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ABSTRACT
We introduce a strategy for inlining native functions into
JavaTM applications using a JIT compiler. We perform fur-
ther optimizations to transform inlined callbacks into seman-
tically equivalent lightweight operations. We show that this
strategy can substantially reduce the overhead of perform-
ing JNI calls, while preserving the key safety and portabil-
ity properties of the JNI. Our work leverages the ability to
store statically-generated IL alongside native binaries, to fa-
cilitate native inlining at Java callsites at JIT compilation
time. Preliminary results with our prototype implementa-
tion show speedups of up to 93X when inlining and callback
transformation are combined.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization, run-time environments

General Terms
Languages, Performance, Design, Experimentation

Keywords
Java, JNI, inlining, JIT compilation, native code

1. INTRODUCTION
Currently, there is no single programming language that is

universally suitable for all tasks, nor is one likely to emerge.
There is an inherent tension between the support for low-
level operations (such as bit manipulations) provided by lan-
guages such as C, and high-level features such as type safety
and automatic garbage collection supported by languages
such as Java. Rather than focusing on a one-size-fits-all
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Figure 1: The Java Native Interface

approach to programming language design, support for lan-
guage interoperability is the preferred approach. In addition
to allowing programmers to choose the right tool for the job,
interoperability allows the reuse of legacy applications and
libraries that may have been written in a different language.

Most high-level languages support interoperability by pro-
viding some mechanism for calling code written in a low-level
language (such as C). These mechanisms typically impose
both time and space overheads at each cross-language func-
tion invocation because arguments and results must be pack-
aged carefully to bridge the boundary between the languages
involved. In this paper, we focus on the Java programming
language [16], because of its widespread adoption for general
programming tasks.

Java’s interoperability mechanism consists of the Java Na-
tive Interface (JNI) [22]. The JNI (Figure 1) is a platform-
independent application programming interface that pro-
vides language interoperability at the function level. It per-
mits Java code to call functions implemented in external
languages (which we refer to as callouts), at the same time
allowing external code to access and modify data and ser-
vices from an executing Java virtual machine (which we re-
fer to as a callback). Callouts provide Java applications
with the ability to leverage legacy, high-performance and
architecture-dependent native codes, whereas callbacks im-
ply the availability of Java data types and related function-
ality in native code. Unfortunately, the JNI shares the same
space and time overheads that afflict other interoperability



mechanisms. For example, at each callout to native code,
extra data (beyond the actual arguments themselves) must
be marshaled into the call to provide the native code with
access to the JVM.

Our work addresses these overheads directly by providing
a Just-in-Time (JIT) compiler optimization targeting native
function calls. Specifically, we extend the JIT compiler’s
function inlining optimization to handle callouts to native
functions, and provide a transformation mechanism to deal
with inlined JNI callbacks. We use inlining to reduce the
number of callouts, and then take advantage of the JVM
context to transform JNI callbacks from overhead-laden op-
erations to semantically equivalent, but dramatically less
expensive operations. In addition, we believe that making
native function callsites more transparent will expose them
to further optimization opportunities in our JIT compiler.

Strategies for function inlining, whether for traditional
statically-compiled code, for dynamic JIT compilation, or
for polymorphic callsites, are well-researched areas of com-
piler optimization, and are not the focus of this paper. The
main contribution of this work is to extend inlining to na-
tive functions during JIT compilation. For our purposes, we
simply require support for general function inlining in the
JIT compiler framework.

The rest of the paper is organized as follows. In Section 2,
we motivate our work by showcasing the ubiquity of native
functions and the JNI in Java programs. We also provide
more details on the overheads currently affecting the us-
age of both, and introduce our approach. Section 3 then
describes the JVM and JIT compiler framework that our
work builds on, and Section 4 describes the design of our
proposed solution. The current status of our prototype im-
plementation and initial results are presented in Section 5.
We compare our approach to improving JNI performance to
prior strategies, and discuss other related work on language
interoperability in Section 6. We then conclude in Sections 7
and 8 by summarizing various issues that need addressing
as our work progresses.

2. BACKGROUND AND MOTIVATION
The Java programming language provides desirable high-

level features, including platform independence, type safety,
object orientation, and automatic memory management via
garbage collection, which have led to its widespread adop-
tion in many settings. The JNI, a required feature of all
specification-conforming JVMs, greatly enhances the appli-
cability of Java by allowing legacy, high-performance, or
architecture-dependent native codes to be integrated with
Java applications. We begin this section by highlighting
some of the uses of the JNI, motivating the importance of
this interface for a large number of applications. We then
discuss the performance issues associated with use of the
JNI, and introduce our strategy for addressing these issues.

2.1 JNI: The Pervasive API
JNI calls occur in many different classes of applications.

They have been used in I/O implementations, including
improving performance of object serialization for distributed
computing [9], providing bindings to low-level parallel com-
puting libraries [4, 14], as well as for high-speed network
interfaces [35]. The JNI is also used to implement various
JVM frameworks, such the Java 1.5 Class Libraries as
well as the reflective, Java-based OpenJIT compiler from

Ogawa et al. [28], and the MicrosoftTM Marmot JVM Class
Libraries [12].

Strong arguments in favor of implementing numerical
routines in Java native functions are made by Bik and
Gannon [6]; despite improvements in pure Java numerical
libraries, interfaces to widely-used but platform-dependent
optimized native linear algebra packages are still being de-
veloped [17]. The graphical components of Java-based
user interface libraries, including the Standard Widgets Tool-
kit [27] and the Abstract Window Toolkit [31], as well as
other Java-based multimedia APIs [24] rely on the JNI to
make use of underlying architecture functionality that isn’t
provided in Java. Native codes are also used to recover other
functionality unavailable in Java, including low-level hard-
ware performance measuring tools [29], and accurate timers
and system resource monitors [5].

