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Peer-to-peer systems

Collaboration of peers to build scalable decentralized systems
e.g. BitTorrent for file distribution

Problem: many peers are selfish

Minimize own cost

Use a game-theoretic approach to study the effect of selfish
peers on the topology of a P2P system

Price of anarchy: Θ(min(α, n))
Topologies may not converge to a stable state (Nash
equilibrium)
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The Model

Set of n peers: V = {π0, π1, . . . , πn−1}

Distance function d : V × V → [0,∞)

Underlying latencies between all pairs of peers
Metric space M = (V , d)

Network Formation Game

Strategy space of πi : Si = 2V\{πi}

πi maintains or establishes a link to πj if πj ∈ si , where si ∈ Si

s = (s0, . . . , sn−1) ∈ S0 × · · · × Sn−1 yields a directed graph

G [s] =
(
V ,

⋃n−1
i=0 ({πi} × si )

)
describing the P2P topology

In plain English, each peer decides whether to establish a
direct link to each of its other peers
⇒ a directed graph with peers as nodes and links as edges
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The Model

Each peer has a cost function

ci (s) = α · |si |+
∑
i 6=j

stretchG [s](πi , πj)

where

stretchG [s](πi , πj) =
dG (π, π′)

d(π, π′)

d is the direct distance, dG is the sum of underlying latencies
along the shortest path on G
α is a parameter measuring the relative importance between
node degree and stretch in the cost function
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Physical Interpretation

Peers i and j connect with a TCP connection ≡ A direct link
on the P2P topology

Maintaining links takes up bandwidth

⇒ Larger α · |si | (bad)

Disconnected peers communicate through chains of peers ≡
Traversing links on the P2P topology

Long chains are slow

⇒ Larger α · |si | (bad)
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Considerations

Every peer tries to minimize its cost in the game

Nash equilibrium is the strategy combination s such that for
any other combination s ′ which differ in only peer i ’s strategy,
ci (s) ≤ ci (s

′)

No peer has the incentive to deviate (because it cannot gain
by deviating)
Pure Nash equilibrium

Social cost

C (G ) =
∑

i

ci = α|E |+
∑
i 6=j

stretchG (πi , πj)

Price of anarchy =

social cost of worst NE

social cost of optimal topology
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Price of Anarchy
Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space M, the Price of Anarchy is O(min(α, n))

Proof

1 ≤ stretch(π, π′) ≤ α + 1 (if > α + 1, π can establish
direction connection to π′, reducing cost from > α + 1 to
α + 1 )

Max social cost = α · n(n − 1) + n2(α + 1) = O(αn2)

n(n − 1) is the maximum number of edges in G
n2 is the number of (i , j) pairs in G

Min social cost = αn + n2 · 1 = Ω(αn + n2)

n is the minimum number of edges (G must be connected)

Price of anarchy = O(αn2)
Ω(αn+n2)

= O(min(α, n))
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Lower Bound

Lower bound not applicable to all metric spaces

Here we consider M described by n points on a real line (1D
Euclidean space)
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Price of Anarchy
Existence of Nash Equilibria

Lower Bound

Lemma 4.2

The topology G shown in Figure 1 forms a Nash equilibrium for
α ≥ 3.4

Lemma 4.3

The social cost C (G ) of the topology G shown in Figure 1 is
C (G ) ∈ Θ(αn2)

Theorem 4.4

The Price of Anarchy of the peer topology G shown in Figure 1 is
Θ(min(α, n))
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Price of Anarchy
Existence of Nash Equilibria

Main Theorem

Theorem 5.1

Regardless of the magnitude of α, there are metric spaces M, for
which there exists no pure Nash equilibrium, i.e. certain P2P
networks cannot converge to a stable state. This is the case even if
M is a 2-dimensional Euclidean space.
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Price of Anarchy
Existence of Nash Equilibria

Complexity

Theorem 6.1

Regardless of the magnitude of α, determining whether a given
P2P network represented by a metric space M has a pure Nash
equilibrium (and can therefore stabilize) is NP-hard.
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To Find Stable Wirings

