
Catenation and Specialization
for Tcl Virtual Machine Performance

Benjamin Vitale
bv @ cs.toronto.edu

Department of Computer Science

Tarek S. Abdelrahman
tsa @ eecg.toronto.edu

Edward S. Rogers Sr. Department of Electrical
and Computer Engineering

University of Toronto
Toronto, M5S 3G4 Canada

ABSTRACT
We present techniques for eliminating dispatch overhead in a
virtual machine interpreter using a lightweight just-in-time
native-code compilation. In the context of the Tcl VM, we
convert bytecodes to native Sparc code, by concatenating
the native instructions used by the VM to implement each
bytecode instruction. We thus eliminate the dispatch loop.
Furthermore, immediate arguments of bytecode instructions
are substituted into the native code using runtime special-
ization. Native code output from the C compiler is not
amenable to relocation by copying; fix-up of the code is re-
quired for correct execution. The dynamic instruction count
improvement from eliding dispatch depends on the length in
native instructions of each bytecode opcode implementation.
These are relatively long in Tcl, but dispatch is still a signif-
icant overhead. However, their length also causes our tech-
nique to overflow the instruction cache. Furthermore, our
native compilation consumes runtime. Some benchmarks
run up to three times faster, but roughly half slow down, or
exhibit little change.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Interpreters

General Terms
bytecode interpreters

Keywords
virtual machines, just-in-time compilation, Tcl

1. INTRODUCTION
Many portable high level languages are implemented using
virtual machines. Examples include traditional program-
ming languages such as Java and scripting languages such

as Tcl, Perl, and Python. The virtual machine may pro-
vide portability and intimate linkage with a high-level run-
time system that is more sophisticated than a typical general
purpose hardware machine — for example, it may provide
garbage collection, object systems, and other services.

One penalty of the virtual machine approach is lost perfor-
mance. Because the virtual machine code is interpreted, it
runs slower than native code. Scripting systems are usually
designed for portability, flexibility, extensibility, and expres-
siveness, not high performance. However, they are powerful
enough that they are used to implement entire software sys-
tems, and thus their performance is important. The efforts
to address the VM performance problem can be divided into
two main camps. Clever interpreter designs such as threaded
code can make the process of interpretation faster. Alter-
natively, compilers can translate the virtual machine code
into native code, and execute that directly. Just-in-time
(JIT) compilers make this translation at runtime. Avoiding
a separate, slow, static compilation step means that a JIT
compiler can try to be a drop-in replacement for an inter-
preter, preserving the interactive use of a virtual machine
system, especially important for scripting. Unfortunately, a
JIT compiler is typically large, and complex to develop and
portably deploy. Furthermore, the delay for compilation at
runtime may interfere with interactive use.

In this paper, we present an implementation of a relatively
new point in the design space between interpretation and
JIT compilation. Our technique, which we call catenation,
eliminates the overhead of instruction dispatch in the virtual
machine. Catenation creates a native code version of a byte-
code program by making copies of the native code used by
the interpreter to execute each of the virtual instructions in
the original program. The resulting native code has certain
properties that enable several optimizations, in particular,
the removal of operand fetch code from the bytecode imple-
mentations (“bodies”.)

We have implemented this technique for the Tcl scripting
language. Originally, Tcl interpreted scripts directly from
source, but in 1995 evolved to compile scripts to bytecodes
on the fly, and then interpret the bytecodes [11]. While
the bytecode compiler improves performance significantly,
many Tcl applications still demand more speed. Our system

extends the bytecode compilation with an additional native
compilation step, targeting the Sparc microprocessor.

The programming effort required in our approach is sub-
stantially less than a full-blown JIT compiler, but can still
improve performance. It eschews expensive optimizations,
and reuses code from the interpreter, which also reduces
semantic errors. The compiler uses fixed-size native code
templates, and precomputes as much information as possi-
ble, and thus runs quickly.

Catenation builds on techniques used by Piumarta and Ric-
cardi to implement their selective inlining [15]. This involves
making relocated copies of the native code used by the in-
terpreter to implement each virtual opcode. The original
technique placed several constraints on which virtual op-
codes could be compiled, because not all code (e.g., call
instructions to pc-relative targets) is trivially relocatable.
These constraints do not apply to most of the short, low-
level opcodes of Forth, or the VM used to evaluate selective
inlining, Ocaml. However, the constraints present a severe
problem for a virtual machine such as Tcl’s, which has much
higher level opcodes. We remove the constraints, so that all
Tcl opcodes code can be moved, albeit at the expense of
portability.

Catenation allows compilation of every instruction in a byte-
code program into a separate unit of native code. This prop-
erty, along with the infrastructure we built to relocate all
code, allows us to perform several optimizations. We:

1. specialize the operands of bytecode instructions into
the operands of the native instructions in the template,
and employ some constant propagation,

2. convert virtual branches into native branches, and

3. elide maintenance of the virtual program counter, and,
if necessary, rematerialize it.

In evaluating its performance, we found that our technique
improves some benchmarks significantly, but slows others
down. We attribute the slowdown to more instruction cache
misses, resulting from the code growth caused by catenation.
As we discuss in Section 7, we feel this result is interesting
in light of recent work by Ertl and Gregg [8]. They find
that a replication technique similar to our catenation also
causes code growth, but that the code growth rarely causes
enough I-cache misses to hurt performance. The key distinc-
tion, perhaps predicted by Ertl and Gregg, is that Tcl and
many other popular VMs are not “efficient interpreters.”
The large opcode bodies in such VMs suffer less dispatch
overhead, and thus gain less from its removal. More im-
portantly, the large bodies, when replicated, cause excessive
code growth.

