On the Topologies Formed by Selfish Peers Mocsibroda, Schmid, Wattenhofer

Social Networks Seminar Fall 2007

Oct 16, 2007

1/13

(日) (回) (E) (E) (E) (E)

Introduction

- Peer-to-peer systems
 - Collaboration of peers to build scalable decentralized systems
 - e.g. BitTorrent for file distribution

Introduction

- Peer-to-peer systems
 - Collaboration of peers to build scalable decentralized systems
 - e.g. BitTorrent for file distribution
- Problem: many peers are selfish
 - Minimize own cost

Introduction

- Peer-to-peer systems
 - Collaboration of peers to build scalable decentralized systems
 - e.g. BitTorrent for file distribution
- Problem: many peers are selfish
 - Minimize own cost
- Use a *game-theoretic* approach to study the effect of selfish peers on the topology of a P2P system

2/13

Introduction

- Peer-to-peer systems
 - Collaboration of peers to build scalable decentralized systems
 - e.g. BitTorrent for file distribution
- Problem: many peers are selfish
 - Minimize own cost
- Use a *game-theoretic* approach to study the effect of selfish peers on the topology of a P2P system
 - Price of anarchy: $\Theta(\min(\alpha, n))$
 - Topologies may not converge to a stable state (Nash equilibrium)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The Model Physical Interpretation Considerations

The Model

• Set of *n* peers: $V = \{\pi_0, \pi_1, \dots, \pi_{n-1}\}$

The Model Physical Interpretation Considerations

イロト イロト イヨト イヨト 二座

3/13

The Model

- Set of *n* peers: $V = \{\pi_0, \pi_1, \dots, \pi_{n-1}\}$
- Distance function $d: V \times V \rightarrow [0,\infty)$
 - Underlying latencies between all pairs of peers
 - Metric space $\mathcal{M} = (V, d)$

The Model Physical Interpretation Considerations

The Model

- Set of *n* peers: $V = \{\pi_0, \pi_1, ..., \pi_{n-1}\}$
- Distance function $d: V \times V \rightarrow [0,\infty)$
 - Underlying latencies between all pairs of peers
 - Metric space $\mathcal{M} = (V, d)$
- Network Formation Game
 - Strategy space of π_i : $S_i = 2^{V \setminus {\pi_i}}$
 - π_i maintains or establishes a link to π_j if $\pi_j \in s_i$, where $s_i \in S_i$

3/13

• $s = (s_0, \dots, s_{n-1}) \in S_0 \times \dots \times S_{n-1}$ yields a directed graph $G[s] = \left(V, \bigcup_{i=0}^{n-1} (\{\pi_i\} \times s_i)\right)$ describing the P2P topology

The Model Physical Interpretation Considerations

The Model

- Set of *n* peers: $V = \{\pi_0, \pi_1, \dots, \pi_{n-1}\}$
- Distance function $d: V \times V \rightarrow [0,\infty)$
 - Underlying latencies between all pairs of peers
 - Metric space $\mathcal{M} = (V, d)$
- Network Formation Game
 - Strategy space of π_i : $S_i = 2^{V \setminus {\pi_i}}$
 - π_i maintains or establishes a link to π_j if $\pi_j \in s_i$, where $s_i \in S_i$
 - $s = (s_0, \ldots, s_{n-1}) \in S_0 \times \cdots \times S_{n-1}$ yields a directed graph $G[s] = \left(V, \bigcup_{i=0}^{n-1} (\{\pi_i\} \times s_i)\right)$ describing the P2P topology

In plain English, each peer decides whether to establish a direct link to each of its other peers

 \Rightarrow a directed graph with peers as nodes and links as edges

The Model Physical Interpretation Considerations

(ロ) (回) (E) (E) (E)

