping the order information in a


separate structure that may be added or not depending on the particular user’s needs. This


new order tables would be attached to the ToXin nodes and would contain information about


the order in which the elements of the instance and value tables appear in the original XML


document. With this addition, ToXin will support queries involving order of XML elements


and attributes.


Extending the graph index with IDRefs


In order to construct the ToXin graph from the XML graph we use Algorithm 5.1. It


performs a depth-first search of the underlying tree (the element nesting tree) and for each


edge checks whether it is an attribute or an element. Since attributes do not have further


structure, when the algorithm finds an attribute it simply adds it to the index and does not


continue with the recursive search.
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Algorithm 5.1: construction of a ToXin graph from an XML-graph
INPUT:


XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
OUTPUT:


ToXin Graph IX = (NI , x0 , EI , AI, ψI , Σ, λI , XD, σ )
METHOD:


EI ← φ
NI ← new node x0


Index(x0, v0)


procedure Index(x, v) // x∈NI , v∈N
for each edge e∈E  s.t. ψ(e) = (v, w) do


if there is no edge eI∈EI s.t. ψI (eI) = (x, y) and λI (eI) = λ(e) then


EI ← EI ∪ { new edge eI }
NI ← NI ∪ { new node y }


λI (eI) ← λ(e)


ψI (eI) ← (x, y)
fi


σ (eI , v) ← w


If e∈A then
AI ← AI ∪ { eI }


else


Index(y,w)
fi


od


end


Making the index persistent


In its current implementation ToXin is kept in main memory. To make the index


persistent we are currently considering two approaches: mapping the index to a RDBMS or


to an OODBMS. Some hybrid scheme is also possible, since the value and instance tables are


more naturally suited to be stored in relational tables whereas the schema graph can be best


described using an object-oriented data model. A number of methods for storing XML
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documents using relational and object-oriented databases have been proposed over the past


few years (see [Bar00] for a survey). Some of these approaches can be adapted for storing


ToXin, and we plan to study in particular two of them: Ozone [WLA99] and Edge Tables


[FK99].


Extending ToXin with DOM functionality


Since the DOM tree is used only to populate the instance and value tables and all


further query processing is done over the index, once we add order to ToXin we can discard


the DOM structure for query purposes. However, if we want to have the full DOM


functionality, we need to implement the core class interfaces of DOM. Table 5.1 contains a


short description of the minimum set of class interfaces that needs to be implemented.
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Class Interface Name Description


Attr It represents an attribute within an element object. DOM views


attributes as properties of elements rather than objects itself.


CDATASection It represents a CDATA section, primarily used for XML


fragments.


CharacterData It provides methods for string manipulation.


Comment It represents the content of an XML comment.


Document It represents the root of the DOM tree.


Document Fragment It represents a subtree or a set of subtrees of DOM tree.


DocumentType It provides access to the list of entities defined in the DTD.


Element It represents an element in an XML document.


Entity It represents an entity in an XML document.


NamedNodeMap It represents an unordered collection of nodes that can be


accessed by a name.


Node It represents a single node in the DOM tree.


NodeList It represents an ordered collection of nodes.


Notation It represents a notation defined in the DTD. A notation declares


the format of an unparsed entity.


ProcessingInstruction It represents a processing instruction in an XML document. A


processing instruction contains processor-specific information


stored in the text of the document.


Text It represents the textual content of an element object or


attribute.


Table 5.1: DOM class interfaces.
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Appendix 1


Complete Example


We present here the full extension of value and instance tables corresponding to


Figure 3.5.


Figure A1.1: Value tables for the index tree of Figure 3.5
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Figure A1.2: Instance tables for the index tree of Figure 3.5
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Appendix 2


Additional Algorithms


Algorithm A2.1 (navigateDown): computation of a forward navigation over an XML-graph


INPUT:


XML-graph XD = (N, v0 , E, A, ψ, Σ, λ, <)
query graph Q = (S, s0, EQ, ψQ, λQ, F)


OUTPUT:


ans(Q(XD))
METHOD:


Result ← φ
Added ← φ
Visited ← φ
SearchDown(v0 , s0)


procedure Navigate(v, s)


Visited ← Visited + (v, s)


for each edge e∈E s.t. ψ(e) = (v, w) do
for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λ(e) do


if t∈F and e∉Added then


Added ← Added ∪ {e}
Result ← Result ∪ {w}


fi


if (w, t)∉Visited then
SearchDown(w, t)


fi


od
od


end
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Algorithm A2.2 (navigateDown): computation of a forward navigation over a dataguide


INPUT:


index-graph Dx = (NI , x0 , EI , ψI , Σ, λI , XD, ext), where XD = (N, v0 , E, ψ, Σ, λ, <)
query-graph Q = (S, s0, EQ, ψQ, λQ, F)


OUTPUT:


ans(Q(XD))
METHOD:


Result ← ext(x0)


Added ← φ
Visited ← φ
SearchDown(x0 , s0)


procedure Search(x, s)


Visited ← Visited ∪ {(x, s)}


for each edge eI∈  EI  s.t. ψI ( eI) = (x, y) do
for each edge eQ∈EQ s.t. ψQ (eQ) = (s, t) and λQ(eQ) = λ( eI) do


if t∈F and eI ∉Added then


Added ← Added ∪ { eI }
Result ← Result ∪ ext(y)


fi


if (w, t)∉Visited then
SearchDown (w, t)


fi


od
od


end
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Appendix 3


Comparative Performance Results


We present in this Appendix the complete results of the comparative performance


experiments summarized in Figure 4.7, 4.8, 4.9 and 4.10.


Figure A3.1: Comparative performance results of DBLP queries
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Figure A3.2: Comparative performance results of IMDB queries
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Figure A3.3: Comparative performance results of Shakespeare works queries
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Figure A3.4: Comparative performance results of religious texts queries
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Appendix 4


Tree Schemas of Document Samples


We include in this appendix the tree schemas of the documents used in the


experiments. These tree schemas show the general path structure of the document samples


(DBLP, IMDB, Shakespeare works and religious texts)


Figure A3.1: Tree schema of the International Movies Database sample
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Figure A3.2: Tree schema of the DBLP sample
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Figure A3.3: Tree schema of the Shakespeare Works sample







75


Figure A3.4: Tree schema of the Religious Texts sample
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