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Abstract. Data description for XML usually comes in the form of a
type speci�cation (e.g., a DTD) together with integrity constraints. XML
Schema allows one to mix DTD features with semantic information, such
as keys and foreign keys. It was shown recently [2, 7] that the interaction
of DTDs with constraints may be rather nontrivial. In particular, testing
if a general speci�cation is consistent is undecidable, but for the most
common case of single-attribute constraints it is NP-complete, and linear
time if no foreign keys are present.
However, XML Schema design did not adopt the form of constraints
prevalent in the database literature, and slightly changed the semantics of
keys, foreign keys, and unique constraints. In this paper we demonstrate
the very costly e�ect of this slight change on the feasibility of consistency
checking. In particular, all the known hardness results extend to the XML
Schema case, but tractability results do not. We show that even without
foreign keys, and with very simple DTD features, checking consistency
of XML-Schema speci�cations is intractable.

1 Introduction

Any data-central system must provide a data de�nition language as well as a
data manipulation language. For commercial relational DBMSs, these languages
are well-understood. As a lot of data is becoming available in XML [11], and
much of database research focus is shifting from the traditional relational model
to semistructured data and XML [1, 6, 5, 9, 10], it is important to understand
new issues that arise in the context of describing and querying XML.

One such issue is the semantics of XML data speci�cations. Traditionally,
XML data was described by DTDs [11]3. But just as in the relational con-
text, where simple SQL's create table must be supplemented with various
constraints to provide semantic information, constraints must be added to XML
speci�cations as well. Most of the proposals deal with constraints similar to those
found in relational databases: keys and foreign keys [3, 4, 12]. However, unlike
traditional relational constraints, XML keys and foreign keys interact in a non-
trivial way with DTDs, allowing one to write seemingly perfect speci�cations
that nevertheless are inconsistent: no document can satisfy them.

3 Throughout the paper, by a DTD we mean its type speci�cation; we ignore its
ID/IDREF constraints since their limitations have been well recognized [3].



In [2, 7], we studied this problem, and demonstrated the following. First, if
arbitrary keys and foreign keys are added to DTDs, the consistency problem
is undecidable. Second, with the restriction to one-attribute constraints (unary
constraints, by far the most common in practice), the problem is intractable: de-
pending on the exact 
avor of constraints, it is anywhere from NP-complete (sim-
ple element-type absolute constraints [7]) to PSPACE-hard (regular-expression-
based constraints [2]) to undecidable (relative constraints [2]). However, without
foreign keys, the problem is tractable: it is solvable in linear time.

Those results were shown for DTDs and (foreign) keys. These days, the prime
standard for specifying XML data is XML Schema [14]. It is a rather rich lan-
guage that supports speci�cations of both types and integrity constraints. Its
types subsume DTDs [11], and its constraints { even keys and foreign keys {
have a slightly di�erent semantics from what has been primarily studied in the
database literature. In this paper we investigate speci�cations that consist of a
DTD and a set of constraints with the semantics proposed by XML Schema. We
show that this little change of semantics complicates things considerably, as far
as consistency checking is concerned.

We say that an XML document satis�es a speci�cation if and only if it
conforms to the DTD and satis�es the constraints, and that a speci�cation is
consistent if there is a document that conforms to it. A speci�cation may be
inconsistent due to the interaction between the type and the constraint parts.

As an example, consider a speci�cation in XML Schema S1 = (D1; �1), where
D1 is a simple DTD describing insurance policies for a transportation vehicle
and �1 is a set of keys and foreign keys:

D1: <!ELEMENT vehicle ((registr | plate), policy, policy)>

<!ATTLIST registr num CDATA #REQUIRED>

<!ATTLIST plate num CDATA #REQUIRED>

<!ATTLIST policy ref CDATA #REQUIRED>

�1: (vehicle=registr [ vehicle=plate; f@numg),
(vehicle=policy; f@refg),
(vehicle=policy; f@refg) �FK (vehicle=registr [ vehicle=plate; f@numg)