4/13

The Model

• Each peer has a cost function

$$c_i(s) = \alpha \cdot |s_i| + \sum_{i \neq j} stretch_{G[s]}(\pi_i, \pi_j)$$

where

$$stretch_{G[s]}(\pi_i,\pi_j) = \frac{d_G(\pi,\pi')}{d(\pi,\pi')}$$

The Model Physical Interpretation Considerations

The Model

• Each peer has a cost function

$$c_i(s) = \alpha \cdot |s_i| + \sum_{i \neq j} stretch_{G[s]}(\pi_i, \pi_j)$$

where

$$stretch_{G[s]}(\pi_i,\pi_j) = rac{d_G(\pi,\pi')}{d(\pi,\pi')}$$

• *d* is the direct distance, *d_G* is the sum of underlying latencies along the shortest path on *G*

イロン イロン イヨン イヨン 一道

The Model Physical Interpretation Considerations

The Model

• Each peer has a cost function

$$c_i(s) = lpha \cdot |s_i| + \sum_{i \neq j} stretch_{G[s]}(\pi_i, \pi_j)$$

where

$$stretch_{G[s]}(\pi_i,\pi_j) = rac{d_G(\pi,\pi')}{d(\pi,\pi')}$$

- *d* is the direct distance, *d*_{*G*} is the sum of underlying latencies along the shortest path on *G*
- α is a parameter measuring the relative importance between node degree and stretch in the cost function

The Model Physical Interpretation Considerations

Physical Interpretation

 Peers *i* and *j* connect with a TCP connection ≡ A direct link on the P2P topology

The Model Physical Interpretation Considerations

- Peers i and j connect with a TCP connection = A direct link on the P2P topology
 - Maintaining links takes up bandwidth

The Model Physical Interpretation Considerations

- Peers i and j connect with a TCP connection = A direct link on the P2P topology
 - Maintaining links takes up bandwidth \Rightarrow Larger $\alpha \cdot |s_i|$ (bad)

The Model Physical Interpretation Considerations

- Peers i and j connect with a TCP connection = A direct link on the P2P topology
 - Maintaining links takes up bandwidth
 - \Rightarrow Larger $\alpha \cdot |s_i|$ (bad)
- Disconnected peers communicate through chains of peers \equiv Traversing links on the P2P topology

The Model Physical Interpretation Considerations

- Peers i and j connect with a TCP connection = A direct link on the P2P topology
 - Maintaining links takes up bandwidth
 - \Rightarrow Larger $\alpha \cdot |s_i|$ (bad)
- Disconnected peers communicate through chains of peers \equiv Traversing links on the P2P topology
 - Long chains are slow

The Model Physical Interpretation Considerations

Physical Interpretation

- Peers i and j connect with a TCP connection = A direct link on the P2P topology
 - Maintaining links takes up bandwidth

 \Rightarrow Larger $\alpha \cdot |s_i|$ (bad)

- Disconnected peers communicate through chains of peers \equiv Traversing links on the P2P topology
 - Long chains are slow

 $\Rightarrow \mathsf{Larger} \ \alpha \cdot |\mathbf{s}_i| \ \mathsf{(bad)}$

The Model Physical Interpretation Considerations

Considerations

• Every peer tries to minimize its cost in the game

The Model Physical Interpretation Considerations

Considerations

- Every peer tries to minimize its cost in the game
- Nash equilibrium is the strategy combination s such that for any other combination s' which differ in only peer i's strategy, $c_i(s) \le c_i(s')$

The Model Physical Interpretation Considerations

Considerations

- Every peer tries to minimize its cost in the game
- Nash equilibrium is the strategy combination s such that for any other combination s' which differ in only peer i's strategy, $c_i(s) \le c_i(s')$
 - No peer has the incentive to deviate (because it cannot gain by deviating)
 - Pure Nash equilibrium