The rest of this paper is organized as follows. Section 2 re-
views the structure and performance of some common tech-
niques for interpreter dispatch. Section 3 presents catena-
tion, our approach to eliminating dispatch overhead. Sec-
tion 4 introduces operand specialization, which removes the
overhead of bytecode operand fetch. Section 5 provides some

enum { INST ADD, INST SUB, . . . };

void interpret (unsigned char *program)
{

unsigned char opcode, *pc = &program [0];
int sum;

for (;;) {
opcode = *pc;
switch (opcode) {

case INST ADD:
sum = POP() + POP();
PUSH (sum);
pc += 1;
break;

case INST SUB:
/* . . . */
break;

/* . . . other instruction cases . . . */
}
}
}

Figure 1: Simple interpreter dispatch using C for and
switch statements

details of our implementation, including coaxing the C com-
piler into generating templates, and subsequent object-code
processing. We evaluate the performance of these techniques
in Section 6. Finally, in Sections 7 and 8 we discuss related
and future work, and conclude.

2. TRADITIONAL INTERPRETERS
The most fundamental job of the virtual machine is to dis-
patch virtual instructions in sequence. In this section, we
compare some of the techniques used in practice. A typ-
ical dispatch loop is shown in Figure 1. Here dispatch is
implemented as a C switch statement, and kept separate
from the implementation of opcode semantics. A C compiler
will likely translate this to a table lookup. While efficient
in principle, the compiler often includes extra instructions
for a bounds check. Furthermore, there is only one copy
of this table lookup code, and each opcode body must end
with a jump back to it. The two loads (get opcode from
program, then lookup opcode in switch table) and indirect
branch required are pipeline hazards on typical micropro-
cessors. Worse, there is only one static copy of the indirect
branch to dispatch to many possible opcode targets, and
thus the processor’s branch predictor does poorly, because
it uses the address of the branch instruction as the main key
when predicting the target [8].

Interpreters can employ many other dispatch techniques [3,
6, 7]. In the “Function table” approach, each opcode body is
a separate function. Dispatch consists of a for loop, looking
up the address of each function in a table, and an indirect
function call. By making the table lookup explicit in the
code, instead of letting the compiler generate it (as with
switch), it can sometimes be more efficient, avoiding the
spurious bounds check, for example. However, the function
call, with associated stack frame setup, register saving, etc.
is more expensive than the simple jump required in switch.

compute n!, i.e. factorial function

proc factorial {n} {
set fact 1
while {$n > 1} {

set fact [expr {$fact * $n}]
incr n −1

}
return $fact

}

Figure 2: Tcl code to compute factorial function

Another approach is to remove the dispatch from the ex-
ternal for/switch loop, and instead place it at the end of
each opcode body. The interpreter community refers to this
as shared dispatch. This saves the jump from the end of
each body to the single dispatch code. More importantly,
it gives the branch predictor many static indirect jumps to
work with, dramatically improving its chances of success. If
switch-like table lookup dispatch is placed in each opcode,
this is known as token threading. Alternatively, in direct
threaded code, the bytecode program represents opcodes by
the native addresses of their implementations, rather than
one-byte opcode numbers, saving the table lookup. This
dispatch can be expressed in roughly three machine instruc-
tions. Its execution time depends largely on the time to
handle the indirect branch to the next opcode, but on typi-
cal workloads it averages about 12 cycles on a modern CPU
such as the Ultrasparc-III we use.

On our Sparc, switch dispatch requires roughly 12 dynamic
instructions, or 19 cycles. We found token threading takes
about 14 cycles. If the bodies (the “real work”) of the typi-
cal instruction are small (as with Forth), this overhead can
dominate interpreter performance. Even with larger bodies,
such as Tcl’s, the overhead is significant. For example, the
Tcl code to compute the factorial function shown in Fig-
ure 2 uses, on average, about 100 cycles per virtual opcode.
Thus, indirect threaded dispatch accounts for 16% overhead.
Even direct threading, at 12 cycles, takes significant time.
We thus pose the question: Can all dispatch be eliminated?
And, if so, is this profitable?

3. CATENATION
To remove all dispatch, we must instead execute native code.
The typical approach is a full-blown compiler, including an
intermediate representation and code generator, which can
do much more than simply avoid dispatch. In this section,
we describe a simpler approach to just avoid dispatch.

Consider the problem of interpreting the bytecode program
in Figure 3a. The interpreter uses the (imaginary) native
instructions in Figure 3b to implement the push and add
opcodes, and instruction dispatch. In Figure 3c, we show in
bold the dynamic sequence of useful (i.e., non-dispatch) na-
tive instructions executed when interpreting this bytecode
program. Now we are set to understand the idea of “cate-
nation,” which is our technique for improving interpreter
performance. If we simply copy into executable memory the
sequence of useful work instructions — those shown in bold
— we have “compiled” a native code program with exactly

push 2
push 3
add

(a) Sample bytecode program. Note, opcode push is
used twice, with different operands.

push: p1p2p3

add: a1a2a3a4a5

dispatch: o1o2o3

(b) Definitions of virtual instruction bodies in native
code. Each pi, aj , etc. represents one native instruction.

o1o2o3 p1 p2 p3 o1o2o3 p1 p2 p3 o1o2o3 a1 a2 a3 a4 a5

(c) Dynamic sequence of native instructions executed
when interpreting program in (a).

p1p2p3 p1p2p3 a1a2a3a4a5

(d) Static sequence of native instructions emitted by
catenating compiler for program in (a).

Figure 3: Compiling bytecode objects into catenated copies
of native code from the interpreter avoids dispatch overhead

the same semantics as the interpreted version. This new
program has no dispatch overhead.