Here we omit the de�nition of elements whose type is string. The DTD says
that each vehicle must present either a registration number or a plate number,
and must purchase two insurance policies. The �rst constraint in �1 is a key
asserting that each vehicle can be uniquely identi�ed by either its registration
number or its plate number4. The second constraint, another key, says that the
policies should use di�erent references. The third constraint in �1 is a foreign
key. It says that a policy reference must be either the registration number or
the plate number. This schema is inconsistent: on one hand, as indicated in
Figs. 1 (a) and (b), for any XML document conforming to the DTD D1, the
vehicle element must have either a registr or a plate subelement, but it
cannot have both; on the other hand, the constraints enforce the presence of
both a registr subelement and a plate subelement, since otherwise two policy

4 We de�ne the syntax and semantics of keys and foreign keys in Sec. 2.2.
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Fig. 1. XML documents (represented as trees) conforming to DTDs D1 and D2

references cannot be distinct. As a result, there is no XML document that both
conforms to D1 and satis�es �1. This example demonstrates that the DTD and
constraints in an XML-Schema speci�cation may interact with each other, and
the interaction leads to the inconsistency of the speci�cation.

Worse still, a speci�cation in XML Schema may not be consistent even in the
absence of foreign keys. As another example, consider the following speci�cation
S2 = (D2; �2) for biomedical data:

D2: <!ELEMENT seq (clone+)>

<!ELEMENT clone (DNA, gene)>

<!ELEMENT gene (DNA)>

�2: (seq=clone; f==DNAg)

The DTD describes a nonempty sequence of clone elements: each clone has a
DNA subelement and a gene subelement, and gene in turn has a DNA subelement,
while DNA carries text data (PCDATA). The key in �2 attempts to enforce the
following semantic information: there exist no two clone elements that have
the same DNA no matter where the DNA appears as their descendant. Again this
speci�cation is inconsistent. To see this, recall that XML Schema requires that
for any XML document satisfying a key, the \�elds" (that is, //DNA in our
example) must exist and be unique. However, as depicted in Fig. 1 (c), in any
XML document that conforms to the DTD D2, a clone element must have two
DNA descendants. Thus, it violates the uniqueness requirement of the key in �2.

Is it possible to test consistency of an XML-Schema speci�cation at compile
time? That is, given a speci�cation (D;�), whether or not there exists an XML
document that both conforms to the DTD D and satis�es the constraints �. We
refer to this problem as the consistency problem for XML Schema. The question
is important as one wants to know whether or not a speci�cation makes sense
before attempting to create or validate an XML document w.r.t. it.

The central technical problem investigated in this paper is the consistency
problem for XML Schema. Our main conclusion is that the semantics of keys
and foreign keys in XML-Schema makes the consistency analysis rather intri-
cate and intractable. Indeed, all the hardness and undecidability results of [2, 7]
carry over to speci�cations of XML Schema. However, using a new technique, we



show that the most important tractable cases under the standard key semantics,
become intractable under the semantics of XML Schema. We also identify sev-
eral restrictions, commonly used in practice, that still allow relatively-eÆcient
consistency checking.

Organization. Sec. 2 introduces a formalism for XML-Schema speci�cations.
We show in Sec. 3 that the consistency problem is highly intricate in general.
In Sec. 4 we identify restricted cases that allow relatively eÆcient consistency
checking. We summarize our results in Sec. 5. Proofs can be found in [15].

2 XML Schema

XML Schema [14] de�nes both a type system and a class of integrity constraints.
Its type system subsumes DTDs. It supports a variety of atomic types (e.g.,
string, integer, 
oat, double, byte), complex type constructs (e.g., sequence,
choice) and inheritance mechanisms (e.g., extension, restriction). Its integrity
constraints include keys, foreign keys and unique constraints. In XML Schema,
a speci�cation for XML data consists of a type and a set of integrity constraints.

The goal of this paper is to understand how types interact with integrity
constraints under the XML-Schema semantics. To focus on the nature of the
interaction and to simplify the discussion, we consider XML-Schema speci�ca-
tions in which the type is a DTD and the constraints are simple keys and foreign
keys5. We show that even in this simple setting, the interaction is already highly
intricate such that the consistency check of XML-Schema speci�cations is infea-
sible. Note that in practice, an XML-Schema speci�cation typically consists of
a mild extension of a DTD as its type, as well as simple keys and foreign keys.