The Model Physical Interpretation Considerations

Considerations

- Every peer tries to minimize its cost in the game
- Nash equilibrium is the strategy combination s such that for any other combination s' which differ in only peer i's strategy, $c_i(s) \le c_i(s')$
 - No peer has the incentive to deviate (because it cannot gain by deviating)
 - Pure Nash equilibrium
- Social cost

$$C(G) = \sum_{i} c_i = \alpha |E| + \sum_{i \neq j} stretch_G(\pi_i, \pi_j)$$

< □ > < @ > < 注 > < 注 > ... 注

The Model Physical Interpretation Considerations

Considerations

- Every peer tries to minimize its cost in the game
- Nash equilibrium is the strategy combination s such that for any other combination s' which differ in only peer i's strategy, $c_i(s) \le c_i(s')$
 - No peer has the incentive to deviate (because it cannot gain by deviating)
 - Pure Nash equilibrium
- Social cost

$$C(G) = \sum_{i} c_i = \alpha |E| + \sum_{i \neq j} stretch_G(\pi_i, \pi_j)$$

Price of anarchy =

social cost of worst NE social cost of optimal topology

(日) (同) (E) (E) (E)

Price of Anarchy Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space \mathcal{M} , the Price of Anarchy is $O(\min(\alpha, n))$

Proof

Price of Anarchy Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space \mathcal{M} , the Price of Anarchy is $O(\min(\alpha, n))$

Proof

• $1 \leq stretch(\pi, \pi') \leq \alpha + 1$ (if $> \alpha + 1$, π can establish direction connection to π' , reducing cost from $> \alpha + 1$ to $\alpha + 1$)

(日) (同) (E) (E) (E) (E)

Price of Anarchy Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space \mathcal{M} , the Price of Anarchy is $O(\min(\alpha, n))$

Proof

- $1 \leq stretch(\pi, \pi') \leq \alpha + 1$ (if $> \alpha + 1$, π can establish direction connection to π' , reducing cost from $> \alpha + 1$ to $\alpha + 1$)
- Max social cost = $\alpha \cdot n(n-1) + n^2(\alpha + 1) = O(\alpha n^2)$
 - n(n-1) is the maximum number of edges in G
 - n^2 is the number of (i, j) pairs in G

(日) (同) (E) (E) (E) (E)

Price of Anarchy Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space \mathcal{M} , the Price of Anarchy is $O(\min(\alpha, n))$

Proof

- $1 \leq stretch(\pi, \pi') \leq \alpha + 1$ (if $> \alpha + 1$, π can establish direction connection to π' , reducing cost from $> \alpha + 1$ to $\alpha + 1$)
- Max social cost = $\alpha \cdot n(n-1) + n^2(\alpha + 1) = O(\alpha n^2)$
 - n(n-1) is the maximum number of edges in G
 - n^2 is the number of (i, j) pairs in G
- Min social cost = $\alpha n + n^2 \cdot 1 = \Omega(\alpha n + n^2)$
 - *n* is the minimum number of edges (*G* must be connected)

Price of Anarchy Existence of Nash Equilibria

Upper Bound

Theorem 4.1 (Upper bound)

For any metric space \mathcal{M} , the Price of Anarchy is $O(\min(\alpha, n))$

Proof

- $1 \leq stretch(\pi, \pi') \leq \alpha + 1$ (if $> \alpha + 1$, π can establish direction connection to π' , reducing cost from $> \alpha + 1$ to $\alpha + 1$)
- Max social cost = $\alpha \cdot n(n-1) + n^2(\alpha + 1) = O(\alpha n^2)$
 - n(n-1) is the maximum number of edges in G
 - n^2 is the number of (i, j) pairs in G
- Min social cost = $\alpha n + n^2 \cdot 1 = \Omega(\alpha n + n^2)$
 - *n* is the minimum number of edges (*G* must be connected)
- Price of anarchy = $\frac{O(\alpha n^2)}{\Omega(\alpha n + n^2)} = O(\min(\alpha, n))$

Price of Anarchy Existence of Nash Equilibria

• Lower bound not applicable to all metric spaces

Price of Anarchy Existence of Nash Equilibria

Lower Bound

- Lower bound not applicable to all metric spaces
- Here we consider \mathcal{M} described by *n* points on a real line (1D Euclidean space)

Price of Anarchy Existence of Nash Equilibria

Lower Bound

- Lower bound not applicable to all metric spaces
- Here we consider \mathcal{M} described by *n* points on a real line (1D Euclidean space)

Figure 1: Example topology G where the Price of Anarchy is $\Theta(\min(\alpha, n))$ for $3.4 \le \alpha$.