Of course, most programs contain branches and loops, so
dynamic execution paths do not look, as they do in this
case, exactly like static code in memory. Catenation handles
control flow by changing virtual machine jumps into native
code jumps. In Figure 3d, the native code for the second
virtual instruction (push 3) starts at native address 4. Thus
a virtual jump to virtual pc 2 would be compiled into a
native jump to address 4.

Catenation is based on the use of fixed-size templates of
native code for each virtual opcode. Each template is self-
contained, and does not depend on the context of the opcode
being compiled. The separate cases of an interpreter largely
meet this description, and indeed we generate our templates
directly from the interpreter. Following Piumarta and Ric-
cardi [15], we leverage interpreter-oriented extensions in the
GNU C compiler to treat C language labels as values, delin-
eating the boundaries of native code for each virtual opcode,
as shown in Figure 4.

Catenating a unit1 of Tcl bytecodes is a two pass process.
The first pass computes the total size of the resulting native
code, by adding up the sizes of the templates for each byte-
code instruction in the unit. It then allocates a native code
buffer of the appropriate size. The size of a template may be
slightly larger than the interpreter case, to allow room for
instructions we synthesize and emit at the end of a template.
These are used for jumps, debugging, and profiling instru-
mentation. The pass also builds a map of the native code

1By unit of code, we mean an object in the Tcl object system
whose type is code. This typically corresponds to a proc
(procedure), but might also be an anonymous block of code,
such as a command typed interactively at the interpreter
prompt, or passed to the eval command, etc.

typedef void *ntv addr;

struct { ntv addr start; ntv addr end } inst table = {
/* Labels as Values */
{ &&inst incr immed begin, &&inst incr immed end },
/* . . . */
}

#define NEXT INSTR goto *inst table [*vpc].start

/* increment integer object at top of stack by arg */

inst incr immed begin: /* Label */
{

int incr amount;
Tcl Obj *object = *tosPtr; /* tos is Top Of Stack */

/* skip opcode; extract arg */
incr amount = *(uchar *) ++vpc;
object−>int val += incr amount;
++vpc; /* advance vpc over argument */

inst incr immed end: /* Label */
NEXT INSTR;
}

Figure 4: Using gcc’s labels-as-values extension to delineate
the interpreter case for an opcode

offset for each bytecode. The offset map is used to deter-
mine the native destination address for jump instructions,
and for exception handling, described below.

The second pass then copies the native code for each tem-
plate. For example, to compile the incr immed opcode shown
in Figure 4, the essential operation consists of looking up the
starting and ending addresses of the native code for this op-
code in the interpreter, by referring to the inst table, and
then memcpy()’ing the code into the native code buffer.

There are a few things to observe about the code in Figure 4.
First, the compiled code still has to fetch operands from the
bytecode stream. It does this using the virtual program
counter, vpc. The code uses the entire interpreter runtime,
interfacing with it at the register level.

Also note that while the instruction template ends with the
label inst incr immed end, we still include the
NEXT INSTR code after the template proper. This code con-
sists of a traditional token threaded dispatch. Its purpose is
to force the C optimizer to build a control flow graph which
reflects the fact that any opcode case may be preceded or
followed by any other opcode case, which is precisely the sit-
uation after catenation (and during normal interpretation.)

However, even position independent code output by the
C compiler is not intended for this sort of relocation; in-
deed, considerable transformation of the output is required
to make catenation work. We undertake some of these trans-
formations at interpreter build time, and others during cate-
nation. We describe this in some detail in Section 5.

By itself, catenation is not a true compilation. Among other
things, the resulting code still refers to operands in the byte-
code instruction stream. We address this problem in the
next section.

4. SPECIALIZATION
We would like to eliminate the fetching of operands from the
bytecode stream. Among other things, this will reduce the
need to maintain the virtual program counter. Catenated
code provides the foundation for another a technique that
removes the fetches. Next, we describe this technique, which
we call Operand Specialization.

The implementation of a virtual opcode in the original in-
terpreter is generic, in the sense that it must handle any
instance of that opcode, in any location in any bytecode
program, and with any valid values for operands. After
catenation, on the other hand, there is a separate instance
of native code implementing each static bytecode instruc-
tion in the program. During code generation, we know the
operands of each instruction, and can treat them as run-
time constants. We specialize a template with the values
of these constants. Essentially, we are compiling bytecode
instruction operands into native instruction operands.

Now, we will describe how to enhance the templates so
they are appropriate for specialization. Given a virtual op-
code with operands, one of the first tasks of the interpreter
body implementing that opcode is to fetch and decode the
operands. They are usually placed in variables. We remove
the interpreter code that implements this fetch, and replace
the variable with a magic number of an appropriate size. At
specialization time, we substitute the magic number with
the real operands from the bytecode program. We include

#ifdef INTERPRET

#define MAGIC OP1 U1 LITERAL \
codePtr−>objArrayPtr [TclGetUInt1AtPtr (pc + 1)]

#define PC OP(x) pc ## x
#define NEXT INSTR break

#elseif SPECIALIZE

#define MAGIC OP1 U1 LITERAL \
(Tcl Obj *) 0x7bc5c5c1

#define NEXT INSTR goto *jump table [*pc].start
#define PC OP(x) /* unnecessary */

#endif
. . .
case INST PUSH1:

Tcl Obj *objectPtr;

objectPtr = MAGIC OP1 U1 LITERAL;
*++tosPtr = objectPtr;
Tcl IncrRefCount (objectPtr);
PC OP (+= 2);
NEXT INSTR;

