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Abstract

We compare the performance of various virtual machine
dispatch strategies in Tcl, including traditional highly-
portable techniques, and newer techniques which sacrifice
some portability for performance.

Tcl’s high-level opcodes have large implementation bod-
ies and contain C function calls. Compared to other VMs,
the opcodes require many cycles to execute. Dispatch over-
head is relatively low, because large bodies consume much
more execution time than dispatch. Direct threaded code
improves tclbench benchmarks by about 5% over switch dis-
patch. We review our catenation technique, which compiles
bytecode using copied templates of Sparc code made from
the normal C-compiled VM’s implementation of each vir-
tual opcode. This eliminates all dispatch, but is impractical
due to poor portability, and because the copying amplifies
Tcl’s heavy instruction cache load.

Based on subroutine threading, context threading gener-
ates native call instructions for dispatch. Simpler than cate-
nation, it imposes much lower I-cache load. It preserves
more interpreter state, is a better vehicle for mixed-mode
execution, and accomodates interesting optimizations. Our
implementation for Tcl on Sparc improves 97% of bench-
marks in the tclbench suite with more than 1000 dispatches,
by an average of 9.5% over switch dispatch (12.0% and
16.5% for > 10000 and > 100000 dispatches, respec-
tively.)

Keywords: Threaded Interpreter Dispatch, Virtual Ma-
chines, Tcl Performance, Context Threading, Subroutine
Threading

1 Introduction

Like other scripting languages, Tcl is interpreted, yield-
ing rich dynamic semantics but slow performance relative
to native code. Lewis’s bytecode compiler and virtual ma-
chine [11], introduced in Tcl version 8.0, provided enough
performance for most users, but some still demand more
speed. There are two categories of approaches to improving

VM interpreter performance. First, just-in-time compilers
(JITs) can translate bytecode to native code, but tend to be
large, complex, and less portable than an interpreter. Fur-
thermore, the Tcl VM is implemented with high-level byte-
codes which are an excellent match for Tcl’s semantics, but
not the best starting point for a JIT, as we’ll discuss briefly
in Section 6.

A lighter weight approach is to apply clever interpreta-
tion techniques. These include stack caching, register ma-
chines, superinstructions, or the approach we take in this
paper, faster dispatch. Every VM must dispatch virtual in-
structions, and Tcl uses a portable but slow technique: a
C switch statement. Some other strategies are listed in Ta-
ble 1, together with their execution times on an UltraSPARC
III CPU.

Replacing switch with subroutine threading can save
17−6 = 11 cycles per dispatch. The impact on overall per-
formance depends on the number of cycles required to exe-
cute the real (non-dispatch) work of the average opcode. As
shown in Figure 1, Tcl opcodes have long execution time.
They take much longer than a dispatch takes, and thus dis-
patch overhead is low. If the average opcode executes in,
for example, 100 cycles, the best speedup we can achieve
by saving eleven cycles is 11%.

Interpreters for some other language systems, such as
Ocaml, have quick low-level opcodes. There, a 17 cycle
switch dispatch is unacceptable overhead. Instead, Ocaml
uses direct threaded dispatch. In previous work [3], we

Dispatch type Cycles
switch 17.3

indirect threading 14.2
direct threading 11.2

subroutine threading 6.3
catenation 0

Table 1. Speed of various dispatch techniques on UltraSPARC III
CPU, measured using microbenchmarks, based on Ertl’s [5], which
dispatch an empty nop opcode body.
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Figure 1. Tcl’s mostly high-level opcodes have relatively large
implementations, and require many cycles to execute. This chart
plots a dot for each benchmark, showing the ratio of total execution
cycles divided by total number of dispatches. Ocaml’s bytecodes
are lower level, thus dispatch optimizations help it more than Tcl.

proposed a technique based on subroutine threading, called
context threading. It requires non-portable run-time synthe-
sis of native code (calls to the opcode bodies), but signif-
icantly increased performance for Ocaml and Java VMs. In
this paper, we apply context threading to Tcl.

In addition to cheaper dispatch, context threading also
offers a flexible foundation for further incremental opti-
mizations. This turns out to be important for Tcl, where the
dispatch-only improvements have limited impact for many
benchmarks.

We will also summarize another system we built, cate-
nation [22], which attempts to eliminate all dispatch, but is
more complicated and performs worse. We also try direct
threading, and find, for Tcl on Sparc, it achieves roughly the
same dispatch-oriented benefits as context threading. It is
simple, portable, and avoids the pitfalls of our more exotic
techniques, such as adding instruction cache load, which
we find is already unusually heavy in Tcl. Tcl should favor
direct over switch dispatch. However, direct threading can-
not offer the same flexible optimization platform as context
threading.

The main contributions of this work are:

• An implementation of context threading for Tcl.

• An implementation of context threading on Sparc,

showing that it performs well on Ocaml and has some
benefit for Tcl. Earlier work targeted only the x86 and
PowerPC architectures.

• The observation that context threading, while making
parsimonious use of the instruction cache, can still
cause miss-related stalls if the cache is already filled
by a VM’s working set.

• Recommendations for Tcl VM development: use di-
rect threading, and, longer-term, lower-level byte-
codes.

2 Background

In this section, we review the structure and performance
of some traditional dispatch techniques, and our own less
portable but potentially higher performance versions.

2.1 Slow Switch Dispatch

Why does switch dispatch take 17 cycles to execute?
The C compiler usually implements a switch statement
as a bounds check, a table lookup to find the address of the
code for the relevant case statement (in an interpreter, this
chooses which virtual opcode to dispatch), and then an in-
direct branch. The bounds check wastes several cycles, and
the table lookup requires a shift instruction, and possibly an
extra load, because the base address of the table is rarely in
a register. Finally, each opcode body ends with a break
statement, which branches back to the dispatch logic, if the
switch is in a for loop.

