A Small World Threshold for Economic Network Formation & A Network Formation Game for Bipartite Exchange Economies Even-Dar et al.

Social Networks Seminar Fall 2007

October 9, 2007

イロト イポト イヨト イヨト

Introduction

• Structural properties in social networks

- Structural properties in social networks
- Decentralized network formation

- Structural properties in social networks
- Decentralized network formation
 - stochastic models

- Structural properties in social networks
- Decentralized network formation
 - stochastic models
 - game-theoretic models

Introduction

-

- Structural properties in social networks
- Decentralized network formation
 - stochastic models
 - game-theoretic models
- Properties of the resulting networks

- Structural properties in social networks
- Decentralized network formation
 - stochastic models
 - game-theoretic models
- Properties of the resulting networks
 - expected diameter

Introduction

・ロン ・回 と ・ヨン ・ヨン

-

- Structural properties in social networks
- Decentralized network formation
 - stochastic models
 - game-theoretic models
- Properties of the resulting networks
 - expected diameter
 - price of anarchy

	Outline A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	00	00000
	000	00
00000	00	00000

A Small World Threshold for Economic Network Formation Model Nash Equilibrium and Link Stable Diameter at Equilibrium

A Network Formation Game for Bipartite Exchange Economies

Bipartite Exchange Economies Network Formation Game Characterization of Nash Equilibrium Graphs

Discussion

• *n* players located on a grid, each is uniquely identified with a grid point (x, y), where $1 \le x, y \le \sqrt{n}$.

Outline A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
•0	00000
000	00
00	00000

- *n* players located on a grid, each is uniquely identified with a grid point (x, y), where $1 \le x, y \le \sqrt{n}$.
- The action of player v_i is a_i ∈ {0,1}ⁿ indicating which edges to other players v_i has purchased.

Outline A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
•O	00000
000	00
00	00000

- *n* players located on a grid, each is uniquely identified with a grid point (x, y), where $1 \le x, y \le \sqrt{n}$.
- The action of player v_i is a_i ∈ {0,1}ⁿ indicating which edges to other players v_i has purchased.

イロト 不得 トイヨト イヨト 二日

4/24

• The joint action of all players is $a = a_1 \times \cdots \times a_n$.

Model

- *n* players located on a grid, each is uniquely identified with a grid point (x, y), where $1 \le x, y \le \sqrt{n}$.
- The action of player v_i is a_i ∈ {0,1}ⁿ indicating which edges to other players v_i has purchased.

- The joint action of all players is $a = a_1 \times \cdots \times a_n$.
- The joint action a defines an undirected graph G(a) = (V, E(a)), where $V = \{v_1, \dots, v_n\}$ and $E(a) = \bigcup_{i \in \{1,\dots,n\}} E_i(a_i)$, $E_i(a_i) = \{(v_i, v_j) \mid a_i(j) = 1\}$

Outline A Small World Threshold for E	Economic Network Formation	A Network Formation	Game for	Bipartite	Exchange	Economies
0.		00000				
000		00				
00		00000				

Grid distance $\delta(v_i, v_{i'}) = |x - x'| + |y - y'|$, where v_i at (x, y) and $v_{i'}$ at (x', y').

(日) (四) (三) (三) (三)

Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	0	00000
	000	00
	00	00000

Grid distance $\delta(v_i, v_{i'}) = |x - x'| + |y - y'|$, where v_i at (x, y) and $v_{i'}$ at (x', y'). Edge cost function

$$m{c}(m{v}_i,m{v}_j) = \left\{egin{array}{cc} 0 & \delta(m{v}_i,m{v}_j) = 1\ C\delta(m{v}_i,m{v}_j)^lpha & ext{otherwise} \end{array}
ight.$$

Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	0	00000
	000	00
	00	00000

Grid distance $\delta(v_i, v_{i'}) = |x - x'| + |y - y'|$, where v_i at (x, y) and $v_{i'}$ at (x', y'). Edge cost function

$$c(v_i, v_j) = \left\{egin{array}{cc} 0 & \delta(v_i, v_j) = 1 \ C\delta(v_i, v_j)^lpha & ext{otherwise} \end{array}
ight.$$

Overall cost function c_i of player v_i is defined as

$$c_i(a) = c_i(a_i, a_{-i}) = \sum_{e \in E_i(a_i)} c(e) + \sum_{j=1}^n \Delta_{G(a)}(v_i, v_j)$$

where $\Delta_{G(a)}(u, v)$ is the shortest distance between u and v in G(a).

