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A Network Formation Game [1]

n nodes, in set [n] = {1, 2, . . . , n}

1

2

3

45

[5] = {1, 2, 3, 4, 5}
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A Network Formation Game [1]

Joint Strategy: ~S = [S1,S2, . . . ,Sn]
~S induces an undirected multigraph G (~S) on [n].
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Let dG (i , j) be the distance of node i to j in G (~S)

dG (1, 2) = dG (1, 3) = dG (1, 5) = 1

dG (1, 4) = 2
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A Network Formation Game [1]

Cost for node i : α$ per edge

Ci(~S) = α · |Si |+
n∑

j=1

dG (i , j)
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A Network Formation Game [1]

Cost for node i : α$ per edge + sum of all distances from i

Ci(~S) = α · |Si |+
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dG (i , j)
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A Network Formation Game [1]

Nodes are rational: Choose connections so that cost is minimized

Ci(~S) = α · |Si |+
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j=1

dG (i , j)
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Nash Equilibria

Definition
A joint strategy ~S = [S1, . . . ,Sn] is a (pure) Nash equilibrium if for
all i ∈ [n]

Ci (~S) ≤ Ci ([S1, . . . ,Si−1,S
′,Si+1, . . . ,Sn]),∀S ′ ⊆ [n] \ {i}

i.e. assuming that everyone except node i does not change their
strategy, i has no incentive to deviate from Si .
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A Socially Optimal Strategy

Definition
The social cost C (~S) of a joint strategy is

C (~S) =
n∑

i=1

Ci (~S).

Definition
A joint strategy ~Sopt is socially optimal if its social cost is minimal,
i.e.

C (~Sopt) ≤ C (~S)

for every joint strategy ~S .
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The Price of Anarchy

Definition (Koutsoupias and Papadimitriou [3])

The price of anarchy ρ is defined as

ρ = max
~S∈N

C (~S)

C (~Sopt)

where N the set of Nash equilibria strategies and ~Sopt a socially
optimal strategy.

Fabrikant et al. [1], Albers et al. [2]: What is the price of anarchy
in the network creation game?
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Two Nash Equilibria

α < 1 α ≥ 1

Not unique!
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21

Lemma (Simple Edges Lemma)

If ~S is a Nash equilibrium, G (~S) is a simple graph, i.e. no
connection is paid for twice.

Proof.
Each node has an incentive to remove its edge.
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If ~S is a Nash equilibrium, the diameter of G (~S) is at most α + 1
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Lemma (Diameter lemma)

If ~S is a Nash equilibrium, the diameter of G (~S) is at most α + 1

Proof.
d(i , j) > α + 1

i j

C ′
i = Ci − d(i , j) + 1 + α < Ci
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Corollary

For α < 1, ~S is a Nash equilibrium if and only if G (~S) is the
complete graph.

Proof.
⇐: Removing an edge increase the cost of the node that paid for
it by 1− α > 0.

⇒: The diameter of G (~S) is at most α + 1, hence it is 1.
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Two Nash Equilibria
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Lemma
For α ≥ 1, if G (~S) is a star then ~S is a Nash equilibrium.

Proof.
Removing a red edge makes the cost of the red (center) node ∞.

Removing a blue edge makes the cost of a blue (leaf) node ∞.
There is no incentive to add an edge between two blue nodes, as
this changes the cost by α− 1 ≥ 0. Finally, moving a blue edge to
a leaf also increases the cost by n − 3.
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Two Nash Equilibria
The Price of Anarchy for some simple cases

The Price of Anarchy

α < 1 1 ≤ α < 2 2 ≤ α

~Sopt

Wost-Case Nash ?

Price of Anarchy 1 4/3 ?
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The Price of Anarchy for some simple cases

21

Lemma (Simple Edges for Socially Optimum)

If ~Sopt is a socially optimum strategy, G (~Sopt) is a simple graph,
i.e. no connection is paid for twice.