Figure 5: Source for interpreter implementation of push op-
code, with variation to generate template suitable for spe-
cialization.

add %l6, 4, %l6 ; incr VM stack ptr
add %l5, 1, %l5 ; inc vpc past opcode.
ldub [%l5], %o0 ; load operand
ld [%fp + 0x48], %o2 ; load addr of execution context
ld [%o2 + 0x4c], %o1 ; load addr of literal tbl from ctx
sll %o0, 2, %o0 ; compute offset into table
ld [%o1 + %o0], %o1 ; load from literal table
st %o1, [%l6] ; store to top of VM stack
ld [%o1], %o0 ; next 3 instructions increment
inc %o0 ; reference count of pushed object
st %o0, [%o1]
inc %l5 ; increment vpc

sethi %hi(0x800), %o0 ; rest is dispatch to next instr
or %o0, 0x2f0, %o0
ld [%l7 + %o0], %o1
ldub [%l5], %o0
sll %o0, 2, %o0
ld [%o1 + %o0], %o0
jmp %o0
nop ; branch delay slot unusable

Figure 6: C compiler’s assembly language translation of code
in Figure 5, using the INTERPRET variation.

several assertions in the compiler initialization code to en-
sure this results in a suitable template, as described in more
detail below. Refer to Figure 5 to see the interpreter C
code for the push opcode, with our conditionally-compiled
variation to produce a template for specialization. Figures 6
and 7 show the assembly language output by the C compiler
for each variation.

In addition to removing the load of the operand from the
bytecode stream, Figure 7 shows that several related in-
structions were also removed. In the Tcl VM, the operand
of the push opcode is not the address of the object to be
pushed. Rather, the operand is an unsigned integer index
into the literal table, a table of objects stored along with
the bytecode. We treat the index, and the table, as run-
time constants at specialization time, then perform a simple
constant propagation. The result is that push is reduced
from twelve Sparc instructions (twenty including dispatch)
to seven, including one load instruction, instead of four.
This is an extreme example, because push is much shorter
than most Tcl opcodes, whose bodies can average hundreds
of instructions. However, it is significant, because push is
an extremely common opcode, both statically and dynam-
ically. We also employ this table-lookup constant propaga-
tion on the builtin math func opcode, which takes a small
unsigned integer argument to indicate which of several math
functions should be invoked (e.g. sin, sqrt, etc.)

Catenation runs very fast, because it requires only copying
native code, followed by a few fixups and linking. Special-
ization consumes more time, running for every operand of
every bytecode instruction. It still can run quickly, because
our templates are fixed size, and we can pre-compute the
offsets where bytecode operands can be specialized into na-
tive code operands. In the next section, we give details of
this and other aspects of our implementation.

add %l6, 4, %l6 ; incr VM stack pointer
sethi %hi(operand), %o1 ; *** object to push
or %o1, %lo(operand), %o1 ; *** object to push
st %o1, [%l6] ; store to top of VM stack
ld [%o1], %o0 ; next 3 instructions incr
add %o0, 1, %o0 ; ref count of pushed object
st %o0, [%o1]

Figure 7: Template for push opcode, compiled from Fig-
ure 5 using the SPECIALIZE variation. Note that it is much
shorter than Figure 6. The native operands of the instruc-
tions marked *** are points for operand specialization. The
sethi/or instruction pair is the Sparc idiom for setting a 32
bit constant in a register.

5. PREPARING AND USING TEMPLATES
We build our templates using the output of the GNU C
compiling a modified version of the Tcl interpreter. This as-
sembly language output itself requires two small build-time
transformations, and is then conventionally linked into the
Tcl virtual machine. Finally, at runtime, our catenating
compiler is divided into several phases, which include trans-
formations on the templates. In this section, we describe
each of these steps.

5.1 Building Templates
To each opcode case, we append a macro for token threaded
dispatch, so that the optimizer is constrained to produce
templates suitable for catenation, as discussed in Section 3.
We redefine operand fetch macros to various magic con-
stants, instead of code to perform actual fetches from the
bytecode stream. We use a constant of the appropriate
size and type so that the template is efficient. For exam-
ple, if a virtual opcode takes a one byte integer operand,
we use a magic constant less than 256. For a four byte
operand, we use a constant that forces the compiler to gen-
erate code general enough to load any four byte operand. On
the Sparc, this is a two instruction sequence. Occasionally,
we had to manually introduce uses of the C volatile key-
word, or other tricks, to force the optimizer to not propagate
the magic constants too deeply into the opcode implemen-
tation. Other times, our code-rewriting system, discussed
below, handles the optimizer’s output.

At build time, the bodies are assembled into a single C func-
tion, with each delineated by labels as shown in Figure 4.
We generate C code to store all these labels in a table, in-
dexed by opcode number. Then, the function is compiled to
assembly, with gcc set to optimize. The resulting assembly
is largely suitable for templates, but we must post-process it
to undo the work of the C optimizer in two situations. The
first occurs when a native branch instruction in the middle
of a body branches to the exit of the body. The normal tar-
get of the branch is one native instruction beyond the end of
the case, which is precisely what is required for catenation.
However, the optimizer exploits the Sparc delayed-branch
slot [18], schedules an instruction of the (extraneous) dis-
patch code after the branch, and changes the branch tar-
get to two instructions beyond the end. Suppressing the
optimizer delayed-branch scheduler using a command-line
switch to the C compiler was not a reasonable option, be-
cause this optimization is important to the performance of

Sparc code, and we want to leave most such transformations
intact.