In this section, we �rst provide a formalism of DTDs, and then de�ne keys
and foreign keys under the XML-Schema semantics.

2.1 DTDs and XML trees

Following [5, 7], we formalize the de�nition of DTDs as follows. A DTD (Docu-
ment Type De�nition) is a tuple D = (E; A; P; R; r), where:

{ E is a �nite set of element types;

{ A is a �nite set of attributes , disjoint from E.

{ For each � 2 E, P (�) is a regular expression �, called the element type
de�nition of � : � ::= S j � 0 j � j �j� j �; � j ��, where S denotes
the string type, � 0 2 E, � is the empty word, and \j", \;" and \�" denote
union, concatenation, and the Kleene closure;

{ For each � 2 E, R(�) is a set of attributes in A;

{ r 2 E and is called the element type of the root .

5 We do not consider relative keys and foreign keys [2, 3] here as the simple constraints
suÆce to demonstrate the complications caused by their interaction with types.



We normally denote element types by � and attributes by @l, and assume that
r does not appear in P (�) for any � 2 E. We also assume that each � in E n frg
is connected to r, i.e., either � appears in P (r), or it appears in P (� 0) for some
� 0 that is connected to r.

For example, recall the two DTDs D1; D2 given in the previous section. These
DTDs can be naturally expressed in the formalism given above.

Given a DTD D = (E; A; P; R; r), a path in D is a string w1 � � �wm over
the alphabet E [ A [ fSg such that wi+1 is a symbol in the alphabet of P (wi)
for each i 2 [1;m� 2], and wm 2 R(wm�1) or wm is a symbol in the alphabet of
P (wm�1). Let Paths(D) = fp j p is a path in Dg. We say that a DTD is non-
recursive if Paths(D) is �nite, and recursive otherwise. We also say that D is a
no-star DTD if the Kleene star does not occur in any regular expression P (�).

An XML document is typically modeled as a node-labeled tree. Below we de-
scribe valid XML documents of a DTD along the same lines as XML Schema [14].

LetD = (E; A; P; R; r) be a DTD. An XML tree T conforming to D, written
T j= D, is de�ned to be (V; lab; ele; att; val; root), where

{ V is a �nite set of nodes ;
{ lab is a function that maps each node in V to a label in E [A[ fSg; a node
v 2 V is called an element of type � if lab(v) = � and � 2 E, an attribute if
lab(v) 2 A, and a text node if lab(v) = S;

{ ele is a function that for any � 2 E, maps each element v of type � to a
(possibly empty) list [v1; :::; vn] of elements and text nodes in V such that
lab(v1) : : : lab(vn) is in the regular language de�ned by P (�);

{ att is a partial function from V �A to V such that for any v 2 V and @l 2 A,
att(v; @l) is de�ned i� lab(v) = � , � 2 E and @l 2 R(�);

{ val is a partial function from V to string values such that for any node v 2 V ,
val(v) is de�ned i� lab(v) = S or lab(v) 2 A;

{ root is the root of T , root 2 V and lab(root) = r.

For any node v 2 V , if ele(v) is de�ned, then the nodes v0 in ele(v) are called
the subelements of v. For any @l 2 A, if att(v; @l) = v0, then v0 is called an
attribute of v. In either case we say that there is a parent-child edge from v to v0.
The subelements and attributes of v are called its children. The graph de�ned
by the parent-child relation is required to be a rooted tree.

For example, Figs. 1 (a) and (b) depict two XML trees that conform to the
DTD D1, and Fig. 1 (c) shows an XML tree that conforms to D2.

In an XML tree T , the root is a unique node labeled with r. The subelements
of an element of � are ordered and their labels observe the regular expression
P (�). In contrast, its attributes are unordered and are identi�ed by their labels.
The function val assigns string values to attributes and to nodes labeled S.