Nash Equilibrium

Definition

A joint action $a = a_1 \times \cdots \times a_n$ is a *Nash equilibrium* if for every player v_i and any alternative action $\hat{a}_i \in \{0,1\}^n$

$$c_i(a_i, a_{-i}) \leq c_i(\hat{a}_i, a_{-i})$$

イロト 不同下 イヨト イヨト

-

Nash Equilibrium

Definition

A joint action $a = a_1 \times \cdots \times a_n$ is a *Nash equilibrium* if for every player v_i and any alternative action $\hat{a}_i \in \{0, 1\}^n$

$$c_i(a_i, a_{-i}) \leq c_i(\hat{a}_i, a_{-i})$$

If a is a Nash equilibrium, we say that G(a) is an equilibrium graph.

Link Stable

Definition

A joint action $a = a_1 \times \cdots \times a_n$ is *link stable* if for every player v_i and any alternative action $\hat{a}_i \in \{0, 1\}^n$ that differs from a_i in *exactly one coordinate*

$$c_i(a_i, a_{-i}) \leq c_i(\hat{a}_i, a_{-i})$$

イロト 不得 トイヨト イヨト 二日

Link Stable

Definition

A joint action $a = a_1 \times \cdots \times a_n$ is *link stable* if for every player v_i and any alternative action $\hat{a}_i \in \{0, 1\}^n$ that differs from a_i in *exactly one coordinate*

$$c_i(a_i,a_{-i}) \leq c_i(\hat{a}_i,a_{-i})$$

If a is link stable, we say that G(a) is a stable graph. Note: an equilibrium graph is a link stable graph.

Comparison to Other Models

• Fabrikant *et al.*:

Comparison to Other Models

・ロト ・回ト ・ヨト ・ヨト

- Fabrikant *et al.*:
 - constant edge cost α

Comparison to Other Models

ヘロン 人間 とくほと くほとう

- Fabrikant *et al.*:
 - constant edge cost α
 - no notion of locality

Comparison to Other Models

- Fabrikant *et al.*:
 - constant edge cost α
 - no notion of locality
 - same utility function

Comparison to Other Models

・ロン ・回と ・ヨン ・ヨン

- Fabrikant *et al.*:
 - constant edge cost α
 - no notion of locality
 - same utility function
- Kleinberg:

Comparison to Other Models

- Fabrikant *et al.*:
 - constant edge cost α
 - no notion of locality
 - same utility function
- Kleinberg:
 - longer-distance edges have lower probability vs. higher cost

Comparison to Other Models

- Fabrikant *et al.*:
 - constant edge cost α
 - no notion of locality
 - same utility function
- Kleinberg:
 - · longer-distance edges have lower probability vs. higher cost
 - probability & cost both in a power law form

Diameter of equilibrium or link stable graphs

Summary:

• $0 < \alpha < 2$: constant

Diameter of equilibrium or link stable graphs

9/24

Summary:

0 < α < 2: constant

•
$$\alpha > 2$$
: $\Omega(\sqrt{n^{\frac{\alpha-2}{\alpha+1}}})$

Diameter of equilibrium or link stable graphs

イロン イロン イヨン イヨン 二年

9/24

Summary:

- $0 < \alpha < 2$: constant
- $\alpha = 2$: $O(\sqrt{n^{2/\sqrt{\log n}}})$
- $\alpha > 2$: $\Omega(\sqrt{n^{\frac{\alpha-2}{\alpha+1}}})$

Diameter of equilibrium or link stable graphs

Summary:

• $0 < \alpha < 2$: constant

•
$$\alpha = 2$$
: $O(\sqrt{n^{2/\sqrt{\log n}}})$

•
$$\alpha > 2$$
: $\Omega(\sqrt{n^{\frac{\alpha-2}{\alpha+1}}})$

Theorem

For any constant $\epsilon > 0$, if $\alpha = 2 - \epsilon$, then there exists a constant $c(\alpha)$ such that for any n, all Nash Equilibria or link stable graphs over n players have diameter at most $c(\alpha)$.

Constant Diameter Bound for α < 2

イロン イ団 とくほと くほとう

•
$$c(\alpha) = 6c'(\alpha), c'(\alpha) = 3^{\frac{1+2\epsilon_1}{\epsilon_1}}, \epsilon_1 = \frac{\epsilon}{2(2-\epsilon)}$$

Constant Diameter Bound for α < 2

•
$$c(\alpha) = 6c'(\alpha), c'(\alpha) = 3^{\frac{1+2\epsilon_1}{\epsilon_1}}, \epsilon_1 = \frac{\epsilon}{2(2-\epsilon)}$$

• as $\alpha \rightarrow 2$, the constant diameter bound $c(\alpha)$ blows up.