Definitions

I Set of nodes: V = {v1, v2, ..., vn}
I Edge e = {vi , vj}: Directed and Weighted

I Preference vector: pi = {pi1, pi2, ..., pii−1, pii+1, pin}
I Wiring of vi : si = {vi1 , vi2 , ..., viki

}
I Global Wiring: S = {s1, s2, ..., sn}
I Cost between vi , vj over S : dS(vi , vj)

I Cost of vi under S : Ci (S) =
n∑

j=1,j 6=i

pij × dS(vi , vj)

4 / 18
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I The Selfish Neighbor Selection (SNS) Game: 〈V , {Si}, {Ci}〉
I Residual wiring: S−i = S − {si}

I Best Response: A wiring
si ∈ Si s.t. Ci (S−i + {si}) ≤ Ci (S−i + {si ′}),∀s ′i 6= si

I Stable Wiring: A global wiring S is stable iff all individual
wirings are best responses.

(Nash Equilibrium of the SNS game)
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Modeling Wirings

I For a node vi

I Yl ∈ {0, 1}n−1: if vi wires to vl

I Xlj ∈ {0, 1}n−1: if vi has vl as a first-hop neighbor to vj

I BR for vi under S−i , an Integer Linear Program
I Minimize:

Ci (S−i ,X ) =
n∑

j=1,j 6=i

pij

n∑
l=1,l 6=i

Xlj × (dil + dS−i (vl , vj))

I Subject to:
n∑

l=1,l 6=i

Xlj = 1,∀j 6= i and
n∑

l=1,l 6=i

Yl = ki and Xij ≤ Yl ,∀l , j 6= i

I NP-Hard
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I When all the wires have the same unitary weight...

I Find a node’s BR ⇒ Solving a k-median problem
I Definition: Asymmetric k-median

I Select up to k nodes to act as median so as to minimize..

C (V ′, k,w) =
∑
∀vj∈V ′

wj × dS′(vj ,m(vj))

m(vj) is the median that is closest to vj
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To Find Stable Wirings

I Iterative Best Response

At the m-th iteration, for all nodes, do

1. vi computes its best response s
(m)
i to S

(m,i−1)
−i

2. S (m,i) = S
(m,i−1)
−i + {s(m)

i }
3. Do this until iteration M: s

(M)
i = s

(M−1)
i , ∀vi ∈ V

8 / 18



Preface
Problem Formulation

Characterization and Performance
Conclusion

Characterization of Stable Wirings
Performance of Newcomers

Characterization of Stable Wirings

I Two key scaling parameters:

I α ∈ [0, 1]: non-uniformity (skewness) in popularity (Zipf with
parameter α)

I qi = Λ/iα, where Λ = (
nX

i′=1

1

i ′α
)−1

I β ∈ [0, 1]: link density
I Out-degree of each node: k = dnβe
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Characterization of Stable Wirings

Note: “Hubs”
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Performance of Newcomers

Performance of Newcomers: the cost

I Three kinds of Wiring Strategies
I Best Response: selfish

I k-Closest: selfish
I k-Random: not very selfish

I Newcomers using different strategies entering graphs
constructed by different strategies.
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Newcomers to a k-random graph

It pays to “cheat”.
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Performance of Newcomers

Newcomers to a BR graph
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Characterization of Stable Wirings
Performance of Newcomers

Knowledge Gained

I For prior arrivals: it is good to be selfish.

I For newcomers: should be careful.
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I A: theoretical analysis of the properties of the game

I B: more practical, giving how to wire

I Common points in topology: directed, weighted edges

I Difference: A: unbounded degree B: bounded degree

I A: Trade-off between degree and distance

I B: The optimization under certain restrictions
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I A: Nash Equilibrium may not exist.

I B: (It seems) we can always find an N.E.
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Conclusion on Papers A and B

I Extension

I The joining (or leaving) of players.

I Using different strategies in a single network.
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