2.2 Keys and Foreign Keys

Given a DTD D = (E; A; P; R; r), a key over D is a constraint of the form

(P; fQ1; : : : ; Qng); (1)



where n � 1 and P , Q1, : : :, Qn are regular expressions over the alphabet
E [ A [ fSg. Expression P is called the selector of the key and is a regular
expression conforming to the following BNF grammar [14].

selector ::= path j path [ selector
path ::= r//sequence j sequence
sequence ::= � j j sequence/sequence

Here is a wildcard that matches any element type, � 2 E and // represents
the Kleene closure of , that is, any possible �nite sequence of node labels. The
expressions Q1, : : :, Qn are called the �elds of the key and are de�ned by [14]:

�eld ::= path j path [ �eld
path ::= //sequence/last j /sequence/last
sequence ::= � j � j j sequence/sequence
last ::= S j @l j @

Here @ is a wildcard that matches any attribute and @l 2 A. This grammar
di�ers from the one above in restricting the �nal step to match a text node or
an attribute. A key containing exactly one �eld is called unary.

It should be mentioned that XML Schema expresses selectors and �elds with
restricted fragments of XPath [13], which are precisely the regular expressions
de�ned above. In XPath, ` ' represents child and `//' denotes descendant6.

A foreign key over a DTD D is an expression of the form

(P; fQ1; : : : ; Qng) �FK (U; fS1; : : : ; Sng); (2)

where P and U are the selectors of the foreign key, n � 1 and Q1, : : :, Qn, S1,
: : :, Sn are its �elds. A foreign key containing one �eld in its left hand side and
one �eld in its right hand side is called unary.

To de�ne the notion of satisfaction of keys and foreign keys, we need to
introduce some additional notation. Any pair of nodes x, y in an XML tree T
with y a descendant of x uniquely determines the path, �(x; y), from x to y.
We say that y is reachable from x by following a regular expression � over D,
denoted by T j= �(x; y), i� �(x; y) 2 �. For any �xed T , let nodes�(x) stand for
the set of nodes reachable from a node x by following the regular expression �:
nodes�(x) = fy j T j= �(x; y)g. If there is only one node y such that T j= �(x; y),
then we de�ne x:� = y.

De�nition 1. Given an XML tree T = (V; lab; ele; att; val; root), T satis�es
a key (P; fQ1; : : : ; Qng), denoted by T j= (P; fQ1; : : : ; Qng), if

1. For each x 2 nodesP (root) and i 2 [1; n], there is exactly one node yi such
that T j= Qi(x; yi). Furthermore, lab(yi) 2 A or lab(yi) = S.

2. For each x1; x2 2 nodesP (root), if val(x1:Qi) = val(x2:Qi) for all i 2 [1; n],
then x1 = x2.

6 XPath [13] uses `*' to denote wildcard. Here we use ` ' instead to avoid overloading
the symbol `*' with the Kleene star found in DTDs.



That is, the values of Q1, : : :, Qn uniquely identify the nodes reachable from the
root by following path P . It further asserts that starting from each one of these
nodes there is a single path conforming to the regular expression Qi (i 2 [1; n]).

De�nition 2. An XML tree T = (V; lab; ele; att; val; root) satis�es a foreign
key (P; fQ1; : : : ; Qng) �FK (U; fS1; : : : ; Sng), denoted by T j= (P; fQ1; : : : ; Qng)
�FK (U; fS1; : : : ; Sng), if T j= (U; fS1; : : : ; Sng) and

1. For each x 2 nodesP (root) and i 2 [1; n], there is exactly one node yi such
that T j= Qi(x; yi). Furthermore, lab(yi) 2 A or lab(yi) = S.

2. For each x 2 nodesP (root) there exists a node x0 2 nodesU (root) such that
val(x:Qi) = val(x0:Si) for each i 2 [1; n].

The foreign key asserts that (U; fS1; : : : ; Sng) is a key and that for every node x
reachable from the root by following path P , there is a node x0 reachable from
the root by following path U such that the Q1, : : :, Qn-values of x are equal to
the S1, : : :, Sn-values of x

0.
Observe that condition 1 of Defs. 1 and 2 requires the uniqueness and exis-

tence of the �elds involved. For example, the XML tree depicted in Fig. 1 (c)
does not satisfy the key (seq=clone; f==DNAg) because the uniqueness condi-
tion imposed by the key is violated. Uniqueness conditions are required by the
XML Schema semantics, but they are not present in various earlier proposals
for XML keys coming from the database community [3, 4, 7, 2].

Given an XML tree T and a set of keys and foreign keys �, we say that T
satis�es �, denoted by T j= �, if T j= ' for each ' 2 �.