The second problem occurs when the compiler applies a tail-
merging [14] optimization to two or more opcode cases. This
results in the cases sharing part of their implementation, but
catenation requires that each case be self-contained, because
later passes may make changes to the code, and these must
be separate for each opcode.

Using text-processing techniques on the assembly output, we
“deoptimize” the delayed branch and tail-merging transfor-
mations, if they have been applied in the places described.
Together, they affect 14 of 97 opcodes. All build-time ma-
nipulation and assembly post-processing for deoptimization
is performed with Tcl scripts. These scripts (after boot-
strapping) are executed by a Tcl “interpreter” which incor-
porates our native code compiler.

After post-processing, the templates are assembled, and the
entire Tcl virtual machine is linked together in the tradi-
tional fashion. In the rest of this section, we describe the
runtime manipulations of the templates to accomplish com-
pilation of Tcl bytecode.

5.2 Compiler Initialization
During and after catenation, we apply many small changes
to the fixed-length templates to complete the process of com-
pilation. These changes fix the code so that it executes cor-
rectly after it is relocated, and also handle operand special-
ization. We call these fixups patches, and refer to the overall
process as patching. For example, when a native call in-
struction targeting a C library subroutine (e.g. malloc) is
relocated during catenation, the target will be wrong, be-
cause Sparc calls are pc-relative – that is, the target de-
pends on the address of the call instruction itself. A patch
is used to correct this problem, by adjusting the target ad-
dress in the relocated instruction. This patch type actually
applies to any pc-relative instruction whose target lies out-
side the template being moved. A few other patch types are
described below.

To accelerate catenation in general, and patching in partic-
ular, we analyze the native code once at initialization time.
We locate the starting and ending points of the template
for each opcode, and find and store the native code offsets,
types, and sizes of each patch required by each opcode. Us-
ing this information, a patch can be applied very quickly,
essentially in two steps. First, some information is extracted
from the bytecode stream – for example, a one byte unsigned
integer operand. Then, it may be filtered or manipulated in
some way. Finally, it is applied to the output native code
template. Thus, we store for each patch an input and out-
put type, along with its relative offset from the beginning
of the template. Input types essentially select the kind of
patch necessary, and include, for example, plain operands
of various size and signedness, destination addresses of vir-
tual jumps, and operands which need translation through
the literal table or builtin math function table.

After a patch has fetched and transformed the input data,
the data must be placed into the template at the appro-
priate location. This means changing the operands of one

or more native machine instructions. On a RISC proces-
sor like the Sparc, there are only a few formats, and indeed
only a few instructions, to recognize for patching: loading
a small immediate integer constant (one which fits in 13
bits), loading larger constants, calls, and a few branches. In
the case of virtual branch opcodes, the patch may also syn-
thesize (rather than rewrite) the native instruction (branch
false, branch true, or branch always.) The analysis expects
certain instruction patterns to appear a certain number of
times (usually once for each operand of a given opcode.) The
magic constant is used to locate the pattern, and confirm it
appears the correct number of times. If these assertions
fail, the interpreter code must be retooled. This happened
during development with a handful of opcodes, because our
pattern-matcher did not yet recognize all variations of com-
piler output.

The input and output types for each patch can largely be
determined from the type of virtual opcode (e.g. virtual
branch) or operands, or during the analysis phase (e.g. na-
tive pc-relative calls.) There is a small table of exceptions,
coded by hand to handle special cases. Our code contains a
large number of assertions. During development, we identi-
fied the exceptions when a small number of assertions failed.

5.3 Compilation
A code unit is compiled to native code only the first time it
is executed. The process runs quickly, because most of the
work has been done in the initialization pass. The compila-
tion is simply “interpretation” of the patches for the cate-
nated program.

Each patch can be interpreted very quickly, because it re-
quires only a load from the bytecode stream, possibly an-
other to index through constant tables, sometimes one or
two adds to handle pc-relative instructions, possibly a lookup
in the virtual-to-native pc map, a few operations for mask-
ing, shifting the data into destination native instruction,
then store. On average, this requires about 120 µs per patch.
The initialization pass requires about 4 ms. An initial ver-
sion of our system did not perform the separate initialization
pass. While it was still profitable to compile code that was
executed many times, the faster technique vastly broadens
the applicability of catenation.

The final patch type is UPDATE PC. While we don’t main-
tain the vpc during execution, the nature of catenated code
makes it is easy to rematerialize. UPDATE PC is used on the
right-hand-side of assignments to the interpreter variable
vpc, and is patched with the constant value vpc would have
had during execution of the original interpreter. In cate-
nated code there is a separate body of native code for every
static bytecode instruction, and so the value of vpc is im-
plicitly known. For example, an UPDATE PC in the native
code emitted for the virtual instruction at vpc 5 is patched
to the constant 5. We set the value only in exception han-
dling paths in the interpreter code. To conserve space, we
will not describe Tcl exception handling here, except to say
that stack unwinding and handler resolution is done at run-
time, using a map from vpc of exception to vpc of handler.
Another map allows us to report source line number diag-
nostics on uncaught errors. We could have translated all
these maps to native addresses, entirely eliminating the vpc

in our case, but the current implementation works well, and
it’s useful to demonstrate rematerialization of vpc, because
one can imagine other interpreters or dynamic recompilation
systems requiring it.

5.4 Implementation Notes
The implementation is divided into several modules, follow-
ing the structure described above. The pre-computation of
templates and patches is implemented in 771 lines of C, con-
taining 462 semicolons. The code generator, which uses the
templates to implement catenation and operand specializa-
tion, is 581 lines long, or 258 semicolons. While these mod-
ules include some profiling instrumentation, an additional
535 lines (240 semicolons) of Tcl extension commands to
collect detailed statistics when running on real machines.
Finally, for the simulation experiments described below, we
created 1181 lines (513 semicolons) of statistics extensions
to both Tcl and our simulator.