Price of Anarchy Existence of Nash Equilibria

Lower Bound

Lemma 4.2

The topology G shown in Figure 1 forms a Nash equilibrium for $\alpha \geq 3.4$

Lemma 4.3

The social cost C(G) of the topology G shown in Figure 1 is $C(G) \in \Theta(\alpha n^2)$

Theorem 4.4

The Price of Anarchy of the peer topology G shown in Figure 1 is $\Theta(\min(\alpha, n))$

Price of Anarchy Existence of Nash Equilibria

Main Theorem

Theorem 5.1

Regardless of the magnitude of α , there are metric spaces \mathcal{M} , for which there exists no pure Nash equilibrium, i.e. certain P2P networks cannot converge to a stable state. This is the case even if \mathcal{M} is a 2-dimensional Euclidean space.

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

Price of Anarchy Existence of Nash Equilibria

Illustration

Figure 2: Instance I_k has no pure Nash equilibrium when $\alpha = 0.6k$, where k = n/5. The number of peers in each cluster is k.

Price of Anarchy Existence of Nash Equilibria

Complexity

Theorem 6.1

Regardless of the magnitude of α , determining whether a given P2P network represented by a metric space \mathcal{M} has a pure Nash equilibrium (and can therefore stabilize) is NP-hard.

Conclusion

- Comparison with Fabrikant et al's paper
 - Directed instead of undirected links
 - Consider underlying latencies instead of hop count
 - Proved pure Nash equilibria may not exist
Introduction Problem Formulation Major Results Conclusion

Conclusion

- Comparison with Fabrikant et al's paper
 - Directed instead of undirected links
 - Consider underlying latencies instead of hop count
 - Proved pure Nash equilibria may not exist
- Game-theoretic model of a P2P system

・ロン ・回 と ・ ヨン ・ ヨン

Introduction Problem Formulation Major Results Conclusion

Conclusion

- Comparison with Fabrikant et al's paper
 - Directed instead of undirected links
 - Consider underlying latencies instead of hop count

・ロン ・回 と ・ ヨン ・ ヨン

13/13

- Proved pure Nash equilibria may not exist
- Game-theoretic model of a P2P system
- Bounds of Price of Anarchy

Introduction Problem Formulation Major Results Conclusion

Conclusion

- Comparison with Fabrikant et al's paper
 - Directed instead of undirected links
 - Consider underlying latencies instead of hop count
 - Proved pure Nash equilibria may not exist
- Game-theoretic model of a P2P system
- Bounds of Price of Anarchy
- (Non-)Existence of Nash equilibria

・ロト ・回ト ・ヨト ・ヨト

Implications of Selfish Neighbor Selection in Overlay Networks N. Laoutaris, G. Smaragdakis, A. Bestavros and J. Byers

Social Networks Seminar

October 16th, 2007

1/18

イロト イヨト イヨト イヨト 二日

Problem Formulation Characterization and Performance Conclusion

Motivation

Motivation Scope and Contribution

▶ Neighbor Selection: Key problem.

Problem Formulation Characterization and Performance Conclusion Motivation Scope and Contribution

Motivation

- Neighbor Selection: Key problem.
- Previous Work:
 - undirected edges
 - hop-count based cost
 - unbounded degree
 - PRACTICAL INTEREST?

Problem Formulation Characterization and Performance Conclusion Motivation Scope and Contribution

Motivation

- Neighbor Selection: Key problem.
- Previous Work:
 - undirected edges
 - hop-count based cost
 - unbounded degree
 - PRACTICAL INTEREST?
- Players do not play in a socially optimal way: selfish

(日) (同) (E) (E) (E)

Problem Formulation Characterization and Performance Conclusion Motivation Scope and Contribution

イロト イロト イヨト イヨト 二座

3/18

Scope and Contributions

▶ More practical model: for P2P and overlay routing application

- Bounded Degree
- Directed Edges
- Non-uniform Preference Vectors
- Weighted Edges