3 Consistency Problem: the General Case

We are interested in the consistency, or satis�ability, problem for XML-Schema
speci�cations; that is, whether a given set of constraints and a DTD are satis�-
able by an XML tree. Formally, for a class C of integrity constraints and a class
D of DTDs, the input of the consistency problem SAT(D; C) is a DTD D 2 D
and a set of constraints � � C and the problem is to determine whether there
is an XML tree T such that T j= D and T j= �.

The same problem was considered in [7]. The constraint language introduced
there is properly contained in the language de�ned in the previous section. Given
a DTD D, element types � , � 0 and attributes @l1, : : :, @ln, @l

0

1, : : :, @l
0

n, keys
and foreign keys in [7] are of the form

(r==�; f@l1; : : : ;@lng); (3)

(r==�; f@l1; : : : ;@lng) �FK (r==� 0; f@l01; : : : ;@l
0

ng); (4)

respectively. Then, from [7] we immediately derive:

Corollary 1. The consistency problem for XML-Schema speci�cations, i.e., ar-
bitrary DTDs and keys, foreign keys of the form (1) and (2), is undecidable.



Observe that given an XML tree T conforming to a DTD D, for every node x
reachable from the root by following a path r==� , there exists exactly one node
reachable from x by following a path @li, which correspond to the attribute @li
of x. In this case, to check the consistency of an XML-Schema speci�cation one
does not need to consider the �rst condition of Defs. 1 and 2. Also from results
of [7], for keys of such a form alone, and for arbitrary DTDs, there exists a linear
time algorithm for the consistency problem.

However, none of the previous results give us any hint as to what happens
when the �rst condition of Defs. 1 is imposed on arbitrary XML-Schema keys.
Somewhat surprisingly, this extra condition makes the problem intractable, even
for unary keys and very simple DTDs. By using a reduction from SAT-CNF [8],
we can show the following:

Theorem 1. The consistency problem is NP-hard for unary keys of form (1)
and for non-recursive and no-star DTDs. �

From these one can see that the consistency analysis is impossible for general
XML-Schema speci�cations, and it is still not practical even if only unary keys
are considered. In light of these we consider restricted cases of speci�cations in
the next section, by imposing restrictions on the �elds of keys and foreign keys.

4 Consistency Problem: A Restricted Case

In this section we study a class of XML-Schema constraints that are commonly
found in practice, and investigate their consistency analysis. More speci�cally,
we consider keys and foreign keys of the form

(P; f@l1; : : : ;@lng); (5)

(P; f@l1; : : : ;@lng) �FK (U; f@l01; : : : ;@l
0

ng); (6)

where P and U are regular expressions de�ned by the BNF grammar for selector
expressions given in the previous section. Furthermore, if these constrains are
de�ned over a DTD D = (E; A; P; R; r), then they must satisfy the following
existence condition: for each � 2 last(P ), f@l1; : : : ;@lng � R(�), and for each
� 0 2 last(U), f@l01; : : : ;@l

0

ng � R(� 0), where last(P ) is the set of element types
that are the last symbol of some string in the regular language de�ned by P .
Note that these conditions can be checked in polynomial time.

Observe that the keys and foreign keys satisfying these conditions trivially
satisfy requirement 1 of Defs. 1 and 2. For this kind of constraints, one can show
the following by reduction to the emptiness problem of �nite state automata.

Proposition 1. For keys of the form (5) satisfying the existence condition and
for arbitrary DTDs, the consistency problem is decidable in linear time.

In practice, unary constraints are most commonly used, with the form:

(P; f@lg); (7)

(P; f@lg) �FK (U; f@l0g): (8)



The next result tells us that when constraints are restricted to be unary and
de�ned with attributes, the consistency problem is decidable even in the presence
of foreign keys. This follows from results of [2]. However, the complexity is very
high.

Proposition 2. For constraints of the form (7), (8) satisfying the existence
condition and for arbitrary DTDs, the consistency problem is PSPACE-hard and
decidable.