As described above, we also made small (typically one- or
two-line) changes to several Tcl VM opcode implementa-
tions. Excluding these changes and the instrumentation
code, roughly two weeks of effort were required to code the
template and code generators. However, we spent consid-
erably more time finding and resolving subtle bugs, such as
the “deoptimizations” (requiring 250 lines of Tcl) described
in Section 5.1.

6. PERFORMANCE EVALUATION
To measure the impact of catenation and specialization in
our implementation, we constructed two sets of experiments.
The first measures execution time on a small number of
benchmarks from the Tcl performance benchmark suite [21],
to determine if our modified interpreter actually improves
performance. We capture detailed micro-architectural statis-
tics. The second experiment tries to answer questions raised
by the first, by running a larger set of benchmarks on both
our catenating Tcl interpreter, and the original, while vary-
ing only the size of the instruction cache. This hypotheti-
cal scenario requires a simulation infrastructure, because of
the lack of variety in I-cache sizes within generations of the
Sparc CPUs. Using CPUs from different generations, which
have substantial architectural differences, would confound
the results.

6.1 Cycle counts and I-Cache Misses
The highest precision clock available for our first experiment
is the CPU’s cycle counter, available using the Sparc per-
formance counters [20], which are present in the sparcv8

instruction set on the Ultrasparc-II and later CPUs. Two
64-bit hardware registers can each be programmed to collect
any one of a wide variety of events, such as cycles, retired
instructions, cache misses, branch mis-predicts, etc. To fa-
cilitate the experiment, we implemented a Tcl command to
collect performance statistics while running arbitrary Tcl
code, and separately track bytecode compilation time, na-
tive compilation time, and execution time. We can also
choose whether to include events during execution of system
code on behalf of the application. We ran our benchmarks
on an otherwise unloaded machine, and exclude events in-
curred while the operating system was executing other pro-
grams. The machine is a Sun Microsystems SunBlade 100

0

50

100

150

200

EXPR MD5 FACT MATRIX IF

C
yc

le
s

re
la

tiv
e

to
 b

yt
ec

od
e

bc_compile

dispatch

ntv_compile

I-cache stall

work

21
2

10
0

33

55

34

by
te

co
de

na
tiv

e

Execution Time

Figure 8: Performance counter benchmarks.

with a 502 MHz Ultrasparc IIe, 640 MB RAM, a 16 KB
2-way set-associative instruction cache, and a 16 KB direct
mapped data cache. The 4-way unified Level 2 cache is 256
KB. It runs the Solaris 8 operating system. The Tcl bench-
marks are: runtime evaluation of a simple arithmetic expres-
sion of constants and variables, a hash function involving
many bitwise operations, the factorial function, multiplica-
tion of two 15x15 matrices, and a long if-then-else tree.

The results are depicted in Figure 8. For each benchmark,
the bar on the left shows the performance of the benchmark
with the original bytecode interpreter. The bar on the right
shows the same, but with our catenating compiler. The
performance of each benchmark is measured by the total
number of execution cycles, normalized with respect to the
original bytecode interpreter. Cycles are broken down into
those spent on useful work, those devoted to dispatch, those
devoted to bytecode compilation, and to native compilation,
and those wasted in instruction cache stalls.

As intended, catenation removes all dispatch overhead in
all cases. Furthermore, the three optimizations it enables –
operand specialization, virtual to native branch conversion,
and elimination of the virtual program counter – substan-
tially reduce the amount of work cycles in all cases. For three
cases, FACT, MATRIX, and IF, the result is a significant
improvement in total execution time.

Our techniques do not always reduce execution time. Some-
times it is mostly unchanged, or actually increased. There
are two main problems, one of which shows up in the EXPR
benchmark, and the other in MD5. While not shown, we
measured dynamic instruction counts in addition to cycles.
In every case besides EXPR, catenation reduces instruction
counts, because it saves dispatch, and benefits from the sub-
sequent optimizations. EXPR-unbraced, however, requires
a large amount of compilation time. In fact, this benchmark

is a contrived idiom to force continuous late recompilation
due to Tcl semantics. This idiom is well known by experi-
enced programmers, and generally avoided. We include it
here to underscore that any workload which spends lots of
time recompiling will do poorly in any JIT compiler, includ-
ing ours. The JIT must regenerate native code each time
bytecode is regenerated. Our JIT is relatively fast, but typ-
ically requires between 100% and 150% as much time as the
bytecode compilation.

The MD5 benchmark exhibits a more serious problem. The
catenated code does slightly less work than the interpreted
version, but the overall execution time stays the same. As
the chart shows, increased I-cache misses defeat the advan-
tages of removing dispatch and improving work efficiency.
Now, in many cases, catenated code exhibits better I-cache
performance, because useful code is tightly packed in mem-
ory, without intervening unused opcode implementations.
However, catenation causes major code growth – on average,
we measure a factor of 30. The expanded code’s working set
can easily exceed a typical 32 KB I-cache, and consequently
I-cache stall cycles can overwhelm the savings from remov-
ing dispatch and operand fetch.

6.2 Varying I-cache Size
To further explore the effect of I-cache misses induced by
code growth, we ran the entire set of 520 Tcl benchmarks,
with the original and catenating interpreters, under the Sim-
ics [12] full machine simulator configured in separate exper-
iments with I-caches of 32, 128, and 1024 KB. A fourth
experiment simulated an infinite I-cache, by running with
no latency to the external L2-cache. The benchmarks are
all quite short, but some solve interesting problems such as
gathering statistics on DNA sequences.