Problem Formulation Characterization and Performance Conclusion Motivation Scope and Contribution

Scope and Contributions

▶ More practical model: for P2P and overlay routing application

- Bounded Degree
- Directed Edges
- Non-uniform Preference Vectors
- Weighted Edges

Wiring Strategy: "Best Response"

Problem Formulation Characterization and Performance Conclusion Motivation Scope and Contribution

Scope and Contributions

▶ More practical model: for P2P and overlay routing application

- Bounded Degree
- Directed Edges
- Non-uniform Preference Vectors
- Weighted Edges
- Wiring Strategy: "Best Response"
- Experimental Results

・ロ・・日・・日・・日・ 日・ シュマ

Definitions Modeling Wirings To Find Stable Wirings

- Set of nodes: $V = \{v_1, v_2, ..., v_n\}$
- Edge $e = \{v_i, v_j\}$: Directed and Weighted
- ▶ Preference vector: $p_i = \{p_{i1}, p_{i2}, ..., p_{ii-1}, p_{ii+1}, p_{in}\}$
- Wiring of v_i : $s_i = \{v_{i_1}, v_{i_2}, ..., v_{i_{k_i}}\}$
- Global Wiring: $S = \{s_1, s_2, ..., s_n\}$
- Cost between v_i, v_j over S: $d_S(v_i, v_j)$
- Cost of v_i under S: $C_i(S) = \sum_{j=1, j \neq i}^{n} p_{ij} \times d_S(v_i, v_j)$

Definitions Modeling Wirings To Find Stable Wirings

イロト イロト イヨト イヨト 二座

5/18

- ▶ The Selfish Neighbor Selection (SNS) Game: $\langle V, \{S_i\}, \{C_i\} \rangle$
- Residual wiring: $S_{-i} = S \{s_i\}$

Definitions Modeling Wirings To Find Stable Wirings

- The Selfish Neighbor Selection (SNS) Game: $\langle V, \{S_i\}, \{C_i\} \rangle$
- Residual wiring: $S_{-i} = S \{s_i\}$
- ▶ Best Response: A wiring $s_i \in S_i \ s.t. \ C_i(S_{-i} + \{s_i\}) \le C_i(S_{-i} + \{s_{i'}\}), \forall s'_i \neq s_i$

Definitions Modeling Wirings To Find Stable Wirings

- The Selfish Neighbor Selection (SNS) Game: $\langle V, \{S_i\}, \{C_i\} \rangle$
- Residual wiring: $S_{-i} = S \{s_i\}$
- ▶ Best Response: A wiring $s_i \in S_i \ s.t. \ C_i(S_{-i} + \{s_i\}) \le C_i(S_{-i} + \{s_{i'}\}), \forall s'_i \neq s_i$
- Stable Wiring: A global wiring S is stable iff all individual wirings are best responses.

Definitions Modeling Wirings To Find Stable Wirings

Definitions

- The Selfish Neighbor Selection (SNS) Game: $\langle V, \{S_i\}, \{C_i\} \rangle$
- Residual wiring: $S_{-i} = S \{s_i\}$
- ▶ Best Response: A wiring $s_i \in S_i \ s.t. \ C_i(S_{-i} + \{s_i\}) \le C_i(S_{-i} + \{s_{i'}\}), \forall s'_i \neq s_i$
- Stable Wiring: A global wiring S is stable iff all individual wirings are best responses.

(Nash Equilibrium of the SNS game)

(ロ) (同) (E) (E) (E) (O)(C)

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

- For a node v_i
 - $Y_l \in \{0,1\}^{n-1}$: if v_i wires to v_l
 - $X_{lj} \in \{0,1\}^{n-1}$: if v_i has v_l as a first-hop neighbor to v_j