The indirect branch is a major hazard on modern out-
of-order, deeply-pipelined CPUs (the Ultrasparc III has a
14 stage pipeline [20].) To avoid this hazard, most CPUs
incorporate hardware to predict, based on the program lo-
cation of the indirect branch, what its target will be. This is
typically a branch target address cache (BTAC) or branch
target buffer (BTB). Early Ultrasparcs associated one or two
next fetch addresses (NFA) with each instruction cache line,
containing another I-cache index, rather than a memory ad-
dress [23].

Whichever technology is used, Ertl [6] points out that
switch dispatch fares poorly, because only a single indirect
branch, and thus a single prediction of the next virtual in-
struction in the program, is available. There are roughly 100
Tcl opcodes, so the predictor is wrong almost every time.
We refer to the difficultly in predicting the next opcode as
the context problem [3].

2.2 Direct Threaded Code

Bytecode represents the virtual program as an array of
bytes, containing opcodes and operands. The virtual pro-



gram counter (vpc) is a pointer into this array. Direct
threaded code instead stores an array of machine words, and
changes the opcodes to the native memory addresses of the
opcode bodies. See Figure 4c. Dispatch then becomes es-
sentially two machine instructions: load the native address
at the vpc, and then indirect jump there. Typically, a sep-
arate copy of this dispatch code is appended to the bottom
of every body. This saves many instructions, and, crucially,
makes much better use of the branch target predictors, be-
cause now there are 100 predictions, one for the indirect
branch at the end of each opcode.

Direct threading is a big improvement over switch dis-
patch, even for Tcl, where dispatch overhead is low. Un-
fortunately, even it consumes too many cycles on modern
CPUs, because the predictors are still wrong about half the
time in many VMs [6]. To see why direct threading still
exhibits the context problem, consider the virtual instruc-
tion sequence Ipush, Ipush, Iadd. When dispatching
from the first to second Ipush, the predictor will learn that
Ipush typically follows itself. When dispatching from the
second Ipush, it will guess that the next opcode body will
again be Ipush, and begin fetching and speculatively ex-
ecuting instructions from that body. Since the actual desti-
nation is Iadd’s body, the pipeline will have to discard the
results, and stall while waiting to fetch the correct instruc-
tions.

2.3 Context Threading

To resolve the context problem, we proposed context
threading [3]. It is based on an old interpreter technique
known as subroutine threading, which compiles virtual pro-
gram instructions into a series of native call instructions
to the bodies of those virtual instructions. We refer to the
sequence of calls as the context threading table, or CTT
(see Figure 2). While executing in the CTT, the branch tar-
get predictor does very well, because each call goes to the
same address every time each it executes.

Basic subroutine threading leaves two main challenges:
operands and control flow. The CTT defines only the op-
codes used by the instructions in a virtual program, not the
operands. We retain the original direct threaded program,
and it is an integral part of context threading’s program rep-
resentation. The opcode bodies are essentially identical to
the bodies in a traditional switch-based or threaded inter-
preter, differing only in the final dispatch instruction, now
a return, instead an indirect branch. These bodies fetch
operands from the bytecode program using the same logic
as the switch-based interpreter.

This requires that the virtual program counter be main-
tained at all times, which, of course, is already done by the
traditional bodies. Furthermore, when virtual control flow is
encountered, context threading executes corresponding na-
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loader

push 11
push 7

print
done

mul

&(CTT[1])

&(CTT[2])
&(CTT[3])

  goto *vPC++

  RET
...

  exit; #the end
...

  RET
...

  RET
...

...
INST_PRINT:

INST_DONE:

INST_MUL:

INST_PUSH:

7

11

&(CTT[4])

INST_GOTO:
  arg0=*vPC; vPC=arg0;

Direct Threading Table
(DTT)

CALL INST_PUSH
CALL INST_PUSH
CALL INST_MUL

CALL INST_DONE
CALL INST_PRINT

Context Threading Table
(CTT)

Virtual Program Stack

Opcode Implementation Bodies

&(CTT[0])0

6
5
4
3
2
1

0

Figure 2. Context Threading

tive control flow. To implement this, we slightly alter the
direct threaded code (which we call the DTT). Note that the
opcode bodies only refer to the operands in the DTT. The
opcode-address slots are unused. Given a virtual instruc-
tion, we rewrite the corresponding DTT opcode-address slot
to instead contain the address of the CTT slot for that in-
struction. We use this information in the dispatch code after
virtual branches. While most bodies end with a return,
virtual branches bodies end with traditional direct threaded
dispatch – loading from the DTT, offset by the newly ad-
justed virtual PC, and an indirect jump, to the CTT.

The key performance advantage of subroutine threading
is that it usually avoids the costly indirect branch of dis-
patch. Instead, native calls to immediate addresses are per-
fectly predicted by the CPU’s branch target buffer, because
the address of the call and its target are perfectly correlated.
The return instruction at the end of each body is per-
fectly predicted by the hardware return address stack (RAS)
present in most modern CPUs.

Implementing virtual branches using an indirect branch
dispatch exploits neither the BTB nor RAS. Thus the
first optimization context threading makes over subroutine
threading is to “inline” virtual branch code into the CTT.
The actual virtual branch body is called or inlined, and
then a native branch emitted inline. This avoids the indi-
rect branch, the body correctly returns to its corresponding
call, and the native branch is exclusively associated with
the virtual branch, exposing it to the hardware conditional
(taken/not-taken) branch predictors.

In addition to reducing dispatch overhead, another key
feature of subroutine threading is its flexibility. For exam-
ple, context threading makes one final optimization, which
is to inline the bodies of very simple opcodes directly into
the CTT. When applied to Tcl, this flexibility turns out to be
even more important to performance than cheap dispatch,
which, as discussed in Section 1, is of limited impact for
Tcl.