Obviously it is completely impractical to solve a PSPACE-hard problem. Thus
one may want to consider further restrictions to get lower complexity. One ap-
proach is to further restrict constraints. Observe that constraints of the form (3)
and (4) are a restriction of (7) and (8): P and U are required to be of the form
(r==�) for some element type � . This helps, but not much: from [7] we get:

Proposition 3. The consistency problem for unary constraints of form (3) and
(4) is NP-complete for arbitrary DTDs, and is in PTIME for a �xed DTD.

Note that Proposition 3 does not require the existence condition as it can be
checked in linear time for constraints of form (3) and (4). The motivation for
considering a �xed DTD is because in practice, one often de�nes the DTD of a
speci�cation at one time, but writes constraints in stages: constraints are added
incrementally when new requirements are discovered.

Alternatively, one may want to further restrict the DTDs involved. However,
this again does not help much: even under some rather severe restriction on
DTDs, the consistency problem remains intractable. More precisely, we show
that even if DTDs contain a �xed number of elements and attributes, the con-
sistency problem for unary keys and foreign keys is NP-hard.

Let k > 0 be a �xed constant and let Dk be the class of DTDs D =
(E; A; P; R; r) such that jE [ Aj � k.

Theorem 2. If C is the class of unary keys and foreign of the form (7), (8)
satisfying the existence condition, then for each k � 11, SAT(Dk; C) is NP-hard.

This again is a new result that does not follow from previously published results
on the consistency checking for XML.

5 Conclusion

We have shown that the semantics of XML-Schema constraints makes the con-
sistency analysis of speci�cations rather intricate. The main results of the paper
are summarized in Fig. 2, which indicate that static consistency checking for
XML-Schema speci�cations is very hard: in general it is beyond reach (undecid-
able); for extremely restricted DTDs and constraints, it is still rather expensive
(NP-hard and PSPACE-hard). In particular, with only unary keys, the consis-
tency problem is NP-hard under the XML-Schema semantics, in contrast to its
linear-time decidability under the standard key semantics [2, 7].



DTD [7] XML Schema

Keys and foreign keys undecidable undecidable

Unary keys and foreign keys NP-complete PSPACE-hard

Keys only linear time NP-hard

No constraints linear time linear time

Fig. 2. Complexity of the consistency problem

These negative results tell us that under the current semantics of XML-
Schema constraints, there is no hope to eÆciently check whether or not an
XML-Schema speci�cation makes sense. One may �nd that a seemingly per-
fect speci�cation turns out to be inconsistent, after repeated failures to validate
documents. The designers of XML Schema might want to take these results into
account when revising the W3C recommendation.
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APPENDIX

Proofs

Proof of Theorem 1

We will reduce SAT-CNF to our problem. Let ' be a propositional formula
C1 ^ � � � ^ Cn, where each Ci is a clause. Assume that each Ci (i 2 [1; n]) con-
tains neither repeated nor complementary literals and ' mentions propositional
variables x1, : : :, xm.

We will de�ne a non-recursive and no-star DTD D and a set of unary keys
� such that ' is satis�able i� (D;�) is consistent. De�ne D = (E; A; P; R; r)
as follows.

{ E = frg [ fXi;j j Ci contains literal xjg [ f �Xi;j j Ci contains literal :xjg.
{ If C1 =

Wp
k=1 xik _

Wq
k=1 :xjk , then P (r) = X1;i1 j � � � jX1;ip j �X1;j1 j � � � j �X1;jq .

For each i 2 [2; n], if Ci =
Wp
k=1 xik _

Wq
k=1 :xjk , then for each Xi�1;j 2

E, P (Xi�1;j) = Xi;i1 j � � � jXi;ip j �Xi;j1 j � � � j �Xi;jq , and for each �Xi�1;j 2 E,
P ( �Xi�1;j) = Xi;i1 j � � � jXi;ip j �Xi;j1 j � � � j �Xi;jq .

{ A = f@li;j;k j i < j; Ci; Cj contain literals xk ;:xkg.
{ For each Xi;j 2 E, R(Xi;j) = f@lk;i;j0 j j 6= j0 and @lk;i;j0 2 Ag. For
each �Xi;j 2 E, R( �Xi;j) = f@lk;i;j0 j j 6= j0 and @lk;i;j0 2 Ag. Furthermore,
R(r) = ;.