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

For a node v; • $Y_{l} \in \{0, 1\}^{n-1}$: if v_{i} wires to v_{l} • $X_{i} \in \{0,1\}^{n-1}$: if v_i has v_i as a first-hop neighbor to v_i \triangleright BR for v_i under S_{-i}, an Integer Linear Program Minimize: $C_i(S_{-i}, X) = \sum p_{ij} \sum X_{lj} \times (d_{il} + d_{S_{-i}}(v_l, v_j))$ $i=1, i\neq i$ $l=1, l\neq i$ Subject to: $\sum_{i=1}^{n} X_{ij} = 1, \forall j \neq i \text{ and } \sum_{i=1}^{n} Y_{i} = k_{i} \text{ and } X_{ij} \leq Y_{i}, \forall i, j \neq i$ $l=1, l\neq i$ $l=1, l\neq i$

・ロ・・聞・・聞・・聞・ 「聞・く日・

6/18

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

For a node v; • $Y_{l} \in \{0, 1\}^{n-1}$: if v_{i} wires to v_{l} • $X_{i} \in \{0,1\}^{n-1}$: if v_i has v_i as a first-hop neighbor to v_i \triangleright BR for v_i under S_{-i}, an Integer Linear Program Minimize: $C_i(S_{-i}, X) = \sum p_{ij} \sum X_{lj} \times (d_{il} + d_{S_{-i}}(v_l, v_j))$ $j=1, j\neq i$ $l=1, l\neq i$ Subject to: $\sum_{i=1}^{n} X_{ij} = 1, \forall j \neq i \text{ and } \sum_{i=1}^{n} Y_{i} = k_{i} \text{ and } X_{ij} \leq Y_{i}, \forall i, j \neq i$ $l=1, l\neq i$ $l=1, l\neq i$ NP-Hard

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

When all the wires have the same unitary weight...

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

- ▶ When all the wires have the same unitary weight...
- ▶ Find a node's BR ⇒ Solving a *k*-median problem

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

- When all the wires have the same unitary weight...
- ▶ Find a node's BR ⇒ Solving a *k*-median problem
- Definition: Asymmetric k-median

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

- When all the wires have the same unitary weight...
- Find a node's BR \Rightarrow Solving a *k*-median problem
- Definition: Asymmetric k-median
 - Select up to k nodes to act as median so as to minimize...

$$C(V', k, w) = \sum_{\forall v_j \in V'} w_j \times d_{S'}(v_j, m(v_j))$$

 $m(v_j)$ is the median that is closest to v_j

・ロシ ・御シ ・ヨシ ・ヨシ 三連

Definitions Modeling Wirings To Find Stable Wirings

Modeling Wirings

- When all the wires have the same unitary weight...
- Find a node's BR \Rightarrow Solving a *k*-median problem
- Definition: Asymmetric k-median
 - Select up to k nodes to act as median so as to minimize...

$$C(V', k, w) = \sum_{\forall v_j \in V'} w_j \times d_{S'}(v_j, m(v_j))$$

 $m(v_j)$ is the median that is closest to v_j

NP-Hard

イロン イロン イヨン イヨン 一道

Definitions Modeling Wirings To Find Stable Wirings

To Find Stable Wirings

Iterative Best Response

At the *m*-th iteration, for all nodes, do

1.
$$v_i$$
 computes its best response $s_i^{(m)}$ to $S_{-i}^{(m,i-1)}$
2. $S^{(m,i)} = S_{-i}^{(m,i-1)} + \{s_i^{(m)}\}$
3. Do this until iteration \mathcal{M} : $s_i^{(\mathcal{M})} = s_i^{(\mathcal{M}-1)}, \forall v_i \in V$

Characterization of Stable Wirings Performance of Newcomers

Characterization of Stable Wirings

Two key scaling parameters:

Characterization of Stable Wirings Performance of Newcomers

・ロシ ・御シ ・ヨシ ・ヨシ 三連

9/18

Characterization of Stable Wirings

- Two key scaling parameters:
 - α ∈ [0, 1]: non-uniformity (skewness) in popularity (Zipf with parameter α)

•
$$q_i = \Lambda/i^{lpha}$$
, where $\Lambda = (\sum_{i'=1}^n \frac{1}{i'^{lpha}})^{-1}$