2.4 Catenation

Another approach we tried earlier, catenation, eliminates
all dispatch. We include it in our evaluation for the sake of
comparison. The basic idea is to quickly generate native
code from a bytecode program using copies of code tem-
plates derived from a switch-based or threaded interpreter
compiled by GNU C. The original bytecode program is not
consulted during execution. Much interpreter state remains,
so we consider catenation to be an advanced dispatch tech-
nique, not a compiler. However, some aspects of interpre-
tation are removed. Catenation changes virtual branches
to native, specializes bytecode operands into the templates,
and mostly eliminates the virtual program counter, remate-
rializing it only for exception handling. For full details of
the implementation, consult the original paper [22]. We’ll
briefly present some details here.

We started with Tcl 8.4a3 and Miguel Sofer’s experi-
mental s4 [19] performance enhancements. Among other
things, these enhancements inline common cases for things
like variable handling into opcode bodies, reducing calls to
runtime functions.

The implementation is divided into three main parts: cre-
ating templates in C, analyzing and extracting the templates
from compiled C, and finally using the templates to perform
catenation. The last of these steps is shown in Figure 3. To
create the templates, we made modifications to the func-
tion TclExecuteByteCode(), which implements the
opcode bodies of the bytecode interpreter. Each template
must be a self-contained piece of code. Most of the changes
are to reduce the use of shared code between bodies, to re-
move updates of the virtual program counter, and to replace
code which fetches virtual operands with code that instead
loads a ‘magic number’ constant, used for operand special-
ization. As shown in Figure 3c, we also append to vir-
tual branch bodies an assembly language compare instruc-
tion which sets the Sparc condition code register to indicate
whether the branch is taken or not.

We surround each opcode body with C labels, and
build an array of these labels using gcc’s labels-as-
values extension, yielding an array of the starting and
ending native addresses of each body. Still, when
TclExecuteByteCode() is compiled by gcc, the out-
put is not usable as templates. We post-process the assem-
bly output using Tcl scripts to fix various problems. This is
brittle; upgrading to a new gcc version can take a day of
work, and we have not attempted a port to another architec-
ture. Ertl [10] shows a slightly more portable way to find
specialization slots.

When our Tcl interpreter starts up, it caches an analy-
sis of the templates, including their start, length, and virtual
and native type of each specialization slot. The location of
each native slot is found by looking for three different Sparc

instructions with the magic numbers as operands. This in-
formation is stored in a set of ‘patches’, which allow the
final implementation stage to proceed quickly.

Each time the Tcl bytecode compiler emits a new byte-
code object, it is compiled to native code using the tem-
plates. Catenation is a three pass process. The first pass
computes the net length of templates for all virtual instruc-
tions, and constructs a two-way map from virtual pc loca-
tion to native address. Next, all templates are copied into
place.

The third pass is specialization, which applies patches
to each template. This can be seen in Figure 3c, where
the operand to inst push is substituted into the Sparc
sethi/or instructions (the Sparc idiom for setting a 32
bit constant in a register.) Most operands undergo only a
sign extension, but in this case we lookup the address of the
object to push in the literal table at catenation time, and spe-
cialize into the code, saving the lookup at execution time.

In addition to specializing operands, all pc-relative na-
tive instructions in a template whose target is outside the
template (e.g. C function calls) must be adjusted based
on their new location. Finally, after each virtual branch
(jump true or jump false) template is copied, we se-
lect and emit the appropriate native branch instruction (beq
or bne, respectively).

In the original Tcl interpreter, exception handling code
shared by all opcodes unwinds the virtual stack, and uses a
run-time lookup on the existing vpc to determine the new
vpc at which to resume execution. But we haven’t main-
tained vpc. Instead, we re-materialize it: when an opcode
triggers an exception, it sets the vpc to a constant, then
branches to the common exception code. The constant is
known at compile time. For example, in Figure 3b, when
compiling storeScalar at vpc 6 into native code, we
can specialize the value 6 into the template.

In summary, catenation and context threading are two
techniques to reduce dispatch overhead. Catenation re-
moves it completely, but is complicated to implement, and
introduces the problem of code growth. Context threading
is much simpler, and by avoiding costly indirect branches,
makes dispatches relatively cheap. Both techniques provide
a flexible foundation for further optimizations, but because
it is simpler, context threading is more amenable to incre-
mental improvements. It causes very minimal code growth,
whereas catenation causes much more.

3 Related Work

See our earlier papers [3, 22] for references to literature
relevant to the present work. Here we briefly note newer
work and the most important projects in this space.
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 21 done

Bytecode

synthesized code for jump:

 : �;3 �������� �����
 nop

3 ������ : ����<�=
 native code for 

3 ������2����13 �1

 native code for incrScalar

 native code for 
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: 

 native code for 
3 ������2����13 �1


 native code for push:

  add ? 3 @�ACB$A ? 3 @ ; incr VM stack ptr

  sethi %hi(D�E1F+G andH A ? ��4 ; *** object to push

  or ? ��4�A ? 3 ��I D�E1F+G andH A ? ��4 ; *** object to push 

  st ? ��4�AKJ ? 3 @$L ; store to top of VM stack

  ld 
J ? ��4�L A ? ��M ; last 3 instructions incr

  add ? ��M$AK4�A ? ��M ; ref count of pushed object

  st ? ��M$AKJ ? ��4�L

 native code for lt

 native code for 6 ��7.�9�
 ue:

        ...   ; get object, convert to boolean

  cmp N �)3 ���KA  1 ; set condition code

            : ��O  
3 ������ : � dy

  nop

Catenated Native Code

(a) (b) (c)

Figure 3. Catenation copies templates from interpreter code in virtual program order. Native control flows naturally from one to the next,
without dispatch. Virtual operands and branches are both converted to native.

3.1 VM Dispatch

Ertl and Gregg [7, 8] have thoroughly studied VM per-
formance at the microarchitectural level, using detailed
cycle-accurate simulations of many dispatch strategies in
many different VMs. They find that indirect branch mis-
predicts are a major performance obstacle in their VMs of
interest, and discuss various hardware and software tech-
niques for dealing with this problem.

The basic idea we call catenation (but not tem-
plate specialization) was surveyed early by Rossi and
Sivalingam [15], who credit it to Kenneth Oksanen. Pi-
umarta and Riccardi [14] rediscovered similar techniques,
and show how to portably apply them in a real implemen-
tation, using the Ocaml VM. Their approach is elegant, but
still uses conventional dispatch for opcodes which imple-
ment virtual flow opcodes or whose bodies contain C func-
tion calls, which can’t be easily relocated on some architec-
tures because they are pc-relative.

Ertl and Gregg [7] call this technique dynamic superin-
structions. They improve it to handle virtual control flow.
Later they show [9] how to easily detect bodies which are
not trivially relocatable, by comparing two bodies com-
piled from separate copies of the same C source. All these
techniques are more portable than catenation, and they do
not make radical changes to bytecodes, such as eliminating
the virtual program counter or specializing virtual operands

into native.
Ertl and Gregg [10] later do implement make those

changes, in a technique very similar to catenation, but more
portable and refined. It performs well on Forth’s low-level
opcodes.

3.2 Tcl VM performance

Adam Sah [17] created a dynamically-typed caching Tcl
object system to improve performance while preserving
Tcl’s “everything is a string” semantics. He also caches
script parsing results, but does not compile. Lewis [11]
incorporated all those ideas and added the bytecode com-
piler and VM for Tcl version 8.0, which has had perhaps
the largest impact on Tcl performance in practice.

Rouse and Christopher [16] implemented the commer-
cial ICE 2.0 static (ahead-of-time) compiler for Tcl, target-
ing C and, later, Lewis’s Tcl 8 bytecodes. They report cre-
ating infrastructure for optimization using static type anno-
tations, while preserving dynamic features such as variable
traces. They achieved approximately 30% execution time
reduction over Tcl 8.0’s bytecode compiler.

Cuthbert’s kt2c [4] system seems intended for intellec-
tual property protection, rather than performance improve-
ment. It is an incomplete prototype, but translates ahead-
of-time Tcl 8 bytecodes to C source code in external files,



which is then compiled by a C compiler. Whereas cate-
nation uses native code templates made from the compiled
opcode bodies, kt2c’s templates are the bodies in C source
form. The system contains some type inference infrastruc-
ture, which appears to be unused.

The commercially available TclPro [18] (and now the
ActiveState Tcl Dev Kit [1]) serializes and externalizes Tcl
bytecodes, for intellectual property protection and also de-
ployable packaging of Tcl software.

Miguel Sofer has made many improvements to the re-
leased Tcl VM, and experimented with other improvements
to the opcode bodies (e.g. the s4 [19] extensions we use)
and dispatch performance. The Tcl Wiki page [12] contains
ideas about lower-level Tcl bytecodes which are crucial to
making Tcl’s VM more “efficient”, as defined by Ertl and
Gregg [8].

3.3 Context Threading

Zaleski et al. [24] explore the flexibility of context
threading as a VM architecture, including potential for in-
cremental development of features and performance in dy-
namic languages such as Java. Many of the ideas seem to
be applicable to Tcl, with extremely late binding, dynamic
typing and features such as variable traces.

4 Design and Implementation

We now build on the background in Section 2 to give de-
tails of our implementation of direct and context threading
for Tcl.

4.1 Direct Threading for Tcl

For experimental purposes, we implement direct thread-
ing as a pass that translates the output of the Tcl ByteCode
compiler, which is stored in the ByteCode.codeStart
data structure. We allocate an array of words as large as
the array of bytes, and, while copying the bytes to words,
translate the opcodes to corresponding body addresses (us-
ing a table similar to the one described in Section 2.4). We
also pack four-byte operands, which have been unpacked
by the bytecode compiler into unaligned bytes, back into
words. We leave empty words in place to preserve the in-
variant that the same virtual program counter can index into
the same place in both the DTT and bytecode. We redefined
the interpreter macros which access four-byte operands
(e.g., TclGetInt4AtPtr), and changed the type of vpc
to be unsigned int * instead of unsigned char
*. Instead of all this, a release-quality implementation
could simply change the bytecode compiler to output direct-
threaded code.

With the DTT in place, dispatch from the end of each
opcode body can then be implemented using the gcc
computed-goto extension: goto **pc.

In addition to the savings from direct dispatch, using
words instead of bytes means that dispatch and operand
loads use aligned data. This helps the memory system com-
pared to bytecode, which requires multiple loads, some of
which are unaligned, and shifts and adds to re-assemble
words from bytes. We have experimented with leaving the
word operands unpacked, retaining multiple (aligned) loads
and shifts. The cost of the multiple loads and shifts in over-
all Tcl performance is about 1%.

4.2 Context Threading for Tcl

Our context threading implementation for Tcl is slightly
different than described in Section 2. The output is illus-
trated in Figure 4. The differences are consequences of two
factors. First, we target the Sparc CPU, where all control
transfer instructions (CTI), including calls, have a de-
layed branch slot, an instruction which executes after the
CTI, even if the CTI is taken. Second, most of Tcl’s opcode
bodies contain C function calls. These clobber the link reg-
ister which holds the return address, which must be saved
to enable return to the CTT.

We handle both of these factors by emitting into the
delay slot of the CTT call an instruction to save the
link register, %o7 in the Sparc ABI1, to a register re-
served for that purpose in the C stack frame (by declar-
ing it as a local variable in the main interpreter function,
TclExecuteByteCode()).

Only the CTT code is synthesized. The opcode bodies
themselves require few changes. As in later versions of Tcl,
we have moved all code that increments vpc to the end of
the body, and combined it in a macro which also performs
dispatch. For context threading, we redefine this macro to
use a gcc asm to emit the code shown in Figure 4c: restore
the saved link register, retl (return from leaf routine), and
increment the vpc.

There are six cases in the main loop of our CTT-
generating code, including the one above which simply calls
a body. We describe the other five cases below.

4.2.1 Branch Inlining

Case 2 for the CTT handles the unconditional branch in-
structions. jump1 and jump4 become essentially a single
unconditional native branch. Recall, however, that context
threading maintains all interpreter state, including the vpc.
Referring to the first three lines of Figure 4a, you will see a

1According to Sparc documentation [20], the value written by a call
into the link register is visible to the instruction in the delay slot.
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 ldub G �H( <�IJ<
K ' � ��L ; load operand = *(pc + 1)

 ld G � ����IML0N&<
E0K ' � ��O ; load addr of execution context

 ld G � ��O�IML0N&<
��K ' � ��P ; load addr of literal tbl from ctx

 sll � ��L0' O0' � ��L Q$R�S9TVU0W ) - S$X X set into table

 ld G � ��P�I � ��L
K ' � ��P ; load from literal table

 st � ��P�' G �3( F K ; store to top of VM stack

 ld G � ��P�K ' � �6L ; next 3 instructions increment

 inc %o0 ; reference count of pushed object

 st � ��L0' G � ��P�K
 

�C�6# � � <
' � ��;
 

� 	
�
l  ; return to CTT

 add �3( <
' E
' �3( <
Y Z :$>$!
[$\0]H^�!$> B \`_D�
 ld G �H( <�IJ<
K ' � ��L Q$a S *�bC2
+D*�1 R / S$X X set 

 ... ( ��� �c���$��� de ; convert stack top to boolean

   ; exception if conversion fails

   ; sets vpc appropriately

 cmp 
��� �6�&��'

 1 ; set condition code

 
�C�6# � � <
' � ��;

 
� 	
�

l  ; return to CTT

 nop

dfe g0h0i0jlkMm�g0h6n�o�h6oqp�rco�h
&&jump1

7s�s ( ��89�7:$��8 ( 8�� P
0

&&incrScalar1

0s�s �����
s�s ( ��89�7:$��8 ( 8�� P
0

&&push1

1

&&lts�s = ������>7� ue1

-10

(a) (b) (c)

Figure 4. Output of our context threading implementation for Tcl. When reading Sparc assembly code, note that the instruction after each
control transfer instruction (e.g. call, beq) is executed even if the branch is taken.

sethi/or pair (the Sparc idiom for setting a 32-bit con-
stant in a register) which sets the vpc.

Conditional branches (case 3) are more complex. In ad-
dition to evaluating the condition, they must first coerce the
input data to boolean type, potentially generating an excep-
tion. To see how we handle these, refer to the last four lines
of Figure 4a. We first call variations of jump true and
jump false bodies, amended with a cmp (compare) in-
struction to test the output of the virtual condition, and set
the native condition code register, and finally return to the
CTT. There, we emit a native conditional branch instruc-
tion. This native branch is now well-correlated with vir-
tual program behavior, mobilizing hardware branch history
(‘way-ness’) predictors.

4.2.2 Inlining Small Opcodes

Few of Tcl’s opcode bodies are sufficiently simple to in-
line into the CTT. We profiled the benchmark suite to
measure the dynamic frequency of each virtual opcode.
load scalar1 (14%) and push1 (12%) are most fre-
quent. We also plotted the static length in native instructions
of each opcode body. For case 4 of our CTT generation, we
chose to inline push1, because it is one of the shortest (see

Figure 4c.), with no internal control flow or function calls.
An inlined copy is unique to the static virtual program in-
stance, hence we can specialize as we did for catenation.
While not shown, the outcome after inlining is, instead of
a call to the generic push body, the CTT contains the
seven instructions for push shown in Figure 3c, plus an
add instruction to increment the vpc.

4.2.3 Optimizing Conditional Branches

The final and most effective optimization we apply is
to completely inline certain virtual conditional branches,
eliminating the need to call the body. These are critical
low-level loop instructions, and yet the Tcl VM requires
pushing a newly-allocated object on the VM stack, pop-
ping, and de-allocating. By studying traces of virtual ex-
ecution, we found the most frequent “relational” opcodes
to precede jump true and jump false were gt, lt,
foreach step4, and try cvt to numeric. We cre-
ated a variation of each. Instead of pushing the boolean
result on the stack, the variation simply sets the CPU con-
dition code. The inlined conditional branch can then be re-
solved in the CTT as a native conditional branch (similar
to case 3, above), but without a call to the body. We must



then emit three instructions to set the vpc for the taken and
not-taken path.

This optimization can only be applied if the preceding
virtual opcode and conditonal are in the same virtual basic
block. Before generating the CTT, a pass over the bytecode
finds and records all jump targets. This could be combined
with the pass to compute the required length of the CTT for
memory allocation purposes, but does not consume signifi-
cant time. If a conditional jump does not meet this require-
ment, or is preceded by an opcode other than those above,
we apply case 3.

We tried to use a similar transformation in the simple
switched interpreter. We applied a peephole optimization
to the same “relational” instructions to detect, execute and
skip a successor conditional jump. (A similar change is in
Tcl 8.5.) This change did not yield significant performance
gains in our s4 VM.

4.3 Porting Effort

Clearly any technique that involves synthesizing native
code is not portable, so instead we think in terms of porting
effort. Our implementation for Ocaml uses the ccg run-
time assembler [13], and we had already ported it to x86
and PowerPC architectures. Porting basic context threading
to the Sparc required four programmer hours. It is simpler
than the Tcl implementation described here, requiring emit-
ting only call, nop, retl and add instructions. Branch
inlining and, especially, inlining other small opcodes, re-
quires more instructions. It also requires interfacing with
more interpreter state; e.g. it must emit code to set the vpc.

We use some unwarranted chumminess with the com-
piler, shown in Figure 5, to determine which register gcc
has allocated for vpc, and the virtual stack pointer, as well
as the variable we declare for saving the link register. An-
other approach would be to use gcc extensions to force the
allocation of variables to specific registers. But this con-
strains the compiler’s optimizer. We can also try to crack
(disassemble and decode) the Sparc instructions which in-
crement vpc. The decoding is perhaps no uglier than our
approach, but locating the instruction to decode is difficult,
and raises the kind of robustness issues we experienced with
our catenation implementation.

The direct threading translation is implemented in 87
lines (36 semicolons.) Code to generate the CTT is 698
lines (293 semicolons), including debugging and instru-
mentation code, and several experimental variations. Sim-
ple CTT generation for Ocaml requires less than 60 lines,
but doesn’t perform any inlining. Catenation is 1352 lines
(720 semicolons.)

enum { INST ADD /* . . . */};

void interpret (unsigned int *prog)
{

unsigned int *vpc = prog;

for (;;)
switch (*vpc++) {

case INST ADD:
asm volatile ("\
.data \n\
.global vpc_location \n\
.align 8 \n\
vpc_location: \n\
.asciz \"%[vpc]\" \n\
.text" :: [vpc] "g" (vpc));

/* actual work goes here */
break;

}
}

int main (int argc, char *argv [ ])
{

extern char vpc location [ ];

printf ("gcc allocated vpc reg or stack slot: %s\n",
vpc location);

}

Figure 5. Programmers of mixed-mode systems must emit native
code which interfaces with interpreter state, when most of the
interpreter is coded in C. GNU C has several extensions useful for
this kind of programming. Its asm statements normally output
instructions, but here we output assembly to put a string in a global
variable in the data segment. The string describes the storage
assigned by gcc for the virtual program counter (technically valid
only at this point in the program). In our implementation (not
shown), we lookup this string in a table of register names, or parse
it to obtain a stack frame offset for a C local variable. Then we use
this to emit native instructions at run time.

5 Experimental Evaluation

In this section we evaluate the performance of our dis-
patch techniques in Tcl, with particular emphasis on context
threading. After describing the setup, we report increas-
ingly detalied statistics on a large set of benchmarks. We
also introduce a simple context threading implementation
for Ocaml on Sparc. This hints at the technique’s potential,
not fully realized for Tcl, and helps us compare with our
earlier work (Ocaml on x86 and PowerPC).

5.1 Methodology

Our experimental platform is a SunFire V440 running
Solaris 8 on four 1281 MHz UltraSPARC IIIi CPUs. Each



has a 32 KB I-cache, 64 KB D-cache, and 1 MB on-chip L2
cache. All caches are four-way set associative. Prefetch and
store buffers are 2 KB each. The pipeline is 14 stages and
non-blocking. The chip is four-way superscalar, with two
integer, two FP, one load/store and one branch unit. There is
a 16k entry branch prediction table. We run on an unloaded
machine.

We created a new Tcl command,nbench, which runs an
arbitrary Tcl script for a given number of iterations (defaults
to one) and collects data from the given Sparc performance
counters by calling the Solaris cpc performance counter
API:

tclsh% nbench {fact 5} results 1000

tclsh% parray results

results(exec pic0) = 4206

results(exec pic1) = 3516

results(overflow) = 0

The API and operating system virtualize the counters so
other system activity is not counted. By default, the coun-
ters collect cycle and instruction counts, and include ker-
nel activity, but via switches can also collect many micro-
architectural statistics, such as pipeline stalls due to instruc-
tion cache misses. Unfortunately, we were unable to get
reliable data from the counter which measures stalls due
to indirect branch misprediction. The CPU can only col-
lect two statistics at a time. We make several runs of each
benchmark, each collecting cycles and one other statistic.
We use the mean cycles value for analysis.

The canonical performance benchmark suite for Tcl is
tclbench [21]. It contains over 500 benchmarks, mostly
very small. We generally report only benchmarks with
more than 10,000 bytecodes dispatched, because experi-
mental noise is otherwise high. We exclude some bench-
marks where the standard deviation is more than 2% of the
mean. These tend to be system-only workloads, which are
unlikely to be affected by our optimizations. Benchmarks
such as WORDCOUNT, which contain system and signifi-
cant user computation, are included.

We added instrumentation to measure bytecode compila-
tion time, and time for our various native compilations, and
also to collect dynamic execution counts for each virtual
opcode. Because this instrumentation can perturb results,
we run each set of benchmarks twice, with and without it.
We include run-time re-compilation time (which occurs, for
example, when expr’s argument is unbraced), and add in
initial compilation to the time for a single benchmark itera-
tion. This is much tougher than tclbench, which amortizes
compile time over all iterations. In real-world applications,
performance sensitive code is typically executed more than
once.

5.2 Results

We discuss three main aspects of performance. First, the
running time of each benchmark is reported as time, in cy-
cles. Cycles only count while executing the Tcl process
or in the kernel on behalf of the process – other system
processes are excluded. Second, we describe the micro-
architectural behavior of a few interesting examples. Fi-
nally, we will discuss compilation costs.

5.2.1 Run time

Table 2 shows the overall change in performance, relative
to switch threading. For instance, the first row of this table
indicates that direct threading speeds up the average bench-
mark by a geometric mean of 4.3%. Furthermore, 88% (53
of 60 benchmarks) speed up. The remaining seven slow
down. Overall, we see that catenation, direct and context
threading all improve performance. While not shown, we
have less formally measured the separate results of the vari-
ous optimizations we tried. Direct threading gains about 1%
overall as a result of modifying all immediate parameters
to be words rather than bytes. Context threading uses the
DTT for operands, and thus also benefits 1%. It also wins
about 1 to 1.5% from inlining the push bytecode. Simple
subroutine threading, without any branch or other inlining,
performs roughly only as well as direct, gaining about 5%.
Fully inlining certain conditional branch bytecodes, as de-
scribed in Section 4.2.3, wins another 2 - 9%, depending
on how loopy the workload is (as measured by how many
dispatches it performs). All three dispatch techniques seem
to win about 4% due to dispatch, and the rest due to other
optimizations.

5.2.2 Overall tclbench performance

Figure 6 shows the elapsed time required for each bench-
mark summarized by Table 2. A bar is plotted for each of
the 60 tclbench programs that dispatch more than 10,000
virtual instructions. To show the pattern of speedup across

Dispatch type geom mean
speedup

% of bench-
marks improved

direct 4.3% 88.%
catenation 4.0 73.
context 5.4 88.
context + inline cond 12.0 97.

Table 2. Percentage geometric mean speedup of various dispatch
techniques on UltraSPARC III CPU for the 60 programs in tclbench
that dispatch 10,000 bytecodes or more.



all benchmarks, the bars on each plot are sorted by per-
formance, so we cannot use these plots to compare spe-
cific benchmarks. For example, the upper left hand plot,
Figure 6a, shows that Direct Threading slows seven bench-
marks, the worst by about 5%, and speeds up the rest. Note
that several bars are clipped in Figure 6b.

Direct threading loses on few benchmarks, but makes
more modest performance improvements than the other
techniques. Catenation produces the biggest wins, as well
as the biggest losses. Context Threading wins more than
Direct Threading, and loses roughly the same amount. Con-
text Threading with inlined virtual conditional branches
wins the most, and loses the least.

5.2.3 Selected Microarchitectural Detail

To investigate what causes these trends, Figure 7 reports the
micro-architectural behavior of a few hand-picked bench-
marks. Each cluster of bars indicates the performance of a
benchmark. Each bar in a cluster indicates the performance
of a modified version of the Tcl interpreter, relative to the
performance of the same VM using switch dispatch. Con-
sequently, the height of the bar corresponding to switch is
1.0. From left to right, the bars represent switch dispatch,
direct threading, catenation, context threading, and finally
context threading with inlined virtual conditional branches.

Each bar is made up of up to five stacks, which attribute
the execution time to various factors. The bottom stack
shows cycles when the CPU was stalled waiting for in-
struction cache lines to be read from memory. The second
stack, 2nd br, reports stalls when the Ultrasparc’s pipeline
refetches a branch when “two branch instructions line up
in one 4-instruction group” [20]. It is relevant to the per-
formance of context threading, because our insertion of re-
turns into the bodies is not subject to a compiler’s careful
instruction scheduling, potentially very important for RISC
CPUs. The third from top stack measures “Return stack
stall”, which indicates the extent to which the machine stalls
because the return address stack mispredicted. We include
this statistic to demonstrate that context threading, which
relies on and places load on the RAS, does not overwhelm
it. Finally, the top stack measures all other execution cycles,
mainly real work. We measured some other statistics, such
as data dependencies between instructions in the pipeline,
and found they did not significantly differ between tech-
niques.

The leftmost two benchmarks, MATRIX-mult and
FACT, use Tcl as a general purpose programming language,
calculating a 20 x 20 matrix multiplication, and a non-
recursive calculation of the factorial of 16 (we run FACT
20000 times per benchmark iteration.) These benchmarks
make relatively few calls to Tcl’s large runtime system, and
the inner loops are made up of relatively small bytecode

bodies. These programs have a relatively high proportion
of dispatch to real work, so we expect improvements from
our dispatch oriented techniques. Direct threading shortens
the dispatch path and shows good speedup. We inspected
the virtual instructions in the inner loop of FACT and MA-
TRIX, and observe that the same opcode appear more than
once followed by different opcodes. This suggests that they
will suffer from the context problem. We thus expect Con-
text Threading to outperform Direct Threading – see Sec-
tion 5.2.5 for discussion of why it does not. Catenation re-
moves all dispatch, and shows a good speedup. Context
threading improves the dispatch, but not enough to do as
well as catenation (which has removed the dispatch code
altogether). Context threading with inlined virtual branches
does the best because it optimizes the inner loop closing
branch more than the catenation.

The next two benchmarks, LOOP foreach and
LOOP while, are small microbenchmarks that execute
empty loops. The inner loop of LOOP while includes
a conditional branch which enables Context Threading
with inlined branches to beat catenation. LOOP while
shows some of our best speedups, about 40% for Context
Threading with inlining.

The MD5 benchmark illustrates a problem with all our
techniques when the code footprint of a program becomes
large. MD5 has a huge inner loop, with 118 lines of Tcl
source to compute the md5 hash function. This compiles
to 1518 virtual instructions, and recursively enters the in-
terpreter to handle called Tcl procs. Catenation’s copies
yield many native instructions, inducing many instruction
cache misses, and slowing down by 40%. Context thread-
ing, which generates much less code per virtual instruction,
still causes enough misses to balance out any improvements
to dispatch.

The two BASE64 benchmarks illustrate how I-cache
stalls can be low enough that dispatch improvements com-
pensate for them. Generally, however, catenation’s perfor-
mance is too unstable for Tcl, with its large opcodes.

Finally, we show MATRIX-transposition because it has
the highest proportion of initial compile time of any bench-
mark with over 1,000 dispatches, even with the normal
switched interpreter. Most benchmarks spend less than 1%
of time compiling, but in this case our techniques’ increased
compile time hurt performance, although only catenation
becomes slower than switch.

5.2.4 Ocaml Performance

For the sake of comparison, Figure 8 shows how simple
subroutine-threaded Ocaml performs on Ultrasparc. Un-
like our earlier work with Pentium 4 and PowerPC, we
haven’t yet implemented branch- and other inlining. As
Figure 1 showed, Ocaml bytecodes are much lighter than
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Figure 6. Performance of various Tcl dispatch techniques, compared to Switch, for benchmarks that execute more than 10000 virtual
instructions. Higher is faster. The clipped values in (b) are -130, -44 (analyzed in detail in Figure 7), -43, -11, -10, and -5.45.
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Figure 7. Comparison of some microarchitectural statistics for each dispatch technique on selected benchmarks. Lower is faster. The
five stacks in each cluster, from left to right, are switch, direct, catenation, context threading, and context threading with inlined virtual
conditional branches.

Tcl’s. This implies that there is much more opportunity to
improve Ocaml performance by optimizing dispatch, and
this is confirmed by the speedups obtained. Context thread-
ing improves Ocaml performance, as reported in Figure
8, much more than it speeds up Tcl. Because we were
unable to make stable measurements of stalls due to mis-
predicted branches, we can not conclusively report that
these speedups are caused by a reduction in mispredicted
branches. Nevertheless, we speculate that reducing these
branches causes the speedup on Ultrasparc, as it did on the
PowerPC and Pentium 4, where we used performance coun-
ters to measure branch target stalls and events.

5.2.5 Context Threading improves less than expected

Above we pointed out that we expect Direct Threading
to suffer many branch mispredictions in the inner loop of
the FACTORIAL and MATRIX-mult benchmarks. Hence,

we expected that context threading should win over direct
threading, as it did for Ocaml. For Tcl, it does not, and
we do not conclusively understand why. We believe it is re-
lated to saving the link register after calls from the CTT, and
restoring before returning, necessary because of C function
calls in bodies. We have experimented with removing these
saves, instead re-loading the return address from the DTT
only after calls. With the s4 VM we are using, these calls
are rare on critical paths. But this did not improve perfor-
mance. More investigation is required.

5.2.6 Compilation Time

As a baseline for compilation speed, we use the time for
compiling Tcl source to bytecode. Translating bytecode to
direct threaded code adds approximately 6% to this time.
Catenation adds an average of 44%. Compilation time for
all our techniques is sensitive to the benchmark, particularly
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Figure 8. Subroutine threading speeds up Ocaml’s virtual machine
on all benchmarks on the UltraSPARC III, even compared to the
already-efficient default technique, direct threading.

for catenation, which can require as little as 10% or as much
150% more time than the bytecode compiler. On average,
and including the time for the translation to direct threaded
code, context threading adds about 35%. With the inlined
conditional branch optimization it adds 38%.

Only four benchmarks in the entire suite use run-time re-
compilation. None are shown in Figure 7. EXPR-unbraced
is so short (64 dispatches) that it is dominated by compila-
tion time, even for switch. Context threading’s additional
compile time slows it down by 80%, but this amounts to
40µs, which we consider insignificant. The benchmark GC-
Cont expr::cGCC 5000, also uses run-time recompilation,
and all our techniques increase this time, but all have fewer
total cycles, because the compiled code executes faster.

6 Conclusions and Future Work

We have implemented context threading for Tcl on
Sparc, speeding up 97% of benchmarks by an average of
12%. Compilation time increases only modestly, by 30%.

Our Ocaml experiment shows that context threading can
perform well on Sparc, even without fancy optimizations.
The Sparc delayed branch slot slightly complicates im-
plementation, but does not hamper performance. On the
other hand, Tcl (like some other languages with dynamic

types) has high-level opcodes, which creates several prob-
lems. Dispatch overhead is low, limiting the efficacy of
our dispatch-oriented techniques. Direct and basic context
threading improve overall performance some, but the real
gains of our work come from the optimizations made possi-
ble by context threading’s flexibility.

Our earlier technique, catenation, is hampered by poor
portability, high compilation time, and unstable perfor-
mance for Tcl. Tcl’s large opcode bodies tax the instruc-
tion cache, even in a simple switch-based interpreter. This
is unusual for a virtual machine. Part of the problem may
be that most of the opcodes contain the same code to do
things like coerce types and handle errors. Catenation’s
copying of these large opcodes amplifies the problem. On
the other hand, Ertl reports that catenation [7] (and special-
ization [10]) can work well for Forth’s small bodies.

When used as a general purpose language, e.g., to com-
pute the factorial function, Tcl is 10 - 20 times slower than
compiled C. In this context, 10% speedup does not seem
very significant. We believe a new VM architecture is war-
ranted, with lower-level bytecodes.

Dynamic typing requires polymorphic bytecodes, but
these should be split into separate pieces for detecting types,
loading fields, performing arithmetic, etc.. A type infer-
ence [2] system should be able to overcome most of the
overhead of dynamic types. The VM needs an intrinsic in-
teger type, because the overhead of ‘boxing’ and ‘unboxing’
Tcl Objs wastes time and obscures program semantics,
limiting value re-use. Machine integers are still important
– in loop induction variables and list indices, for example
– even if Tcl’s superior (well-defined) integer semantics are
preferred for most program variables. Lisp and Smalltalk
use tagged pointers to efficiently implement integers along-
side dynamically typed objects.

Perhaps only after these changes is it appropriate to ap-
ply efforts such as our CTT inlining optimizations.

Lower level bytecodes will obviously result in more
bytecodes required to represent a virtual program. They
will more amenable to analysis and optimizing transforma-
tions, and also more suitable as input to a JIT’s intermedi-
ate program representation. The best JITs apply powerful
time-consuming optimizations to hot code, while interpret-
ing cold code. Lower-level bytecodes will actually increase
interpreter dispatch counts, but we believe that the efficient
dispatch techniques we have presented will limit increases
in overhead.

Even with the limited dispatch overhead, we believe con-
text threading for Tcl should perform better. We would like
to port to x86 (possibly after integrating the ccg [13] run-
time assembler, which eased our Ocaml ports) and study
behavior there. We’d also like to learn more about the Ultra-
sparc’s pipeline, try to get reliable statistics from its counter
to measure branch target predictor performance, and use the



interpreter-oriented ‘prepare-to-branch’ instruction referred
to in Sun marketing material, but about which we’ve been
unable to find any technical data. Finally, we’d like to inline
more opcodes, such as the critical path of load scalar,
and try to manage I-cache misses induced by the CTT by
inlining less as its size grows.
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