For example, if ' = (x1 _ :x3) ^ (:x1 _ x2 _ x3), D is equal to the DTD shown
in �gure 3

r

(X1;1 j �X1;3)

( �X2;1 j X2;2 j X2;3) ( �X2;1 j X2;2 j X2;3)

@l1;2;3 @l1;2;1 @l1;2;3 @l1;2;1 @l1;2;3 @l1;2;1 @l1;2;3 @l1;2;1

Fig. 3. DTD generated from (x1 _ :x3) ^ (:x1 _ x2 _ x3).



A set of unary keys � is de�ned as follows. If Xi;k 2 E, �Xj;k 2 E and
i < j, then (r==Xi;k; f==@li;j;kg) is in �. If �Xi;k 2 E, Xj;k 2 E and i < j, then
(r== �Xi;k; f==@li;j;kg) is in �.

XML trees conforming to D represent truth assignments for variables x1,
: : :, xm. For example, one XML tree conforming to the DTD shown in �gure 3
contains nodes of types r, �X1;3, X2;2, @l1;2;1 and @l1;2;3. This tree represents the
truth assignment �(x3) = 0 and �(x2) = 1. We use the set of keys � to avoid
inconsistent assignments. For instance, there is an XML tree T conforming to
the DTD shown in �gure 3 containing nodes of types r, X1;1, �X2;1 and @l1;2;3. T
cannot represent a truth assignment since it says that 0 and 1 must be assigned
x1. T does not satisfy �, since (r==X1;1; f@l1;2;1g) 2 � and, therefore, T must
contain a node of type either X2;2 or X2;3.

We have to prove that ' is satis�able i� (D;�) is consistent. Here, we will
prove only the \if" direction. The \only if" direction is similar.

Assume that T = (V; lab; ele; att; val; root) is an XML tree conforming to
D and satisfying �. De�ne a truth assignment � as follows. For each variable xj
(j 2 [1;m]), if there is i 2 [1; n] such that Xi;j 2 V , then �(xj) = 1, otherwise,
�(xj) = 0. We have to prove that � satis�es '. Let Ci be a clause in ' (i 2 [1; n]).
By de�nition of D, there is a literal xj (j 2 [1;m]) in Ci such that Xi;j 2 V
or there is a literal :xk ([k 2 [1;m]) such that �Xi;k 2 V . If Xi;j 2 V , then
�(xj) = 1 and, therefore, � satis�es Ci since xj is a literal in this clause. Assume
that �Xi;k 2 V . If �(xk) = 1, then there is Xi0;k 2 V (i0 2 [1; n]). We have to
consider two cases.

1. If i0 < i, then (r==Xi0;k; f==@li0;i;kg) 2 �. By de�nition of R, @li0;i;k 62
R( �Xi;k). Thus, T 6j= � since there is a node x in T reachable from the root by
following a path in r==Xi0;k such that nodes==@li0;i;k (x) = ;, a contradiction.

2. If i0 > i, then (r== �Xi;k; f==@li;i0;kg) 2 �. By de�nition of R, @li;i0;k 62
R(Xi0;k). Thus, T 6j= � since there is a node x in T reachable from the root by
following a path in r== �Xi;k such that nodes==@li;i0;k (x) = ;, a contradiction.

We conclude that there is no k 2 [1; n] such that Xi0;k 2 V , and, therefore,
�(xk) = 0. Hence, � satis�es Ci since :xk is a literal in this clause. �

Proof of Theorem 2

We will reduce POSITIVE ONE-IN-THREE 3SAT to SAT(D11; C). The input
of POSITIVE ONE-IN-THREE 3SAT is a 3-CNF propositional formula ' over
a set of variables U such that no clause in ' contains a negated literal. The
problem is to determine whether there is a truth assignment for U such that
each clause in ' has exactly one true literal. POSITIVE ONE-IN-THREE 3SAT
is known to be NP-complete [8].

Let ' be a propositional formula C1^� � �^Cn, where Ci (i 2 [1; n]) is a clause
containing 3 positive literals. Assume that ' includes propositional variables x1,
: : :, xm.

We will de�ne a DTD D 2 D11 and a set of constraint � 2 C such that ' is
satis�able i� (D;�) is consistent. De�ne D = (E; A; P; R; r) as follows.