Characterization of Stable Wirings Performance of Newcomers

Characterization of Stable Wirings

- Two key scaling parameters:
 - α ∈ [0, 1]: non-uniformity (skewness) in popularity (Zipf with parameter α)

•
$$q_i = \Lambda/i^{lpha}$$
, where $\Lambda = (\sum_{i'=1}^n \frac{1}{i'^{lpha}})^{-1}$

•
$$\beta \in [0, 1]$$
: link density

• Out-degree of each node: $k = \lceil n^{\beta} \rceil$

イロン イロン イヨン イヨン 一道

Characterization of Stable Wirings Performance of Newcomers

Characterization of Stable Wirings

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers: the cost

Three kinds of Wiring Strategies

- Best Response: selfish
- k-Closest: selfish
- k-Random: not very selfish

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers: the cost

- Three kinds of Wiring Strategies
 - Best Response: selfish
 - k-Closest: selfish
 - k-Random: not very selfish
- Newcomers using different strategies entering graphs constructed by different strategies.

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers

Newcomers to a *k*-random graph BRITE

on a k-Random graph with n nodes

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers

Newcomers to a *k*-random graph BRITE

on a k-Random graph with n nodes

It pays to "cheat".

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers

It does NOT pay to cheat, it may even hurt!

Characterization of Stable Wirings Performance of Newcomers

Performance of Newcomers

Newcomers to a BR graph

on a Best Response graph with n nodes 1.8 c(k-Random)/c(BR) c(k-Closest)/c(BR) newcomer's cost ratio 1.7 -----1.6 1.5 1.4 1.3 1.2 1.1 1 0 0.2 0.4 0.6 0.8 1 β

on a Best Response graph with n nodes

Characterization of Stable Wirings Performance of Newcomers

Knowledge Gained

- ▶ For prior arrivals: it is good to be selfish.
- ► For newcomers: should be careful.
Conclusion on Papers A and B

・ロト ・ 回 ト ・ 目 ト ・ 目 ・ の へ ()

Conclusion on Papers A and B

► A: theoretical analysis of the properties of the game

- ► A: theoretical analysis of the properties of the game
- **B**: more practical, giving how to wire

- A: theoretical analysis of the properties of the game
- B: more practical, giving how to wire
- Common points in topology: directed, weighted edges

- ► A: theoretical analysis of the properties of the game
- B: more practical, giving how to wire
- Common points in topology: directed, weighted edges
- ► Difference: A: unbounded degree B: bounded degree

- A: theoretical analysis of the properties of the game
- B: more practical, giving how to wire
- Common points in topology: directed, weighted edges
- ► Difference: A: unbounded degree B: bounded degree
 - A: Trade-off between degree and distance

Conclusion on Papers A and B

- A: theoretical analysis of the properties of the game
- B: more practical, giving how to wire
- Common points in topology: directed, weighted edges
- ► Difference: A: unbounded degree B: bounded degree
 - A: Trade-off between degree and distance
 - **B**: The optimization under certain restrictions

(日) (同) (E) (E) (E) (E)

Conclusion on Papers A and B

The restrictions make differences

- The restrictions make differences
 - A: Nash Equilibrium may not exist.

- The restrictions make differences
 - A: Nash Equilibrium may not exist.
 - **B**: (It seems) we can always find an N.E.

Conclusion on Papers A and B

The restrictions make differences

- A: Nash Equilibrium may not exist.
- **B**: (It seems) we can always find an N.E.
- A: Selfishness can lead to very bad consequences.

Conclusion on Papers A and B

The restrictions make differences

- A: Nash Equilibrium may not exist.
- B: (It seems) we can always find an N.E.
- A: Selfishness can lead to very bad consequences.
- **B**: Sometimes it is good to be selfish.

Conclusion on Papers A and B

・ロ・・聞・・ヨ・・ヨ・ ヨー めんぐ

Conclusion on Papers A and B

Extension

The joining (or leaving) of players.

Conclusion on Papers A and B

Extension

- The joining (or leaving) of players.
- Using different strategies in a single network.

イロト イヨト イヨト イヨト 三星

18/18