Constant Diameter Bound for α < 2

•
$$c(\alpha) = 6c'(\alpha), c'(\alpha) = 3^{\frac{1+2\epsilon_1}{\epsilon_1}}, \epsilon_1 = \frac{\epsilon}{2(2-\epsilon)}$$

- as $\alpha \rightarrow 2$, the constant diameter bound $c(\alpha)$ blows up.
- better bound for $\alpha \leq 1$:

Constant Diameter Bound for α < 2

•
$$c(\alpha) = 6c'(\alpha), c'(\alpha) = 3^{\frac{1+2\epsilon_1}{\epsilon_1}}, \epsilon_1 = \frac{\epsilon}{2(2-\epsilon)}$$

• as $\alpha \rightarrow 2$, the constant diameter bound $c(\alpha)$ blows up.

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

- better bound for $\alpha \leq 1$:
 - if $\alpha < 1$, then $\Delta_{G(a)}(u, v) \leq 5$;

Constant Diameter Bound for α < 2

•
$$c(\alpha) = 6c'(\alpha), c'(\alpha) = 3^{\frac{1+2\epsilon_1}{\epsilon_1}}, \epsilon_1 = \frac{\epsilon}{2(2-\epsilon)}$$

• as $\alpha \rightarrow 2$, the constant diameter bound $c(\alpha)$ blows up.

- better bound for $\alpha \leq 1$:
 - if $\alpha < 1$, then $\Delta_{G(a)}(u, v) \leq 5$;
 - if $\alpha = 1$, then $\Delta_{\mathcal{G}(a)}(u, v) \leq 2\lceil C^2 + 4 \rceil$.

Outline A Small World Threshold for Economic Network Formati	n A Network Formation Game for Bipartite Exchange Economies
00	00000
000	00
00	00000

A Small World Threshold for Economic Network Formation Model Nash Equilibrium and Link Stable Diameter at Equilibrium

A Network Formation Game for Bipartite Exchange Economies

Bipartite Exchange Economies Network Formation Game Characterization of Nash Equilibrium Graphs

Discussion

• A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.

- A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.
- Each buyer has an infinitely divisible endowment of 1 unit of *cash*;

- A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.
- Each buyer has an infinitely divisible endowment of 1 unit of *cash*;
- each seller has an infinitely divisible endowment of 1 unit of *wheat*.

- A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.
- Each buyer has an infinitely divisible endowment of 1 unit of *cash*;
- each seller has an infinitely divisible endowment of 1 unit of *wheat*.
- Buyers have utility x for x units of wheat and 0 utility of cash;

- A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.
- Each buyer has an infinitely divisible endowment of 1 unit of *cash*;
- each seller has an infinitely divisible endowment of 1 unit of *wheat*.
- Buyers have utility x for x units of wheat and 0 utility of cash;
- Sellers have utility x for x units of cash and 0 utility of wheat.

- A bipartite exchange economy consists of a bipartite graph G = (B, S, E), where nodes in B represent buyers, nodes in S represent sellers, and all edges in E are between B and S.
- Each buyer has an infinitely divisible endowment of 1 unit of *cash*;
- each seller has an infinitely divisible endowment of 1 unit of *wheat*.
- Buyers have utility x for x units of wheat and 0 utility of cash;
- Sellers have utility x for x units of cash and 0 utility of wheat.
- Buyer *b_i* can trade with seller *s_j* if and only if there is an edge between *b_i* and *s_j*.

Let ω_j^s denote the exchange rate (or price), in terms of cash per unit wheat, that seller s_j is offering; Let ω_i^b denote the exchange rate, in terms of wheat per unit cash, that buyer b_i is offering. Let x_{ij} denote the amount of seller s_j 's wheat that buyer b_i consumes.

Let ω_j^s denote the exchange rate (or price), in terms of cash per unit wheat, that seller s_j is offering; Let ω_i^b denote the exchange rate, in terms of wheat per unit cash, that buyer b_i is offering. Let x_{ij} denote the amount of seller s_j 's wheat that buyer b_i consumes.