At the realistic 32 KB I-cache size, 54% of benchmarks ac-
tually run slower using catenated code. The larger 128 and
1024 KB caches slowed 45% and 34% of benchmarks, respec-
tively. Even with the infinite I-cache, 18% of benchmarks
slow down. This is because there is not enough execution
time to amortize the cost of native code compilation, except
in four (less than 1% of) benchmarks, due to continuous
recompilation, as described earlier.

7. RELATED WORK
Ertl and Gregg [8] evaluate the performance of a large num-
ber of advanced interpretation techniques. Their focus is the
high proportion of indirect branch instructions in an inter-
preter (Forth) with short opcode bodies, and the predictabil-
ity of those branches by a pipelined micro-architecture. Their
techniques include forming superinstructions and making
replicas of code. Their dynamic superinstructions across ba-
sic blocks with replication technique is very similar to our
catenation, except that they leave some dispatch in place
to handle virtual branches, whereas we remove all dispatch.
Instead, their key goal is to have more indirect branch in-
structions – one for each static bytecode instruction – whose
behavior and context precisely match the behavior of the
bytecode program. This yields much better branch predic-
tion. They also find that I-cache stalls induced by code
growth due to replication are not a major problem for their
“efficient” Forth VM, which has short opcode bodies. On

the other hand, our VM, with large opcode bodies, encoun-
ters major I-cache stalls on many benchmarks.

QEMU [4] is a CPU emulator which employs techniques
very similar to our catenation and operand specialization.
It is more portable than our system, supporting a plurality
of host and target architectures, some including full-system
emulation. Where we use magic numbers to identify points
for specialization in our templates, QEMU stores operands
in global variables, and exploits the ELF relocation meta-
data generated by the linker. Some unwarranted chummi-
ness is still required to elide function prologues, etc.. CPU
opcode instruction bodies tend to be small, with complex
implementations “outlined” to called functions, and thus
catenation performs well.

Brouhaha [13] is a portable Smalltalk VM that executes
bytecode using a direct threaded interpreter built from na-
tive code templates. The templates are written in a style
similar to function-table dispatch, but then, like our sys-
tem, after compilation the assembly is post-processed to re-
move prologues, epilogues, and make other transformations.
Where we post-process using Tcl, Brouhaha uses sed, and
does significantly more rewriting. Little runtime rewriting
seems required, although neither superinstructions, replica-
tion, nor operand specialization are implemented.

DyC [10] is a dynamic compilation system based on pro-
grammer annotations of runtime constants, which are used
in dynamic code generation to exploit specialization by par-
tial evaluation. The authors motivate one of their papers
using the example of a bytecode interpreter – in this case,
m88ksim, a simulation of a Motorola 88000 CPU. The input
data for this benchmark is a bytecode program. DyC treats
the entire bytecode program as a constant, and, using an
optimization they call complete loop unrolling, accomplishes
essentially the same effect as our catenation. The system ap-
plies traditional optimizations after partial evaluation. This
process is static and quite expensive, and thus might not
be appropriate for a dynamic scripting language which fre-
quently compiles and re-compiles. At static compile time,
they specialize their runtime specializer, so it is pre-loaded
with most of the analysis for optimization and code genera-
tion. This is more general than, but similar to, our system
of patches, which pre-computes the necessary fix-ups. They
report speedups of 1.8 on m88ksim, but do not discuss the
complexities of I-cache and code explosion.

Trace-based dynamic re-compilation techniques [2] also have
the promise to automatically accomplish effects similar to
catenation (and many other optimizations.) Sullivan et al. [19]
show how to extend Dynamo’s infrastructure, by telling it
about the virtual program counter, so that it is able to
perform well while executing virtual machine interpreters,
whereas it had previously done poorly.

There have been several efforts to improve Tcl performance.
The kt2c system [5], while unfinished, uses the bytecode for
a given function to build a C file containing a huge “su-
perinstruction” implementing all the bytecode instructions
in the function. It converts virtual jumps into C goto state-
ments. It performs some analysis of the types and locations
of objects pushed onto the stack, but no use is made of this

information. For Python, the similar “211” system [1] com-
piles extended basic blocks of Python bytecode into superin-
structions by concatenating the C code for the interpreter
cases, performing some peephole optimization, and then in-
voking the C compiler in a separate, offline step. We are
sympathetic to Aycock’s suggestions that a VM based on
registers and lower-level bytecodes would be more amenable
to compilation.

The s4 [17] project has experimented with improved dis-
patch techniques for the Tcl VM, such as token threading,
and many of its results have been folded back into the pro-
duction Tcl release, improving performance.

The ICE 2.0 Tcl Compiler project [16] created a commercial
stand alone static (ahead-of-time) Tcl version 7 to C com-
piler in 1995, and then a later version in 1997 that also tar-
geted bytecode and included a conservative type-inference
system, setting the stage for classical compiler optimiza-
tions. The compiler offered an approximately 30% improve-
ment in execution time over the Tcl 8.0 bytecode compiler.
Both the ICE compilers were static, that is, required a sep-
arate compile step. This precludes using the compiler as
a drop-in replacement for the original interactive Tcl inter-
preter, an important modality for scripting languages. The
source code of the ICE Compilers was never released to the
research community, and is no longer actively developed.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented techniques that allow us to “com-
pile away” the bytecode program, acting as a very naive JIT
compiler. However, almost all the runtime infrastructure of
the interpreter remains, so it may be better to think of this
system as an advanced interpretation technique, rather than
a true compiler. In practice, there is a range of techniques
from simple interpretation to advanced dynamic compila-
tion, which trade off implementation size and complexity,
start-up performance, and portability. We offer a new point
on this spectrum, and implement it in a non-portable but
transparent and complete Tcl interpreter system.