The JNI provides much-needed access to low-level native
code, but the overhead of this interface is significant.

2.2 JNI Performance Issues
The JNI’s strength lies in decoupling native codes from a

specific JVM implementation by providing relatively opaque
access to JVM internals, data, and services. The cost of this
property is lost efficiency, namely large runtime overheads
during callouts to native functions, and even larger ones
during callbacks to access Java code and data.

2.2.1 Cost of Callouts to Native Code
Generally speaking, a native library containing the func-

tion being invoked must be loaded on or before the first in-
voke Bytecode is expected, the containing class and function
must be resolved (resolution may require multiple passes
over the exported functions in a native library), and related
JVM data structures must be updated. These are one-time
costs that can be amortized if a particular native function
is invoked repeatedly.

During each individual native function invocation, the
JVM must also perform work to set up the native stack and
possibly registers in order to pass arguments, and must per-
form null-checking on reference arguments before possibly
adding a layer of indirection to them. Upon returning from
native code, the return value must be pushed onto the Java
stack and the native stack must be restored. In addition, ex-
ception status must be checked and local reference cleanup
performed on return. JVMs with JIT compilers may reduce
these overheads by generating specialized code segments to
perform some of the required work at native call sites, as is
done in the IntelTM Open Runtime Platform [10] and in our
JIT compiler (see Section 3.1).

Sunderam and Kurzinyec [33] studied the performance of
different types of native calls using different JVM imple-
mentations. Slowdowns when using native functions ranged
from a factor of 1.05 to a factor of 16 in the worst case.
Only one case achieved a speedup during a native call. Sim-
ilar results are produced in overhead-measuring experiments
performed by Murray et al. [25]. These high overheads are
cause for concern, especially since one of the motivations for
using the JNI is to allow access to high-performance native
code.

2.2.2 Cost of JNI Callbacks
Although callouts are reasonably expensive, the more sig-

nificant source of interoperability overhead occurs during the



invocation of JNI callbacks. Because of the JNI’s platform-
independent design, JNI functions are only callable through
a reference to the JNI Environment variable (the JNIEnv

pointer). This JNI Environment is a table of function point-
ers, each referring to the implementation of a specific call-
back function. A callback thus pays a performance penalty
because two levels of indirection1 are used - one to obtain the
appropriate function pointer through the JNIEnv pointer,
and one to invoke the function using that pointer. Other,
more specific callback overheads depend on the JNI function
being called:

• String and array parameters - To make use of
string and array data originating from a Java appli-
cation, native code must first acquire native-side ac-
cess to them. Unfortunately, this requires expensive
runtime copy operations whose purpose is to leave the
JVM’s copy of the data untouched. The JNI, how-
ever, also provides callbacks that claim to increase
the chances of receiving direct references to underly-
ing JVM data, but this is left to the JVM’s discretion
and also places certain restrictions on the program-
mer’s freedom. Because JVMs may implement these
callbacks in any way they choose, there is no guarantee
that better performance will actually result from their
use. Sunderam and Kurzinyec [33] demonstrate that
the achieved performance varies widely across different
JVM implementations.

• Fields and methods - Using Java data types, modi-
fying object data, calling methods and accessing JVM
services from native code are also performed via call-
backs. For example, modifying a field of an object or
calling a static method first requires retrieving a han-
dle to it. This retrieval is commonly implemented as
a traversal on the JVM’s reflective data structures, in
addition to expensive string-based signature compari-
son operations at runtime [8]. Results in [33] highlight
these overheads: field accesses in Java are orders of
magnitude quicker than those via the JNI.

• Other JNI functions - The JNI also provides call-
backs that instantiate objects, manage references, han-
dle exceptions, support synchronization and reflection
as well as those that provide the ability to embed JVMs
inside native code. These functions share costs simi-
lar to those of field and method access callbacks, but
have their own unique set of additional overheads. We
exclude analyzing them in this paper.

We also note that callbacks may block if a JVM is in the
midst of performing a blocking task (such as garbage collec-
tion) when the callback occurs.

2.3 Addressing JNI Overheads
Given the extensive use of the JNI in existing applications,

we believe the performance penalties must be addressed di-
rectly, rather than by introducing changes to the interface,
or introducing a new interoperability mechanism for Java.
Further, since high-performance JVMs include JIT compil-
ers, it is appropriate to leverage JIT optimizations to reduce
the overheads incurred as a result of using the JNI for in-
teroperability. Instead of simply generating efficient code to

1Only one level of indirection is required for C++ natives.

perform the extra work required at JNI invocation points,
however, we aim to eliminate much of this extra work en-
tirely. We consider other strategies for dealing with JNI
overhead in more detail in Section 6.

Our approach is to extend the JIT compiler’s function in-
lining optimization to handle native function calls. Once na-
tive code has been inlined at its callsite in a Java program, it
is no longer necessary to set up and tear down a native stack,
or perform other expensive operations to pass arguments.
More importantly, the callbacks, designed to gain access to
internal JVM state, can now be transformed into compile-
time constants or lightweight Bytecodes that preserve the
semantics of the original source program. Our prototype im-
plementation shows significant performance increases from
inlining native code and transforming JNI callbacks for sim-
ple microbenchmarks. Although the implementation is not
complete, we expect these benefits to translate into perfor-
mance improvements in real applications that make exten-
sive use of the JNI. In addition, we believe that native func-
tion inlining will expose native code to other optimization
opportunities, and reduce the need for the JIT compiler to
make conservative assumptions when optimizing Java code.

Our strategy for native function inlining has been proto-
typed and evaluated in the context of a high-performance
production JVM and JIT compiler from IBM. Before de-
scribing the details of our strategy, we thus first describe
this framework.

3. JIT COMPILER FRAMEWORK
In this section, we introduce the VM and JIT compiler

technologies from IBM that form the basis of our imple-
mentation, and present the inlining strategy employed by
the JIT compiler.

The IBM R© TR JIT compiler is a high-quality, high-
performance optimizing compiler, conceived and developed
at the IBM Toronto Software Lab. Designed with a high
level of configurability in mind, it supports multiple JVMs
and class library implementations, targets many architec-
tures, can achieve various memory footprint goals and has
a wide range of optimizations and optimization strategies.

The control flow for the TR JIT consists of phases for in-
termediate language (IL) generation, optimization and code
generation as depicted in Figure 2. When compiling a method,
the IL Generator walks the method’s Bytecodes, and gen-
erates tree-based JIT compiler IL (referred to as TR-IL) that
also encodes the control flow graph. The Optimization
phase is a pipeline through which the TR-IL flows and may
be modified and reordered by architecture-independent/de-
pendent, speculative and profile-based adaptive optimiza-
tions. The Code Generation phase lowers the TR-IL to
a specific machine instruction set, performs register alloca-
tion and schedules the instructions before emitting a final
binary encoding. Auxiliary data structures which include
stack maps and exception tables are also generated at this
point.

The TR JIT compiler is currently used by the IBM J9
Java virtual machine2. J9 is a clean-room JVM implemen-
tation targeting numerous different processors and operating
systems, supporting ahead-of-time compilation, and method
hot-swapping as well as a host of other features.

2performance results for a TR JIT enabled J9 virtual ma-
chine can be found on www.spec.org



Figure 2: Architecture of the TR JIT compiler

3.1 Java Function Inlining in the TR JIT
The TR inlining optimization reduces the overhead of

function invocations by inlining entire functions at their
callsites. The primary purpose of this inlining, however,
is to expose more IL to the optimizer and to eliminate pes-
simistic assumptions that must be made about the behavior
of opaque calls. Like most inlining strategies, it uses a va-
riety of heuristics when determining if a given function call
should be inlined. Once the decision has been made to in-
line a function, the inliner generates TR-IL for the callee,
and completes the process by performing all the required
transformations on both the caller and callee functions.

The TR JIT currently handles invoke Bytecodes that have
a native target by generating code that transfers the na-
tive call setup and tear-down work to J9, or by using a
proprietary mechanism known as Direct2JNI that is based
on compile-time signature parsing to produce compiled glue
code tailored to perform the native call to each unique native
target. Direct2JNI supports inlining of the tailored native
dispatch into the Java caller for non-virtual methods, but is
restricted to synthetic glue methods for other types of meth-
ods. In this way Direct2JNI is able to support and therefore
optimize call sites where some receiver types have native im-
plementations while others have pure Java implementations
using a common dispatch sequence.

Our work extends the inlining strategy in the TR JIT to
native function calls. Our focus has been on providing this
novel functionality, rather than exploring new heuristics that
might be more suitable for native code. We thus use the
existing heuristics to decide when the call should be inlined.

4. NATIVE FUNCTION INLINING
Our design for native function inlining consists of three

major components. First, we introduce a conversion engine
that translates native code into TR-IL. Second, we introduce
an enhancement to the inliner, allowing it to synthesize calls
to opaque native functions (i.e., calls to other native func-
tions that occur in the inlined code, but that cannot them-

Figure 3: The IL conversion process

selves be recursively inlined for a variety of reasons). Third,
we introduce a callback transformation mechanism that re-
places expensive callbacks with compile-time constants and
cheaper Bytecode equivalents, while preserving the seman-
tics of the original source language. We now describe each
of these components in detail.

4.1 The W-Code Conversion Engine
The first phase of our native inlining strategy requires the

conversion of native code into the same IL used by the TR
JIT compiler. To do this efficiently, we exploit the ability
to store IL alongside native executable code in the same bi-
nary object file or library. This strategy of retaining the IL
generated by a traditional static compiler to support future
optimizations is similar to strategies used to support link-
time cross-module inlining optimizations in several commer-
cial compilers, include those from HP [2] and IBM [20]. It
is also reminiscent of the strategy for supporting “life-long”
program optimization used in LLVM [21].

In our case, the original IL is W-Code, a mature stack-
based Bytecode-like representation generated by IBM com-
piler front-ends for C, C++, FORTRAN, COBOL, PL/1
and other programming languages. Because W-Code is de-
signed to support a large number of languages, aliasing is
made explicit in the IL itself. Aliasing is also explicit in
TR-IL, making it possible to preserve alias information from
the W-Code of native functions when they are converted to
TR-IL. As depicted in Figure 3, the W-Code to TR-IL con-
version engine operates by iterating through the W-Codes
of a native function, and generating TR-IL for each encoun-
tered instruction. Once W-Codes have been processed, TR
can treat the generated internal TR-IL as if it were derived
from Java Bytecodes. In the following sections, we discuss
situations where care must be taken to provide appropriate
linkage and preserve the semantics of the original language
with respect to global variables and external functions.

In our implementation, the IL conversion step occurs at



Figure 4: Inlining native codes

runtime, when the inliner decides to inline a particular na-
tive function. In principle, the conversion could also be
done offline, storing a representation of the JIT compiler’s
IL along with the native executable. TR-IL, however, is an
in-memory IL and is not suitable for efficient serialization to
disk. In contrast, W-Code (like Bytecode) is a suitable disk
format by design, and the conversion to TR-IL is a single-
pass, lightweight operation. Storing the more compact rep-
resentation and converting at runtime is in keeping with the
slim binaries strategy proposed by Franz and Kistler [13].

4.2 Inlining and Synthesizing Native Calls
The native inlining proceeds as follows: TR uses the con-

version engine described in Section 4.1 to load and generate
TR-IL for a Java-callable native function, and then maps
parameters to arguments, generates temporaries as needed,
merges caller and callee IL and control flow graphs, and
materializes the JNIEnv pointer for use by inlined JNI call-
backs. This inlining process is recursive and considers non-
Java callable native functions as potential inlineable candi-
dates as well. Figure 4 depicts this process.

4.2.1 Synthesized Native Functions
The IL for a native method cannot, in non-trivial cases,

proceed directly through the rest of JIT compiler processing.
This is because it may contain calls to non Java-callable
natives for which the JIT compiler cannot render an IL. Such
“opaque” calls occur in two situations: (1) calls through
function pointers, and (2) calls to functions in binaries where
W-Code is unavailable. Opaque native calls are replaced
with calls to synthesized methods similar to those produced
by Direct2JNI, whose purpose is to call the native function
after having set up the proper linkages and context to make
the call. The effect is to bridge the Java application to the
previously-buried native function. This situation is depicted
in Figure 5. In some cases (e.g., when the opaque function is
a well-known library function) the call to the function can be
effected without going through an entire intermediate native
method.

Another concern is data shared between an inlined native
function and any other native function (i.e., a synthesized
native function, another function in the same library, or a
function defined somewhere else). Shared data in this con-
text can be any one of external or static data, as well as

addresses of variables (automatics or parameters) that may
be passed by an inlined native to one of its synthesized calls.
In these cases, TR is careful to ensure that correct linkage
is used and the inlined native code is able to read and write
to the same portion of shared memory as non-inlined func-
tions. Because this address resolution is performed at JIT
compile-time, and the original native function is now inlined
rather than called explicitly, additional care must be taken
to ensure that the dynamic loading of new libraries is han-
dled correctly.

Finally, the inlined native methods clearly execute in a
Java context. Therefore, the code must be conditioned to
interact with all appropriate VM requirements. In particu-
lar, instructions to perform handshaking with VM compo-
nents such as garbage collection are inserted before and after
inlined native code.

The inliner recursively inlines functions called by a Java-
callable native method until it either encounters a call to an
opaque function or internal code growth limits are reached.
Having reached a termination point, the inliner examines the
resulting IL for synthesis requirements, and after satisfying
them, continues with normal JIT compiler processing.

Note that inlining a single original native function call
may require the synthesis of multiple calls to opaque natives,
as depicted in Figure 5. Inlining, however, creates the op-
portunity to remove the much-higher overhead of callbacks,
and reduces the need for conservative assumptions about
the behavior of native code in the JIT optimizer. We thus
expect that it will often be profitable to synthesize multiple
callouts to opaque natives, provided callbacks can be trans-
formed into cheaper operations as we discuss in the following
section.

4.3 Transforming JNI Callbacks
The native inlining process is augmented by JNI callback

transformations; inlined native code executes in the JVM
context, thus there is no need for the JNIEnv pointer and
the JNI function pointer table to obtain access to inter-
nal JVM services and data. Once the native inlining tech-
nique has converted W-Codes to TR-IL, it pattern-matches
the generated IL, looking for JNI callbacks. This pattern-
matching step is necessary because it is impossible to dis-
tinguish a function call that performs a JNI callback from
any other function call based solely on the IL. Whenever
possible, these callbacks are transformed into compile-time
constants, and new semantically equivalent TR-IL that rep-
resents faster, more direct access to JVM services and data.
This process proceeds by using a mechanism, depicted in
Figure 6, to iterate over each TR-IL instruction and per-
form the required transformation.

4.3.1 Identifying Inlined JNI Callbacks
Since our technique is based on transforming TR-IL and

understanding the semantics of JNI callbacks, we require a
preliminary step that renders each callback defined by the
JNI API in terms of TR-IL. This step allows the compiler to
understand the expected “shape” of each JNI callback. The
“shape” encodes how each callback uses the JNIEnv pointer
and any other arguments. This representative shape is what
uniquely determines a callback. TR uses the constructed
shapes for subsequent analysis (and to avoid any attempt to
recursively inline a callback). This shape-building step can
be performed in three ways: dynamically performed at the



Figure 5: Synthesizing native calls

{

    if (mid == NULL)
        return;

        return;

}

inlined_native_function()

          /* use ans in rest of function */

          /* inlined callbacks look like: */
    jclass cls = (*env)−>GetObjectClass(env, obj);

    jmethodID mid = (*env)−>GetMethodID(env,cls,"power","(II)I");

    if ((*env)−>ExceptionCheck(env)) 

(A)
(B)

(C)
(D)
    jint ans = (*env)−>CallIntMethod(env,obj,mid,2,2);

Callback
Transformer

inlined_native_function()
{

}

      /* (A) transformed to a compiler constant */

      /* (B) transformed to a compiler constant and return semantics

       *         compiler is unable to generate the relevant constant.

      /* (C) replaced with IL that performs an invocation of the power

       *         preserved by generating IL for the case where the 

       */

       *        function with the given constant arguments and a store to "ans"
       */

      /* (D) IL generated to check for pending exceptions and returns */

      /* use ans as before */

Figure 6: Transforming JNI callbacks

start of a Java program execution, performed as part of the
process of building the JIT compiler itself, or statically per-
formed by encoding each callback’s shape in the compiler.
The only requirement is that the representative IL that is
used must be correct for both the current version of the JIT
compiler (where the IL definition may change from time to
time) and for the JVM being targeted (because each JVM
is free to define how the JNI specification is actually imple-
mented). Taken together, these representative pieces of IL
are known as the list of shapes that inlined callbacks will be
pattern-matched against for identification.

4.3.2 Native Inlining and JNI Callback Identification
When a native call is inlined, care is taken to record uses

of the JNIEnv pointer within the IL. Recursive inlining is ex-
pected and the JNIEnv pointer may be passed to recursively

inlined functions. However, before recursive inlining, the IL
representing the callsite is examined as follows:

1. If the JNIEnv pointer is used in the same position in
the IL as it appears in any of the constructed shapes,
the inliner proceeds to Step 2. Otherwise, inlining con-
tinues normally.

2. For each constructed shape in which the JNIEnv pointer
appears in the same position as it does in the IL for
an inlined callsite under consideration, the inliner at-
tempts to match the entire shape to the IL for the
callsite. A match occurs if the shape and the IL share
the same number and compatible types of arguments.
If there is a match, the callsite is not eligible for inlin-
ing but may be eligible for transformation. Otherwise,
inlining continues normally.

As part of this process, the inliner records the callsites that
it has determined do correspond to JNI callbacks and stores
them in a list in the order of their appearance in the IL. If
one call uses the result of another call, the innermost call
will appear in the list before the use of its result.

Theoretically, an optimization such as the one described
herein should follow uses of data defined in terms of the
JNIEnv pointer to track all possible callsites that may cor-
respond to JNI function calls. However, it is harmless to
perform this optimization on some callsites and decline to
perform it on others. Furthermore, most JNI code that we
have observed does not tend to copy the JNIEnv pointer to
other places. Therefore, this optimization can be quite effec-
tive without following all possible references to the JNIEnv

pointer; it can catch a sufficient number to be useful and
causes no harm by ignoring the rest.

4.3.3 JNI use/def Analysis
Once callbacks have been identified, a pass of JNI use/def

analysis is performed. The idea is that objects that are
passed to inlined natives are tracked to the points where they
are passed as arguments to callbacks. In general, each argu-
ment is represented by a set of possible objects as dictated by
the control flow in the native method. The use/def analysis
computes all possible classes, fields, and methods reaching
uses in callbacks. When the analysis cannot conclusively de-
termine the class that an object must be an instance of, it
produces sufficient information to allow the transformation
phase to consider all possible classes that the object may be
an instance of. It is possible, however, that the analysis is



unable to compute even conditional results if, for example,
arguments to a callback are fetched from storage.

During JNI use/def analysis, the results of GetObject-
Class, GetSuperClass, FindClass, GetMethodID and Get-
FieldID are treated as definitions and their uses are tracked.
The results of these methods can normally be transformed
into compile-time constants which are used instead of the
usual constant pool indices. The use/def analysis also tracks
the string arguments to FindClass, GetMethodID, and Get-
FieldID and by doing so, TR may positively resolve some
of these calls while a more naive implementation would be
unable to do so.

4.3.4 Transformations Using Use/Def Results
Once JNI use/def analysis is complete, the procedure con-

tinues by iterating over the list of identified callbacks and
attempting to transform them to compile-time constant val-
ues or new TR-IL that is semantically equivalent and much
less expensive. Depending on the type of callback, the fol-
lowing transformation outcomes are possible:

• If all of the possible definitions reaching a GetObject-
Class are of the same class, the call is replaced by an
appropriate constant.

• If all possible classes reaching a GetFieldID or Get-
MethodID are compatible and the string arguments
can be uniquely determined, the call is replaced by an
appropriate constant.

• If all possible field ids reaching a Get<type>Field or a
Put<type>Field are the same and all possible objects
reaching the call are of compatible class types, the call
is replaced by a new, simpler sequence of TR-IL. More
generally, if the offset of the data member from the
beginning of the object is the same for all possible
types that can reach the call, then the same code can
be used for all the objects, allowing the callback to be
“strength reduced”. Note that this form of IL defers
throwing exceptions in accordance with the Java rules
for executing native methods.

• Similar transformations are performed for the various
Call<type>Method callbacks by replacing the existing
IL with new IL that makes direct calls to the function.

Any of the identified callbacks that are not handled by the
steps above are treated as an ordinary call to an appropriate
VM service routine via a synthesized function. For any of
these callbacks, if the use/def analysis produces known but
inconclusive information, conditional logic may be inserted
along with the appropriate IL that represents the semantics
of the callback being transformed. When the transformed
callback is executed, appropriate behavior can be selected
based on actual values. Runtime safety checks on arguments
to callbacks can be performed as part of the callback trans-
formation process.

5. CURRENT STATUS & RESULTS
In this section we report on the current implementation

status of the design described in Section 4, and describe
encouraging preliminary results.

5.1 Implementation Status
We have completed the W-Code conversion engine, and

have added support to the TR inliner for inlining calls be-
tween native functions. We thus have a fully-functional Java
JIT compiler that can be substituted as a back-end for the
various W-Code generating static front-ends. The correct-
ness of our implementation has been verified by successfully
compiling all of C benchmarks from SpecCPU2000 [32], as
well as standard C conformance tests. We have also com-
piled these benchmark programs with native-side inlining
enabled and have observed the expected performance in-
creases.

Two significant changes made to the TR JIT to support
W-Code-based languages include extending its data type set
to include unsigned types (since it was originally designed
as Java JIT compiler), as well as modifying some of the
alias-analysis-dependent optimizations since aliasing in Java
is much simpler than in C. As noted in Section 4.1, alias
information for the native code is explicit in the W-Code
IL, and is preserved during the transformation to TR-IL.

We have extended the TR inliner to include support for
inlining a restricted set of callouts to native functions. The
mechanism for synthesizing calls to opaque native functions
described in Section 4.2 has yet to be implemented, but we
expect to be able to leverage the existing Direct2JNI func-
tionality for this purpose. At present, however, we can re-
cursively inline native functions defined in the same mod-
ule and have verified the feasibility of transforming call-
backs into cheaper direct references to JVM internals, by
applying the transformation operations to known callback
functions. We have not yet built the generalized shape-
matching or the use/def analysis required to automatically
detect and transform all callbacks. Non-transformable in-
lined callbacks, however, are successfully handled via calls
to synthesized functions, and we have been successful in link-
ing globally-declared data in native code to Java code.

For the purposes of generating a proof-of-concept proto-
type, we have further restricted the features of Java that
we consider. We are currently ignoring string parameter ac-
cess, reference creation, exception handling, the Reflection-
related functions, monitors and the Invocation API. Al-
though these are important features that must be handled
in a full implementation, we believe this is a matter of engi-
neering, and one that will not substantially alter the appli-
cability of our native function inlining optimization.

5.2 Evaluation Methodology
Native inlining is an optimization that interacts with the

performance dynamics of our JIT compiler, as well as with
the running Java program making native function calls via
the JNI. As with any JIT optimization, the runtime cost
of performing the inlining and transformation must be bal-
anced against the expected benefit of removing overhead
and exposing more IL to the JIT optimizer. Ultimately, we
believe the true power of this approach lies in the ability to
treat native and Java code together during JIT compilation,
particularly since we have the opportunity to eliminate pes-
simistic assumptions that the optimizer must make in the
presence of opaque calls. In this paper, however, we focus on
the cost of converting native functions from W-Code IL into
TR-IL, on the benefit of eliminating callout/return overhead
and transforming heavyweight callback operations into sub-
stantially cheaper operations. We also evaluate the runtime



Total Total Time per
W-Code Time opcode

Benchmark Opcodes (ms) (µs)
bzip2 15383 78.277 5.09
crafty 84693 466.952 5.51
gap 336466 1797.185 5.34
gcc 133506 663.246 4.97
gzip 25469 139.263 5.47
mcf 5615 25.431 4.53
parser 48411 256.472 5.30
perlbmk 279196 1596.122 5.72
twolf 105027 547.702 5.21
vortex 193413 1091.121 5.64
vpr 56756 310.426 5.46

Table 1: Cost of W-Code to TR-IL conversion for
SPECint 2000 C benchmarks

savings due to our optimization for a microbenchmark that
performs data transfers between Java and C similar to those
required for JDBCTM [36].

We evaluate critical aspects of our proposed system using
microbenchmarks. All our timing measurements are per-
formed on an IBM 7038-6M2 with eight 1.4 GHz POWER4TM

CPUs. In each case, we measure the time to perform 100
million calls and divide to obtain the reported per-call ex-
ecution time. Unless otherwise stated, no additional opti-
mization was performed on the inlined native IL to highlight
the impact of removing callout and callback overheads.

To validate the applicability of native inlining and call-
back transformations on real-world code, we profiled a run
of SPEC JAppServer2004 using IBM Websphere R© Applica-
tion Server 6.0. We found that 4.07% of all function calls
made during the run were native calls to 71 unique native
functions, accounting for roughly 23% of the running time.
Of these, 19 unique native functions were called at least 5000
times, and out of those, six were called at least 50,000 times.
A single native function, Object.hashCode(), was called more
than 300,000 times. This suggests that the runtime cost of
inlining can be amortized over a large number of uses for
important native functions. If the native function is well-
understood by the compiler, semantic expansion [37] or a
related inlining technique could be used to create a special-
case version. This approach, however, is less general than
our technique.

5.3 Microbenchmark Results
Using a series of small test cases, we evaluate our proto-

type in terms of the cost of IL conversion, and the benefits
of native inlining and callback transformation.

5.3.1 Cost of IL Conversion
To evaluate the cost of converting from W-Code to TR-

IL for C functions, we measured the time to convert the
SPECint 2000 C benchmarks (eon is omitted because it is
in C++). Table 1 shows the results. We report the total
number of opcodes converted, the total time for the conver-
sion, and the average time per opcode for each benchmark.
Overall, we find that the cost per opcode converted is small
(averaging just 5.3 microseconds), and reasonably similar
across benchmarks. These results are encouraging, as they
suggest a simple heuristic should be able to estimate the
cost of converting a given native function at runtime based

Without With
Native Native

Microbenchmark Inlining Inlining Speedup
Test (ns) (ns) (X)
instance
0 args 423 0 ∞
1 args 458 0 ∞
3 args 490 0 ∞
5 args 579 0 ∞
hash 535 97 5.5
static
0 args 128 0 ∞
1 args 137 0 ∞
3 args 138 0 ∞
5 args 143 0 ∞
hash 176 96 1.8

Table 2: Microbenchmark runtimes and improve-
ments with native inlining

on its size in W-Code opcodes. Further, note that the cost
of conversion only needs to be paid once, when the function
is inlined, whereas the benefits of removing callout overhead
will be obtained on every subsequent use of the inlined code.

5.3.2 Impact of Inlining Callouts
We implemented a series of microbenchmark tests that

would show the overheads involved with performing call-
outs. The results are shown in Table 2. Instance and static
natives were implemented with varying numbers of param-
eters, and then JIT-compiled with and without the native
inlining optimization. For all static versions without native
inlining, Direct2JNI was used to create compiled glue code
for the native call, as described in Section 3.1. The benefits
of Direct2JNI can be observed by contrasting the runtimes
of the static tests against the instance ones. In all but 0 args
and hash, the native method bodies simply return one of the
passed arguments. These tests show the incremental cost of
passing arguments to native functions. In most cases, the
resulting code after inlining performs so little work that it is
below the resolution of the timers (reported as 0 in Table 2).

For native functions that contain real code, the benefits of
inlining alone will clearly depend on amount of time spent
executing native code in the function. Examples could easily
be constructed showing speedups that range from effectively
infinite (as for the 0 args function call) to effectively 0 (for
very long-running native functions). To see the benefits that
might occur in one realistic use of native functions, we wrote
a native hash function3. Inlining our instance hash function
gives a speedup of 5.5, while a static version gives a speedup
of 1.8.

These results show that for small native functions, re-
moving the overhead of callouts can be a significant benefit.
The primary motivation for inlining native code, however,
is to create the opportunity to transform the much more
expensive callbacks. We now consider the effect of these
transformations.

5.3.3 Impact of Transforming Callbacks
We also implemented a series of microbenchmark tests

3we based this hash function on Wang’s 32-bit mix function
at http://www.concentric.net/ Ttwang/tech/inthash.htm



Without With
Native Native

Microbenchmark Inlining Inlining Speedup
Test (ns) (ns) (X)
instance
GIntField 2560 0 ∞
SIntField 2310 0 ∞
CVoidMethod 2630 204 12.9
static
GStaticIntField 2190 0 ∞
SStaticIntField 2140 0 ∞
CStaticVoidMethod 2520 214 11.8
GArrayLength 5640 60 93.4

Table 3: Microbenchmark runtimes and improve-
ments with native inlining and callback transforma-
tions

Without Native With Native
Array Inlining Inlining Speedup
Length (ns) (ns) (X)
1 586 2.4 244.1
10 597 20.7 28.9
100 1010 85.5 11.8
1000 4540 600 7.6

Table 4: Moving data from Java to C - runtimes
and improvements with native inlining and callback
transformations

that would show the overheads involved with performing
callbacks in native code, and the benefits of transforming
these callbacks in inlined natives. Instance and static na-
tive functions consisting of a series of callbacks were JIT-
compiled with and without the native inlining and trans-
formation optimization. For example, the CVoidMethod
native code calls GetObjectClass (which is transformed to a
compile-time constant), GetMethodID, (also a compile-time
constant) and finally, CallVoidMethod (which is transformed
to a non-JNI-dependent virtual function call using the con-
stants from the previous two transformations). The GAr-
rayLength test creates an array of characters using NewChar-
Array and returns its length using GetArrayLength. The
native code in this last example is transformed into the
equivalent TR-IL. The results are shown in Table 3. Be-
cause callbacks are more expensive than callouts, we see that
the benefit of transforming them is correspondingly greater,
with a minimum achieved speedup of nearly 12X in our test
cases.

The final set of microbenchmark tests that we present deal
with passing integer array data from Java to native code,
an operation that is commonplace in native codes used by
JDBC drivers. In these experiments, a single callback is used
to obtain the entire array, similar to the “coarse-grained”
strategy of JNIbench [1]. Table 4 displays the speedups ob-
tained by transforming inlined GetIntArrayRegion callbacks
for each of the varying array lengths, which vary from a fac-
tor of 244 for a single element array, to a factor of 7.6 for
a 1000-element array. As expected, these speedups decrease
for larger array sizes because the overhead in performing the
callout and callback shrinks relative to the actual work done
in transferring the array.

6. RELATED WORK
This section describes previous research on language in-

teroperability, as well as work on optimizing Java native
functions and the codes they call.

Examples of language interoperability frameworks
that operate across languages, processes and machine bound-
aries include CORBA [30], Remote Procedure Calls [7] and
the Component Object Model [23]. These frameworks use
interface definition languages (IDLs) to specify common types,
and depend on proxy stubs to help clients translate between
machine architectures, execution models and programming
languages. A more recent advance in language interoper-
ability is Microsoft .NET [15]. In order for .NET programs
to be interoperable, programs must adhere to the Common
Language Specification (CLS), a subset of the Common Lan-
guage Runtime (CLR) environment. The CLS most notice-
ably sets restrictions on the data types that can be used,
confines interoperability to .NET-labeled languages, and ex-
cludes C or C++.

Programmer-based optimizations put the onus on
the application programmer to practice efficient coding tech-
niques when writing native code that uses the JNI. A former
IBM developerWorks R© article [19] advised batching native
calls and passing as much data as possible per native call, as
well as a number of other recommendations to amortize over-
head. Although this article is no longer available through
developerWorks, the recommended JNI programming prac-
tices are still valid. Similarly, the JNI specification [22] pro-
vides a set of “critical” functions that may return direct ref-
erences to JVM data and objects and suggests ways to avoid
making JNI callbacks, including caching field and method
IDs during static initialization of classes. By reducing the
overhead of the JNI automatically, our approach obviates
these programming practices, removing the added burden
from the application programmer.

Restricting functionality that can be offered in native
code is another approach to reduce overhead and minimize
the dependence on JNI callbacks. For example, the Intel
ORP [10] supports a “direct call” mechanism that bypasses
the construction of special wrapper codes that would other-
wise be found preceding native call frames on the call stack.
The speedup that results from not having to perform main-
tenance work in the wrappers comes at the expense of not
being able to unwind the stack. Therefore, direct calls can
only be used for methods that are guaranteed not to require
garbage collection, exception handling, synchronization or
any type of security support. Bacon [3] has implemented
a JVM-specific JNI “trap-door”, simplifying reference man-
agement for garbage collection, based on the observation
that his native code only accesses parameters and never per-
forms any JNI callbacks. While these strategies can improve
performance in certain circumstances, they are not a general
solution and cannot be used for most existing JNI code.

Proprietary native interfaces that are used by var-
ious VMs take advantage of knowing the internals of the
VM, and therefore help mitigate the overheads of native
calls by tightly coupling them to the VM. Examples include
the PERC Native Interface for the PERC VM [26], the Jcc
optimizing compiler [34], Microsoft’s now-supplanted Raw
Native Interface (RNI) [11], and according to [25], the orig-
inal but now deprecated Native Method Interface (NMI).
All of these approaches closely couple the interface with the
specific virtual machine, and thus seriously restrict porta-



bility. The JNI, in contrast, is a cleaner and more portable
solution because all JVM internals are represented in an
opaque manner and can only be accessed via JNI callbacks.
This, ironically, lies at the heart of JNI-related overheads.
Our work is independent of the JVM being used and our
technique can be utilized by those who want to support it.

A different approach involves extending the JVM to sup-
port features for which native functions are commonly used.
One example is incorporating unmanaged memory into
the JVM. The provision of high-speed access to unmanaged
memory can be used to implement shared memory segments,
memory-mapped files, communication and I/O buffers, and
even memory-mapped hardware devices. Jaguar [35] imple-
ments Bytecode-to-assembly code mappings in a JIT com-
piler to generate inlined assembly code for limited sequences
of machine code. The main use of the mappings is to map
object fields to memory outside the managed Java heap. The
benefit of this approach is the near-C performance obtained
for various latency and bandwidth simulations. However,
there are a number of limitations with this approach, in-
cluding the inability to recognize and map long, complex
sequences of Bytecodes, as well as the inability to apply
mappings to virtual method invocations, since code map-
pings can’t handle runtime class loading. Buffers in the
Java new I/O libraries [18] are also allocated outside the
garbage-collected heap, and can be accessed by the JVM
without having to perform any time-consuming copy oper-
ations. Our technique is orthogonal to the work on unman-
aged memory.

Optimizations that target native functions and the JNI
specifically include IBM’s enhancements to the Java 2 Plat-
form mentioned in [19] and inlining of helper code that
sets up JNI stack frames as mentioned in [10]. IBM also
reuses existing Java stack frames to reduce the native stack
frame setup overhead. Andrews’ [1] suggestions include na-
tive memory mirroring as well as provisioning the JNI for
lightweight calls. No known implementations of native func-
tion inlining exist, but have been referred to by Andrews [1]
and by Liang [22] as a powerful yet difficult-to-implement
optimization. Our solution demonstrates that native func-
tion inlining is feasible with a JIT compiler, and that the
benefits of removing overhead alone may make it worth-
while. Further, it enables more aggressive optimizations,
similar to traditional inlining techniques.

7. FUTURE WORK
There are some issues that make our proof of concept

harder to generalize. Native callsite polymorphism, includ-
ing overriding and overloading of natives, as well as syn-
chronized natives are outside the scope of our immediate
work. Other engineering issues we currently ignore include
inlining native code located in modules external to the one
containing the original native callout.

The pattern matching basis of our callback transforma-
tion algorithm may be too strict to handle all types of native
code, and we currently only analyze a small subset of JNI
callbacks. We are working on completing the implementa-
tion of the design described in Section 4, which will allow
us to explore questions of when the native inlining strat-
egy should be performed, and when the existing native call
should be left alone. We also plan to evaluate the impact
of exposing native code to the TR optimizer, and study the
end-to-end effect on realistic benchmarks.

Although a JIT compiler is unlikely to be able to compete
with a static native code optimizer, the W-Code IL stored
alongside our native binaries is the output of a sophisticated
interprocedural optimizer and loop transformer. This pro-
vides the TR JIT with some of the benefits of static analysis
that could not be contained in the compile-time budget of
a dynamic compiler. We also expect that some of the run-
time information unavailable to static optimizers will help
further improve the quality of the inlined native code. Cur-
rently, we aren’t overly concerned with modifying the TR
JIT inliner’s heuristics, except for some fine-tuning that rec-
ognizes a number of differences between Java and non-Java
functions, including their sizes, variable length parameter
lists and parameters whose addresses are taken. Studying
suitable heuristics for native inlining is a subject for future
work.

8. CONCLUSION
We have shown that native function inlining can greatly

reduce the overheads normally associated with Java native
function calls and callbacks. One key component of our
strategy is an IL conversion engine that allows code written
in low-level languages to be expressed in the same IL used
by the TR JIT for Java code. This facilitates the inlining
of native function calls defined in native libraries that in-
clude the IL of a static optimizing compiler, and the further
transformation of callbacks. One of the key benefits of our
strategy is that the full JNI API is maintained while giving
the performance characteristics of direct access to Java ob-
jects from C. Our goal for this technique is both to improve
the performance of applications that make extensive use of
the JNI, and to remove the need for programming practices
designed to circumvent the currently-heavy penalty of using
the JNI.
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