Definition

A set of exchange rates, $\{\omega_i^b\}$ and $\{\omega_j^s\}$, and consumption plans, $\{x_{ij}\}$, constitutes an *exchange equilibrium* for *G* if the following two conditions hold:

Let ω_j^s denote the exchange rate (or price), in terms of cash per unit wheat, that seller s_j is offering; Let ω_i^b denote the exchange rate, in terms of wheat per unit cash, that buyer b_i is offering. Let x_{ij} denote the amount of seller s_j 's wheat that buyer b_i consumes.

Definition

A set of exchange rates, $\{\omega_i^b\}$ and $\{\omega_j^s\}$, and consumption plans, $\{x_{ij}\}$, constitutes an *exchange equilibrium* for *G* if the following two conditions hold:

1. The market clears, i.e., supply equals demand. More formally, for each seller s_j , $\sum_{b_i \in N(s_j)} x_{ij} = 1$, where $N(s_j) = \{b_i \mid (i,j) \in E\}$.

Let ω_j^s denote the exchange rate (or price), in terms of cash per unit wheat, that seller s_j is offering; Let ω_i^b denote the exchange rate, in terms of wheat per unit cash, that buyer b_i is offering. Let x_{ij} denote the amount of seller s_j 's wheat that buyer b_i consumes.

Definition

A set of exchange rates, $\{\omega_i^b\}$ and $\{\omega_j^s\}$, and consumption plans, $\{x_{ij}\}$, constitutes an *exchange equilibrium* for *G* if the following two conditions hold:

- 1. The market clears, i.e., supply equals demand. More formally, for each seller s_j , $\sum_{b_i \in N(s_j)} x_{ij} = 1$, where $N(s_j) = \{b_i \mid (i,j) \in E\}$.
- 2. For each buyer b_i , the consumption plan $\{x_{ij}\}$ is optimal. That is, $x_{ij} > 0$ if and only if $\omega_j^s = \min_{s_k \in N(b_i)} \omega_k^s$.

• An exchange equilibrium for *G* always exists if each seller has at least one neighboring buyer.

Exchange Equilibrium

- An exchange equilibrium for *G* always exists if each seller has at least one neighboring buyer.
- The equilibrium exchange rates are unique, and at equilibrium, if $x_{ij} > 0$ then $\omega_j^s = 1/\omega_i^b$.

イロト 不同下 イヨト イヨト

14 / 24

Exchange Equilibrium

- An exchange equilibrium for *G* always exists if each seller has at least one neighboring buyer.
- The equilibrium exchange rates are unique, and at equilibrium, if $x_{ij} > 0$ then $\omega_j^s = 1/\omega_i^b$.
- We call each sellers(buyers) exchange rate ω^s_j(ω^b_i) her wealth. There is no wealth variation at exchange equilibrium of a bipartite exchange economy when the wealth of all sellers are equal and the wealth of all buyers are equal.

Exchange Subgraph

Definition

Let G = (B, S, E) be a bipartite exchange economy. Let $\{\omega_i^b\}$, $\{\omega_j^s\}$, and $\{x_{ij}\}$ be an exchange equilibrium. Then, the *exchange* subgraph of G is G' = (B, S, E'), where $E' = \{(i, j) \mid x_{ij} > 0\}$.

Exchange Subgraph

Definition

Let G = (B, S, E) be a bipartite exchange economy. Let $\{\omega_i^b\}$, $\{\omega_j^s\}$, and $\{x_{ij}\}$ be an exchange equilibrium. Then, the *exchange* subgraph of G is G' = (B, S, E'), where $E' = \{(i, j) \mid x_{ij} > 0\}$.

• The exchange subgraph may not be unique.

Exchange Subgraph

Definition

Let G = (B, S, E) be a bipartite exchange economy. Let $\{\omega_i^b\}$, $\{\omega_j^s\}$, and $\{x_{ij}\}$ be an exchange equilibrium. Then, the exchange subgraph of G is G' = (B, S, E'), where $E' = \{(i, j) \mid x_{ij} > 0\}$.

- The exchange subgraph may not be unique.
- Exchange subgraph G' is minimal if the removal of any edge in G' from G changes the exchange equilibrium wealths.

Exchange Subgraph

Definition

Let G = (B, S, E) be a bipartite exchange economy. Let $\{\omega_i^b\}$, $\{\omega_j^s\}$, and $\{x_{ij}\}$ be an exchange equilibrium. Then, the exchange subgraph of G is G' = (B, S, E'), where $E' = \{(i, j) \mid x_{ij} > 0\}$.

- The exchange subgraph may not be unique.
- Exchange subgraph G' is minimal if the removal of any edge in G' from G changes the exchange equilibrium wealths.
- *Trading components*: the connected components of the exchange subgraph. We say that a trading component is (m, k) if there are *m* buyers and *k* sellers.

Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	00	00000
	000	00
	00	00000

In a trading component (m, k), the wealth of each buyer is k/m, and the wealth of each seller is m/k.

Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	00	00000
	000	00
	00	00000

In a trading component (m, k), the wealth of each buyer is k/m, and the wealth of each seller is m/k.

• The graph G that defines the bipartite exchange economy is fixed a priori

Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
	00	00000
	000	00
	00	00000

In a trading component (m, k), the wealth of each buyer is k/m, and the wealth of each seller is m/k.

- The graph G that defines the bipartite exchange economy is fixed a priori
- Other works have studied how the topology of *G* affects the variation in prices.

00 0000 000 00 00 00000	Outline	A Small World Threshold for Economic Network Formation	A Network Formation Game for Bipartite Exchange Economies
			00000
00 0000			
		00	00000

In a trading component (m, k), the wealth of each buyer is k/m, and the wealth of each seller is m/k.

- The graph G that defines the bipartite exchange economy is fixed a priori
- Other works have studied how the topology of *G* affects the variation in prices.
- The interest of this work is to allow players to construct the graph and to characterise the generated networks and the wealth variation.

• Two sets of players: buyer set B and seller set S, where |B| = |S| = n.

- Two sets of players: buyer set B and seller set S, where |B| = |S| = n.
- The action of a buyer b_i is denoted a^b_i ∈ {0,1}ⁿ; The action of a seller s_j is denoted a^s_i ∈ {0,1}ⁿ.

- Two sets of players: buyer set B and seller set S, where |B| = |S| = n.
- The action of a buyer b_i is denoted a^b_i ∈ {0,1}ⁿ; The action of a seller s_j is denoted a^s_i ∈ {0,1}ⁿ.
- An edge (b_i, s_j) is bought by player b_i only if a^b_i(j) = 1; and it is bought by s_j only if a^s_i(i) = 1.

- Two sets of players: buyer set *B* and seller set *S*, where |B| = |S| = n.
- The action of a buyer b_i is denoted a^b_i ∈ {0,1}ⁿ; The action of a seller s_j is denoted a^s_i ∈ {0,1}ⁿ.
- An edge (b_i, s_j) is bought by player b_i only if a^b_i(j) = 1; and it is bought by s_j only if a^s_i(i) = 1.
- Joint action of all players: a = a₁^b × ··· × a_n^b × a₁^s × ··· × a_n^s, which defines a bipartite graph, G(a) = (B, S, E), where E is the set of edges that the players bought.

- Two sets of players: buyer set *B* and seller set *S*, where |B| = |S| = n.
- The action of a buyer b_i is denoted a^b_i ∈ {0,1}ⁿ; The action of a seller s_j is denoted a^s_i ∈ {0,1}ⁿ.
- An edge (b_i, s_j) is bought by player b_i only if a^b_i(j) = 1; and it is bought by s_j only if a^s_i(i) = 1.
- Joint action of all players: a = a₁^b × ··· × a_n^b × a₁^s × ··· × a_n^s, which defines a bipartite graph, G(a) = (B, S, E), where E is the set of edges that the players bought.

•
$$E_i^b(a) = \{(b_i, s_j) \mid a_i^b(j) = 1\}$$
 the set of edges b_i buys;
 $E_j^s(a) = \{(b_i, s_j) \mid a_j^s(i) = 1\}$ the set of edges s_j buys. Then,
 $E = \bigcup_{i \in [n], t \in \{b, s\}} E_i^t(a).$

Nash Equilibrium

 Graph G = G(a) defines a bipartite exchange economy, and an exchange equilibrium of the bipartite exchange economy determines the wealth each player earns, denoted by ω_i^t = ω_i^t(G). The utility of each player is her wealth minus the cost for the edges she bought.

Nash Equilibrium

- Graph G = G(a) defines a bipartite exchange economy, and an exchange equilibrium of the bipartite exchange economy determines the wealth each player earns, denoted by ω^t_i = ω^t_i(G). The utility of each player is her wealth minus the cost for the edges she bought.
- For a player of type $t \in \{b, s\}$, $u_i^t(a) = u_i^t(a_i^t, a_{-i}^t) = \omega_i^t - \alpha |E_i^t|$.