Our experimental evaluation indicates that catenation and
the optimizations it enables improve the performance of sev-
eral benchmarks, often significantly. On the other hand, for
some benchmarks, the I-cache stalls often induced by code
growth from catenation degrade performance. The overall
effect, on a typical microprocessor, is that about half our
benchmarks speed up, by as much as a factor of 3, but the
other half slow down.

Ertl and Gregg [9] suggest that dispatch is more of a problem
for small opcode bodies, and that the architecture of “inef-
ficient” popular VMs should be improved before advanced
interpretation techniques are applied. On the other hand,
we find that dispatch is a source of overhead in Tcl’s large
opcode bodies, and that its removal via catenation signifi-
cantly improves performance for some benchmarks. Thus,
we believe our techniques are applicable to VMs with large
opcode bodies.

Furthermore, Ertl and Gregg found [8] found that I-cache
stalls induced by code growth due to replication are not a
major problem. In contrast, in our system, we find that I-

cache stalls are a problem. This is perhaps not surprising
given the larger opcodes in the Tcl VM.

Exploiting the C compiler to build templates for code-copying
is a clever and largely portable technique. We have extended
it, allowing all opcode bodies to be moved, but sacrificed
portability. Furthermore, our experience leaves us with the
opinion that the approach is too brittle for general experi-
mentation, depending excessively on the compiler and ma-
chine architecture. A more explicit code generation infras-
tructure would be more flexible for exploring the interesting
issues surrounding native compilation and optimization of
dynamic languages such as Tcl.

Catenation implicates the classic inlining tradeoff, and a
more selective technique is required, perhaps preferring code
expansion to dispatch overhead only where profitable. Mixed-
mode execution might facilitate this, and we would like to
explore this in future work. A key related question is decid-
ing when to compile and when to interpret. A useful heuris-
tic might be based on the potential correlation between op-
code body size and I-cache performance. To study this, we
would like to apply our technique to other interpreters, in-
cluding some with shorter, lower-level bodies than Tcl. Fi-
nally, we would like to explore outlining of large instruction
bodies, perhaps by moving them to separate functions, and
calling these from the body.

9. ACKNOWLEDGMENTS
We thank Angela Demke Brown, and Michael Stumm for
their ideas and encouragement. Colleagues Mathew Zaleski
and Marc Berndl offered stimulating brainstorms. Virtutech
Inc. provided an academic license for its excellent Simics
full system simulator. Finally, the anonymous reviewers’
feedback was invaluable.

10. REFERENCES
[1] J. Aycock. Converting Python Virtual Machine Code

to C. In Proc. of 7th Intl. Python Conf., 1998.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. In Proc. of
PLDI, 2000.

[3] J. R. Bell. Threaded code. Communications of the
ACM, 16:370–372, 1973.

[4] F. Bellard. Qemu x86 cpu emulator [online]. 2004.
Available from:
http://fabrice.bellard.free.fr/qemu/.

[5] D. Cuthbert. The Kanga Tcl to C converter [online].
2000. Available from:
http://sourceforge.net/projects/kt2c/.

[6] R. B. Dewar. Indirect threaded code. Communications
of the ACM, 18:330–331, 1973.

[7] M. A. Ertl. Threaded code [online]. 1998. Available
from: http://www.complang.tuwien.ac.at/forth/
threaded-code.html/.

[8] M. A. Ertl and D. Gregg. Optimizing Indirect Branch
Prediction Accuracy in Virtual Machine Interpreters.
In Proc. of PLDI, 2003.

[9] M. A. Ertl and D. Gregg. The Structure and
Performance of Efficient Interpreters. Journal of
Instruction-Level Parallelism, 5:1–25, 2003.

[10] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. J. Eggers. DyC: an expressive annotation-directed
dynamic compiler for C. Theoretical Computer
Science, 248(1–2):147–199, 2000.

[11] B. Lewis. An on-the-fly bytecode compiler for Tcl. In
Proc. of the 4th Annual Tcl/Tk Workshop, 1996.

[12] P. S. Magnusson and F. L. et al. SimICS/sun4m: A
Virtual Workstation. In Proc. of the Usenix Annual
Technical Conference, 1998.

[13] E. Miranda. BrouHaHa - A Portable Smalltalk
Interpreter. In Proc. of OOPSLA’87, pages 354–365.

[14] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[15] I. Piumarta and F. Riccardi. Optimizing
direct-threaded code by selective inlining. In Proc. of
PLDI, pages 291–300, 1998.

[16] F. Rouse and W. Christopher. A Typing System for
an Optimizing Multiple-Backend Tcl Compiler. In
Proc. of the 5th Annual Tcl/Tk Workshop, 1997.

[17] M. Sofer. Tcl Engines [online]. Available from:
http://sourceforge.net/projects/tclengine/.

[18] SPARC International Inc.A. The SPARC Architecture
Manual, Version 8. 1992.

[19] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett,
and S. Amarasinghe. Dynamic native optimization of
interpreters. In Proc. of the 2003 workshop on
Interpreters, Virtual Machines and Emulators.

[20] Sun Microelectronics. UltraSPARC IIi User’s Manual.
1997.

[21] Tcl Core Team. TclLib benchmarks [online]. 2003.
Available from:
http://www.tcl.tk/software/tcllib/.

[22] B. Vitale. Catenation and Operand Specialization for
Tcl Virtual Machine Performance. Master’s thesis,
University of Toronto, 2004.