Proof.
Dropping the extra edge can only reduce the social cost.
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Two Nash Equilibria
The Price of Anarchy for some simple cases

A Lower Bound on the Social Cost

Let ~S be a strategy in which no edge is paid for twice. Let E be
the edge set of G (~S). Then

C (~S) = α|E |+
∑
i ,j

dG (i , j)

≥ α|E |+
∑

(i ,j)∈E

1 +
∑

(i ,j)/∈E

2

= α|E |+ 2|E |+ 2(n(n − 1)− 2|E |)
= 2n(n − 1) + (α− 2)|E |

The bound becomes tight if the diameter of G (~S) is at most 2
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Two Nash Equilibria
The Price of Anarchy for some simple cases

Socially Optimal Strategies and the Price of Anarchy

C (~S) ≥ 2n(n − 1) + (α− 2)|E |

I For α < 2, the complete graph is the socially optimal strategy.

Therefore, ρ = 1 for α < 1.

I For 1 ≤ α < 2, the star is the worst case equilibrium:

• Every equilibrium has diameter at most 2
by the Diameter Lemma.
• The star has minimum |E |.

Therefore, ρ = C (star)/C (clique) ≤ 4/3.

I For α ≥ 2, the star is a socially optimal strategy.
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Fabrikant et al.
Albers et al.

For α > 2, C (~Sopt) = C (star) = α(n − 1) + 2n(n − 1). The
worst-case Nash equilibrium is not easy to find.

Theorem (Fabrikant et al. [1])

For α > n2, the price of anarchy ρ = O (1). For α < n2, the price
of anarchy is ρ = O (

√
α).

Theorem (Fabrikant et al. [1])

If, for ~S a Nash equilibrium, G (~S) is a tree, C (~S)/C (~Sopt) < 5.
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The Tree Conjecture

Conjecture (Fabrikant et al. [1])

There is a constant A such that, for all α > A every non-transient
Nash equilibrium is a tree.

Albers et al.[2]: The conjecture is not true. For every α, n0, there
exists for some n ≥ n0 a non-transient equilibrium that contains a
cycle.
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Theorem (Albers et al. [2])

If α <
√

n or α > 12ndlog ne, ρ = O (1). For values in between, it

is O

(
1 + min

(
α2

n , n2

α

)1/3
)

.

In particular, for constant α, the price of anarchy is O (1).

20 / 26



Outline
Problem Formulation
Some Basic Results

Upper Bounds on The Price of Anarchy
Conclusions

Conclusions

I The price of anarchy for the network formation game is
bounded for non-trivial values of the price α.

I Selfish nodes create a network not too far from the socially
optimal.
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Extensions

I Directed edges

I Fractional cost: Each user pays some price, and the edge is
constructed if the total price paid by endpoints exceeds α
(Albers et al).

I Weighted distances. Each distance dG (i , j) is weighted by a
weight w(i , j) (Albers et al., with non-zero weights)

I Non-infinity distance for disconnected nodes.

I More general cost functions.

I Dynamic: Nodes arrive in stages.
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Transient Equilibria

Definition
A Nash equilibrium ~S = [S1, . . . ,Sn] is called weak if for some
i ∈ [n] there exists an S ′ ⊆ [n] \ i such that

Ci (~S) = Ci ([S1, . . . ,Si−1,S
′,Si+1, . . . ,Sn]).

i.e. assuming that everyone except node i does not change their
strategy, i has no incentive to deviate from Si but there is a
strategy towards which it is indifferent.

Definition
An equilibrium ~S is called transient if (a) it is weak and (b) there
exists a sequence of single player strategy changes which do not
alter the changer’s payoff leading eventually to a non-equilibrium
strategy. 24 / 26
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A Transient Nash Equilibrium that is not a Tree

Albers et al. A (k, `) clique of stars, with α = `: All edges are
bought by the clique nodes.
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An NP-Hardness Result

Theorem (Fabrikant et al.)

It is NP-hard, given ~S a joint strategy in [n − 1], to compute the
best response of an additional node n.

Proof.
Reduction from Dominating Set for 1 < α < 2.
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