On A Network Creation Game & On Nash Equilibria For a Network Creation Game Fabrikant *et al.* & Albers *et al.*

Social Networks Seminar

October 2nd, 2007

Fabrikant et al. [1]: The Internet

- Nodes select their connections.
- Nodes pay a price for each connection, and want to minimize their expenses.
- Each node wants to be "well connected":

Fabrikant et al. [1]: The Internet

- Nodes select their connections.
- Nodes pay a price for each connection, and want to minimize their expenses.

Each node wants to be "well connected": Short paths to every other node

Fabrikant et al. [1]: The Internet

- Nodes select their connections.
- Nodes pay a price for each connection, and want to minimize their expenses.
- Each node wants to be "well connected": Short paths to every other node

Social Network

Nodes make selfish decisions.

- Nodes make selfish decisions.
- Each minimizes its own cost: payments + connectivity

- Nodes make selfish decisions.
- Each minimizes its own cost: payments + connectivity
- Socially optimal

- Nodes make selfish decisions.
- Each minimizes its own cost: payments + connectivity
- Socially optimal Minimize *sum* of all costs

- Nodes make selfish decisions.
- Each minimizes its own cost: payments + connectivity
- Socially optimal Minimize sum of all costs
- How far from socially optimal?

- Nodes make selfish decisions.
- Each minimizes its own cost: payments + connectivity
- Socially optimal Minimize sum of all costs
- How far from socially optimal? Price of Anarchy (Koutsoupias & Papadimitriou [3])

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Problem Formulation Some Basic Results Upper Bounds on The Price of Anarchy Conclusions

Problem Formulation

A Network Creation Game Nash Equilibria The Price of Anarchy

Some Basic Results

Two Nash Equilibria The Price of Anarchy for some simple cases

Upper Bounds on The Price of Anarchy

Fabrikant et al. Albers et al.

Conclusions

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

n nodes, in set $[n] = \{1, 2, \dots, n\}$

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Strategy S_i of node i: $S_i \subseteq [n] \setminus \{i\}$

・ロ> < 団> < 団> < 団> < □> < □> < □>

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Strategy S_i of node i: $S_i \subseteq [n] \setminus \{i\}$

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Strategy S_i of node i: $S_i \subseteq [n] \setminus \{i\}$

・ロト・(日本・(日本・(日本・(日本・)))

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Strategy S_i of node i: $S_i \subseteq [n] \setminus \{i\}$

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Joint Strategy:
$$\vec{S} = [S_1, S_2, \dots, S_n]$$

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Joint Strategy: $\vec{S} = [S_1, S_2, ..., S_n]$ \vec{S} induces an undirected multigraph $G(\vec{S})$ on [n].

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Let $d_G(i,j)$ be the distance of node *i* to *j* in $G(\vec{S})$

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Cost for node *i*:

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Cost for node *i*: α \$ per edge

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Cost for node *i*: α \$ per edge + sum of all distances from *i*

A Network Creation Game Nash Equilibria The Price of Anarchy

A Network Formation Game [1]

Nodes are rational: Choose connections so that cost is minimized

A Network Creation Game Nash Equilibria The Price of Anarchy

Nash Equilibria

Definition

A joint strategy $\vec{S} = [S_1, \dots, S_n]$ is a (pure) Nash equilibrium if for all $i \in [n]$

$$C_i(\vec{S}) \leq C_i([S_1,\ldots,S_{i-1},S',S_{i+1},\ldots,S_n]), \forall S' \subseteq [n] \setminus \{i\}$$

i.e. assuming that everyone except node i does not change their strategy, i has no incentive to deviate from S_i .

A Network Creation Game Nash Equilibria The Price of Anarchy

A Socially Optimal Strategy

Definition The social cost $C(\vec{S})$ of a joint strategy is

$$C(\vec{S}) = \sum_{i=1}^{n} C_i(\vec{S}).$$

Definition

A joint strategy \vec{S}_{opt} is socially optimal if its social cost is minimal, *i.e.*

$$C(ec{S}_{opt}) \leq C(ec{S})$$

for every joint strategy \vec{S} .

A Network Creation Game Nash Equilibria The Price of Anarchy

The Price of Anarchy

Definition (Koutsoupias and Papadimitriou [3]) The price of anarchy ρ is defined as

$$\rho = \max_{\vec{S} \in \mathcal{N}} \frac{C(\vec{S})}{C(\vec{S}_{opt})}$$

where \mathcal{N} the set of Nash equilibria strategies and \vec{S}_{opt} a socially optimal strategy.

A Network Creation Game Nash Equilibria The Price of Anarchy

The Price of Anarchy

Definition (Koutsoupias and Papadimitriou [3]) The price of anarchy ρ is defined as

1

$$o = \max_{\vec{S} \in \mathcal{N}} \frac{C(\vec{S})}{C(\vec{S}_{opt})}$$

where N the set of Nash equilibria strategies and \vec{S}_{opt} a socially optimal strategy.

Fabrikant *et al.* [1], Albers *et al.* [2]: What is the price of anarchy in the network creation game?

Two Nash Equilibria The Price of Anarchy for some simple cases

Two Nash Equilibria

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < 回 > < < < 回 > < < 回 > < < < 回 > < < < 回 > < < < 回 > < < < 回 > < < 回 > < < < 回 > < < < 回 > < < < = > < < 回 > < < < = > < < 回 > < < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < = > < = > < < = > < = > < < = > < < = > < < = > < < = > < = > < < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = <

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Simple Edges Lemma)

If \vec{S} is a Nash equilibrium, $G(\vec{S})$ is a simple graph, i.e. no connection is paid for twice.

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Simple Edges Lemma)

If \vec{S} is a Nash equilibrium, $G(\vec{S})$ is a simple graph, i.e. no connection is paid for twice.

Proof.

Each node has an incentive to remove its edge.

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Diameter lemma)

If \vec{S} is a Nash equilibrium, the diameter of $G(\vec{S})$ is at most $\alpha + 1$

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Diameter lemma) If \vec{S} is a Nash equilibrium, the diameter of $G(\vec{S})$ is at most $\alpha + 1$

Proof. $d(i,j) > \alpha + 1$

◆□ → ◆□ → ◆三 → ◆三 → 三日 のへの

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Diameter lemma) If \vec{S} is a Nash equilibrium, the diameter of $G(\vec{S})$ is at most $\alpha + 1$

Proof. $d(i,j) > \alpha + 1$

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Diameter lemma) If \vec{S} is a Nash equilibrium, the diameter of $G(\vec{S})$ is at most $\alpha + 1$

Two Nash Equilibria The Price of Anarchy for some simple cases

Corollary

For $\alpha < 1$, \vec{S} is a Nash equilibrium if and only if $G(\vec{S})$ is the complete graph.

Two Nash Equilibria The Price of Anarchy for some simple cases

Corollary

For $\alpha < 1$, \vec{S} is a Nash equilibrium if and only if $G(\vec{S})$ is the complete graph.

Proof.

 $\Leftarrow:$ Removing an edge increase the cost of the node that paid for it by $1-\alpha>$ 0.

12 / 26

(日) (同) (目) (日) (日)
Two Nash Equilibria The Price of Anarchy for some simple cases

Corollary

For $\alpha < 1$, \vec{S} is a Nash equilibrium if and only if $G(\vec{S})$ is the complete graph.

Proof.

⇐: Removing an edge increase the cost of the node that paid for it by $1 - \alpha > 0$. ⇒: The diameter of $G(\vec{S})$ is at most $\alpha + 1$, hence it is 1.

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma For $\alpha \ge 1$, if $G(\vec{S})$ is a star then \vec{S} is a Nash equilibrium.

13/26

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma For $\alpha \ge 1$, if $G(\vec{S})$ is a star then \vec{S} is a Nash equilibrium.

0

Proof.

Removing a red edge makes the cost of the red (center) node ∞ .

Lemma For $\alpha \ge 1$, if $G(\vec{S})$ is a star then \vec{S} is a Nash equilibrium.

Proof.

Removing a red edge makes the cost of the red (center) node ∞ . Removing a blue edge makes the cost of a blue (leaf) node ∞ .

(a)

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma For $\alpha \ge 1$, if $G(\vec{S})$ is a star then \vec{S} is a Nash equilibrium.

Proof.

Removing a red edge makes the cost of the red (center) node ∞ . Removing a blue edge makes the cost of a blue (leaf) node ∞ . There is no incentive to add an edge between two blue nodes, as this changes the cost by $\alpha - 1 \ge 0$.

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma For $\alpha \ge 1$, if $G(\vec{S})$ is a star then \vec{S} is a Nash equilibrium.

Proof.

Removing a red edge makes the cost of the red (center) node ∞ . Removing a blue edge makes the cost of a blue (leaf) node ∞ . There is no incentive to add an edge between two blue nodes, as this changes the cost by $\alpha - 1 \ge 0$. Finally, moving a blue edge to a leaf also increases the cost by n - 3.

Two Nash Equilibria The Price of Anarchy for some simple cases

The Price of Anarchy

14/26

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Simple Edges for Socially Optimum) If \vec{S}_{opt} is a socially optimum strategy, $G(\vec{S}_{opt})$ is a simple graph, *i.e.* no connection is paid for twice.

Two Nash Equilibria The Price of Anarchy for some simple cases

Lemma (Simple Edges for Socially Optimum) If \vec{S}_{opt} is a socially optimum strategy, $G(\vec{S}_{opt})$ is a simple graph, *i.e.* no connection is paid for twice.

Proof.

Dropping the extra edge can only reduce the social cost.

Two Nash Equilibria The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let \vec{S} be a strategy in which no edge is paid for twice. Let \vec{E} be the edge set of $G(\vec{S})$. Then

$$C(\vec{S}) = \alpha |E| + \sum_{i,j} d_G(i,j)$$

Two Nash Equilibria The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let \vec{S} be a strategy in which no edge is paid for twice. Let E be the edge set of $G(\vec{S})$. Then

$$\mathcal{L}(\vec{S}) = lpha |E| + \sum_{i,j} d_G(i,j)$$

 $\geq lpha |E| + \sum_{(i,j) \in E} 1 + \sum_{(i,j) \notin E} 2$

・ロ> <回> <目> <目> <目> <回>

16/26

Two Nash Equilibria The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let \vec{S} be a strategy in which no edge is paid for twice. Let E be the edge set of $G(\vec{S})$. Then

$$\mathcal{L}(\vec{S}) = lpha |E| + \sum_{i,j} d_G(i,j)$$

 $\geq lpha |E| + \sum_{(i,j)\in E} 1 + \sum_{(i,j)\notin E} 2$
 $= lpha |E| + 2|E| + 2(n(n-1) - 2|E|)$

・ロト・西ト・モート 山下 もくの

Two Nash Equilibria The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let \vec{S} be a strategy in which no edge is paid for twice. Let E be the edge set of $G(\vec{S})$. Then

$$\begin{split} \widehat{C}(\vec{S}) &= \alpha |E| + \sum_{i,j} d_G(i,j) \\ &\geq \alpha |E| + \sum_{(i,j) \in E} 1 + \sum_{(i,j) \notin E} 2 \\ &= \alpha |E| + 2|E| + 2(n(n-1) - 2|E|) \\ &= 2n(n-1) + (\alpha - 2)|E| \end{split}$$

16/26

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two Nash Equilibria The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let \vec{S} be a strategy in which no edge is paid for twice. Let \vec{E} be the edge set of $G(\vec{S})$. Then

$$C(\vec{S}) = \alpha |E| + \sum_{i,j} d_G(i,j)$$

$$\geq \alpha |E| + \sum_{(i,j)\in E} 1 + \sum_{(i,j)\notin E} 2$$

$$= \alpha |E| + 2|E| + 2(n(n-1) - 2|E|)$$

$$= 2n(n-1) + (\alpha - 2)|E|$$

The bound becomes tight if the diameter of $G(\vec{S})$ is at most 2

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

For $\alpha < 2$, the complete graph is the socially optimal strategy.

17/26

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

- For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>
- For $1 \le \alpha < 2$, the star is the worst case equilibrium:

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

- For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>
- For 1 ≤ α < 2, the star is the worst case equilibrium:
 Every equilibrium has diameter at most 2 by the Diameter Lemma.

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

- For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>
- For $1 \le \alpha < 2$, the star is the worst case equilibrium:
 - Every equilibrium has diameter at most 2 by the Diameter Lemma.
 - The star has minimum |E|.

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

- For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>
- For $1 \le \alpha < 2$, the star is the worst case equilibrium:
 - Every equilibrium has diameter at most 2 by the Diameter Lemma.

• The star has minimum |E|. Therefore, $\rho = C(\text{star})/C(\text{clique}) \le 4/3$.

Two Nash Equilibria The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

$$C(\vec{S}) \geq 2n(n-1) + (\alpha - 2)|E|$$

- For α < 2, the complete graph is the socially optimal strategy. Therefore, ρ = 1 for α < 1.</p>
- For $1 \le \alpha < 2$, the star is the worst case equilibrium:
 - Every equilibrium has diameter at most 2 by the Diameter Lemma.

• The star has minimum |E|. Therefore, $\rho = C(\text{star})/C(\text{clique}) \le 4/3$.

▶ For $\alpha \ge 2$, the star is a socially optimal strategy.

Fabrikant et al. Albers et al.

For $\alpha > 2$, $C(\vec{S}_{opt}) = C(\text{star}) = \alpha(n-1) + 2n(n-1)$. The worst-case Nash equilibrium is not easy to find.

Fabrikant et al. Albers et al.

For $\alpha > 2$, $C(\vec{S}_{opt}) = C(\text{star}) = \alpha(n-1) + 2n(n-1)$. The worst-case Nash equilibrium is not easy to find.

Theorem (Fabrikant et al. [1])

For $\alpha > n^2$, the price of anarchy $\rho = O(1)$. For $\alpha < n^2$, the price of anarchy is $\rho = O(\sqrt{\alpha})$.

Fabrikant et al. Albers et al.

For $\alpha > 2$, $C(\vec{S}_{opt}) = C(\text{star}) = \alpha(n-1) + 2n(n-1)$. The worst-case Nash equilibrium is not easy to find.

Theorem (Fabrikant et al. [1])

For $\alpha > n^2$, the price of anarchy $\rho = O(1)$. For $\alpha < n^2$, the price of anarchy is $\rho = O(\sqrt{\alpha})$.

Theorem (Fabrikant *et al.* [1]) If, for \vec{S} a Nash equilibrium, $G(\vec{S})$ is a tree, $C(\vec{S})/C(\vec{S}_{opt}) < 5$.

18 / 26

Fabrikant et al. Albers et al.

The Tree Conjecture

Conjecture (Fabrikant et al. [1])

There is a constant A such that, for all $\alpha > A$ every non-transient Nash equilibrium is a tree.

・ロ> <回> <目> <目> <目> <回>

Fabrikant et al. Albers et al.

The Tree Conjecture

Conjecture (Fabrikant *et al.* [1])

There is a constant A such that, for all $\alpha > A$ every non-transient Nash equilibrium is a tree.

Albers *et al.*[2]: The conjecture is not true. For every α , n_0 , there exists for some $n \ge n_0$ a non-transient equilibrium that contains a cycle.

Fabrikant et al. Albers et al.

Theorem (Albers *et al.* [2]) If $\alpha < \sqrt{n}$ or $\alpha > 12n \lceil \log n \rceil$, $\rho = O(1)$. For values in between, it is $O\left(1 + \min\left(\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\right)^{1/3}\right)$.

In particular, for constant α , the price of anarchy is O(1).

The price of anarchy for the network formation game is bounded for non-trivial values of the price α.

- The price of anarchy for the network formation game is bounded for non-trivial values of the price α.
- Selfish nodes create a network not too far from the socially optimal.

Directed edges

- Directed edges
- Fractional cost: Each user pays some price, and the edge is constructed if the total price paid by endpoints exceeds α (Albers *et al*).

- Directed edges
- Fractional cost: Each user pays some price, and the edge is constructed if the total price paid by endpoints exceeds α (Albers *et al*).
- Weighted distances. Each distance d_G(i, j) is weighted by a weight w(i, j) (Albers et al., with non-zero weights)

- Directed edges
- Fractional cost: Each user pays some price, and the edge is constructed if the total price paid by endpoints exceeds α (Albers *et al*).
- Weighted distances. Each distance d_G(i, j) is weighted by a weight w(i, j) (Albers et al., with non-zero weights)
- Non-infinity distance for disconnected nodes.

- Directed edges
- Fractional cost: Each user pays some price, and the edge is constructed if the total price paid by endpoints exceeds α (Albers *et al*).
- Weighted distances. Each distance d_G(i, j) is weighted by a weight w(i, j) (Albers et al., with non-zero weights)
- ► Non-infinity distance for disconnected nodes.
- More general cost functions.

- Directed edges
- Fractional cost: Each user pays some price, and the edge is constructed if the total price paid by endpoints exceeds α (Albers *et al*).
- Weighted distances. Each distance d_G(i, j) is weighted by a weight w(i, j) (Albers et al., with non-zero weights)
- ► Non-infinity distance for disconnected nodes.
- More general cost functions.
- Dynamic: Nodes arrive in stages.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Appendix

References Transient Equilibria An NP-Hardness Result

On a Network Creation Game

Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker. In *PODC*, 2003.

- On Nash Equilibria for a Network Creation Game Suzanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Rodity.
 In SODA, 2006.
- Worst-Case Equilibria. Elias Koutsoupias and Christos H. Papadimitriou. In LNCS 1563:404-413,1999.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
References Transient Equilibria An NP-Hardness Result

Transient Equilibria

Definition

A Nash equilibrium $\vec{S} = [S_1, \dots, S_n]$ is called *weak* if for some $i \in [n]$ there exists an $S' \subseteq [n] \setminus i$ such that

$$C_i(\vec{S}) = C_i([S_1, \ldots, S_{i-1}, S', S_{i+1}, \ldots, S_n]).$$

i.e. assuming that everyone except node i does not change their strategy, i has no incentive to deviate from S_i but there is a strategy towards which it is indifferent.

Definition

An equilibrium \vec{S} is called *transient* if (a) it is weak and (b) there exists a sequence of single player strategy changes which do not alter the changer's payoff leading eventually to a non-equilibrium strategy.

References Transient Equilibria An NP-Hardness Result

A Transient Nash Equilibrium that is not a Tree

Albers *et al.* A (k, ℓ) clique of stars, with $\alpha = \ell$: All edges are bought by the clique nodes.

Appendix

References Transient Equilibria An NP-Hardness Result

An NP-Hardness Result

Theorem (Fabrikant *et al.*)

It is NP-hard, given \vec{S} a joint strategy in [n-1], to compute the best response of an additional node n.

Proof.

Reduction from Dominating Set for $1 < \alpha < 2$.