Nash Equilibrium

- Graph G = G(a) defines a bipartite exchange economy, and an exchange equilibrium of the bipartite exchange economy determines the wealth each player earns, denoted by ω^t_i = ω^t_i(G). The utility of each player is her wealth minus the cost for the edges she bought.
- For a player of type $t \in \{b, s\}$, $u_i^t(a) = u_i^t(a_i^t, a_{-i}^t) = \omega_i^t - \alpha |E_i^t|$.
- A joint action *a* is a *Nash equilibrium* if for every player *t_i* we have

$$u_i^t(a_i^t, a_{-i}^t) \geq u_i^t(\hat{a}_i^t, a_{-i}^t)$$

(日) (四) (三) (三) (三)

18/24

for every action \hat{a}_i^t .

Nash Equilibrium

- Graph G = G(a) defines a bipartite exchange economy, and an exchange equilibrium of the bipartite exchange economy determines the wealth each player earns, denoted by ω^t_i = ω^t_i(G). The utility of each player is her wealth minus the cost for the edges she bought.
- For a player of type $t \in \{b, s\}$, $u_i^t(a) = u_i^t(a_i^t, a_{-i}^t) = \omega_i^t - \alpha |E_i^t|$.
- A joint action *a* is a *Nash equilibrium* if for every player *t_i* we have

$$u_i^t(a_i^t, a_{-i}^t) \geq u_i^t(\hat{a}_i^t, a_{-i}^t)$$

for every action \hat{a}_i^t .

• *Equilibrium graph*: the graph induced by a Nash equilibrium action *a*.

Structure of Equilibrium Graphs

Theorem

Let G be a Nash equilibrium graph of the network formation game. Then G is equal to its minimal exchange subgraph.

Structure of Equilibrium Graphs

Theorem

Let G be a Nash equilibrium graph of the network formation game. Then G is equal to its minimal exchange subgraph.

The intuition: if redundant edges existed, the nodes that purchased them can remove them from the graph without affecting their wealth, and thus it is not a Nash equilibrium.

Structure of Equilibrium Graphs

Three types of graphs:

• *Perfect Matching* The class of all perfect matchings between the buyers and sellers. All exchange rates or wealths are equal to 1.

Structure of Equilibrium Graphs

Exploitation Graphs Every trading component has a single player of one type "exploiting" a larger set of players of the other type. For any k, l > 1, G consists of the union of n₁ (1, k), n₂ (1, k + 1), n₃ (l, 1), and n₄ (l + 1, 1) trading components. At most 4 different seller wealth values: 1/k, 1/(k + 1), l, and l + 1.

Structure of Equilibrium Graphs

Balanced Graphs For any k > 2, G consists of the union of n₁ trading components either (k - 1, k) or (k, k + 1) and n₁ trading components either (k, k - 1) or (k + 1, k). At most 4 different seller wealth values: k/(k - 1), (k + 1)/k, (k - 1)/k, and k/(k + 1).

Theorem

Let $NE(n, \alpha)$ be the set of all Nash equilibrium graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n, \alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

Theorem

Let $NE(n, \alpha)$ be the set of all Nash equilibrium graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n, \alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

Proof.

- relate the edge cost α to the minimum exchange equilibrium wealth in any equilibrium graph

Theorem

Let $NE(n, \alpha)$ be the set of all Nash equilibrium graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n, \alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

Proof.

• relate the edge cost α to the minimum exchange equilibrium wealth in any equilibrium graph \Rightarrow provide upper and lower bounds on the edge cost α in terms of the minimum exchange wealth

《曰》 《國》 《臣》 《臣》

Theorem

Let $NE(n, \alpha)$ be the set of all Nash equilibrium graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n, \alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

Proof.

- relate the edge cost α to the minimum exchange equilibrium wealth in any equilibrium graph \Rightarrow provide upper and lower bounds on the edge cost α in terms of the minimum exchange wealth
- These bounds constrain the possible equilibrium graphs

Theorem

Let $NE(n, \alpha)$ be the set of all Nash equilibrium graphs of the network formation game for a fixed population size n and edge cost α , and let NE be the union of $NE(n, \alpha)$ over all n and α . Then the set NE equals the union of classes Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

Proof.

- relate the edge cost α to the minimum exchange equilibrium wealth in any equilibrium graph \Rightarrow provide upper and lower bounds on the edge cost α in terms of the minimum exchange wealth
- These bounds constrain the possible equilibrium graphs
- The remaining possibilities can all be realized

Discussion

Limitations in game-theoretical models

- one-shot, simultaneous move game
- how to reach a Nash equilibrium
- simulation results (Even-Dar and Kearns)
- convergence?
- approximation?
- bounded rationality: satisfice rather than maximize utility