{ E = fr; O; U; V; B; C; L1; L2; L3g.
{ A = f@u;@vg. Notice that jE [ Aj = 11.
{ Function P on the root is de�ned as follows.

P (r) = O; Um; V; Bn; C;

where Um is equal to U= � � � =U
| {z }
m times

and Bn is equal to B= � � � =B
| {z }
n times

.

Function P on inputs V and C is de�ned as follows.

P (V ) = V j�:

P (C) = L1; L2; L3; (Cj�):

For the remaining elements, P is de�ned as �.
{ R(r) = ;, R(V ) = f@u; @vg, R(NV ) = R(NC) = R(C) = f@ug, R(O) =
R(L1) = R(L2) = R(L3) = f@vg.

We de�ne the set of constraints � as follows. � contains foreign keys

(r=NV ; f@ug) �FK (r==V; f@ug);

(r==V; f@ug) �FK (r=NV ; f@ug):

These constraints states that the number of V elements in every XML tree
conforming to D and satisfying � must be m, the number of variables in '.
We use V nodes to store the truth values assigned to each variable in '. Node
r=V=@v stores the value assigned to x1, node r=V=V=@v stores the value assigned
to x2, etc. We use the attribute @v of the O element to store a value representing
the value 1 in a truth assignment. Thus, if the value of r=V=@v is equal to the
value of r=O=@v, we say that 1 has been assigned to x1, otherwise 0 has been
assigned to this variable.

We include in � foreign keys

(r=NC ; f@ug) �FK (r==C; f@ug);

(r==C; f@ug) �FK (r=NC ; f@ug):

These constraints states that the number of C elements in every XML tree
conforming to D and satisfying � must be n, the number of clauses in '. We
use C nodes to represent the clauses in '. Node r=C=Li=@v (i 2 [1; 3]) stores the
value assigned to the ith literal of the clause C1, node r=C=C=Li=@v (i 2 [1; 3])
stores the value assigned to the ith literal of the clause C2, etc. To achieve this,
we include the following constraints in �. Assume that Ci = xi1 _ xi2 _ xi3
(i 2 [1; n]), where i1 < i2 < i3. For each j 2 [1; 3], � includes a foreign key

(r=Ci=Lj ; f@vg) �FK (r=V ij ; f@vg):

Finally, we include a foreign key stating that there is a truth assignment for x1,
: : :, xm such that each clause in ' has exactly one true literal. For each i 2 [1; n],
we include a foreign key

(r=O; f@vg) �FK (r=Ci=L1 [ r=Ci=L2 [ r=Ci=L3; f@vg):



We have to prove that (D;�) is consistent i� there is a truth assignment � for
x1, : : :, xm such that each clause in ' has exactly one true literal. Here, we will
prove only the \only if" direction. The \if" direction is similar.

Assume that T = (V; lab; ele; att; val; root) is an XML tree conforming to
D and satisfying �. De�ne a truth assignment � as follows. Let y be the node
reachable from the root by following path r=O=@v. For each i 2 [1;m], let yi be
the node reachable from the root by following path r=V i=@v. If val(y) = val(yi),
then �(xi) = 1, otherwise, �(xi) = 0.

Let Ci (i 2 [1; n]) be a clause of the form xi1 _ xi2 _ xi3 , where i1 < i2 < i3.
We have to prove that Ci has exactly one true literal. Let y be the node reachable
from the root by following path r=O=@v. Let zj (j 2 [1; 3]) be the node reachable
from the root by following path r=Ci=Lj . Given that

T j= (r=O; f@vg) �FK (r=Ci=L1 [ r=Ci=L2 [ r=Ci=L3; f@vg);

there is k 2 [1; 3] such that val(zk:@v) = val(y). Without loss of generality,
assume that k = 1. Then, given that

T j= (r=Ci=L1 [ r=Ci=L2 [ r=Ci=L3; f@vg);

val(z2:@v) 6= val(z1:@v) and val(z3:@v) 6= val(z1:@v). Thus, given that T j=
(r=Ci=Lj ; f@vg) �FK (r=V ij ; f@vg) (j 2 [1; 3]), by de�nition of � we conclude
that �(xi1 ) = 1, �(xi2 ) = 0 and �(xi3 ) = 0. �


