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Last Time …

• More on the Transport Layer

• Focus
– How do we manage connections?

• Topics
– Three-Way Handshake

– Close and TIME_WAIT Physical
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Application
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This Lecture

• Focus
– How should senders pace themselves to avoid

stressing the network?

• Topics
– congestion collapse

– congestion control
– slow start

– smart retransmissions timeout
– AIMD
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4

Deciding When to Retransmit

• How do you know when a packet has been lost?

again:

Send(p);

Wait(t);

if (!p.acked)

goto again;

• How long should the timer t be?
– Too big: inefficient (large delays, poor use of bandwidth)

– Too small: may retransmit unnecessarily (causing extra traffic)
– A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
– Which varies greatly in the wide area (path length and queuing)



• Buffers at routers used to absorb bursts when input rate > output

• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source

1

100-Mbps FDDI

10-Mbps Ethernet

Congestion from in the network

Packets queued here
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Congestion Collapse

• In the limit, early retransmissions lead to congestion collapse
– e.g., 1000x drop in effective bandwidth of network

– sending more packets into the network when it is overloaded
exacerbates the problem of congestion (overflow router queues)

– network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms

• these form the basis of congestion control in the Internet today

• [See “Congestion Avoidance and Control”, SIGCOMM’88]
– Researchers asked two questions:

• Was TCP misbehaving?
• Could TCP be “trained” to work better under ‘absymal network

conditions?’
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A Scenario

Receiver window size is

16KB.

Bottleneck router buffer

size is 15 KB.

Data bandwidth is about

20KB/s

Sender Receiver

8
TIME (SEC)

P
a

c
k

e
t 

s
e

q
u

e
n

c
e

 #
 (

K
B

)
Slope is bandwidth.

Steep smooth upward

slope == means good
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Effects of early retransmission
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If only…

• We knew RTT and Current Router Queue Size,
– then we would send:

MIN(Router Queue Size, Effective Window Size)

– and not retransmit a packet until it had been sent RTT ago.

• But we don’t know these things
– so we have to estimate them

• They change over time because of other data sources
– so we have to continually adapt them
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Ideal packet flow: stable equilibrium

Pr = Interpacket spacing   --> mirrors that of slowest link

As = Inter-ACK spacing   --> mirrors that of slowest downstream link
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Modern TCP in previous scenario
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Notice:

• no retransmissions,

(and thus no packet loss)

• achieved BW =

bottleneck BW
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1988 Observations on Congestion

Collapse

• Implementation, not the protocol, leads to collapse

– choices about when to retransmit, when to “back off” because of losses

• “Obvious” ways of doing things lead to non-obvious and
undesirable results

– “send effective-window-size # packets, wait rtt, try again”

• Remedial algorithms achieve network stability by forcing the
transport connection to obey a ‘packet conservation’ principle.

– for connection in equilibrium  (stable with full window in transit),
packet flow is conservative

• a new packet not put in network until an old packet leaves
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Resulting TCP/IP Improvements

• Slow-start

• Round-trip time variance estimation

• Exponential retransmit timer backoff

• More aggressive receiver ack policy

• Dynamic window sizing on congestion

• Clamped retransmit backoff (Karn)

• Fast Retransmit

Packet Conservation 

Principle

Congestion control means: “Finding places that violate the

conservation of packets principle and then fixing them.”
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Avoiding congestion collapse

• Achieve network stability by forcing the transport
connection to obey a ‘packet conservation’ principle.
– for connection in equilibrium (full window of data in transit),

packet flow is conservative:

a new packet is not put into the network until an old packet leaves.
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Basic rules of TCP congestion control

1. The connection must reach equilibrium.
– hurry up and stabilize!

– when things get wobbly, put on the brakes and reconsider

2. Sender must not inject a new packet before an old packet has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in practice)

– ACK or packet timeout signals that a packet has “exited.”
– ACK are easy to detect.

– appropriate timeouts are harder…. all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– new competing stream appears, must restabilize
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1. The connection must reach equilibrium.
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1. Getting to Equilibrium -- Slow Start

• Goal
– Quickly determine the appropriate window size

• Strategy
– Introduce congestion_window (cwnd)

– When starting off, set cwnd to 1

– For each ACK received, add 1 to cwnd
– When sending, send the minimum of receiver’s advertised

window and cwnd

• Guaranteed to not transmit at more than twice the max
BW, and for no more than RTT. 
– (bw delay product)

Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.

19 20

2.  A sender must not inject a new packet before an old packet has exited.
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2. Packet Injection. Estimating RTTs

• Do not inject a new packet until an old packet has left.
– 1. ACK tells us that an old packet has left.

– 2. Timeout  expiration tells us as well.

• We must estimate RTT properly.

• Strategy 1:  pick some constant RTT.
– simple, but probably wrong. (certainly not adaptive)

• Strategy 2: Estimate based on past behavior.

Tactic 0: Mean

Tactic 1: Mean with exponential decay

Tactic 2: Tactic 1 + safety margin 

safety margin based on current estimate of error in Tactic 1
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Estimating RTT

• for each packet, note time sent and time ACK received   (RTT sample)
– compute RTT samples and average recent samples for timeout

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)

0 ! g !  1

– this is an exponentially-weighted moving average (low pass filter) that smoothes the
samples with a gain of g

• big g can be jerky, but adapts quickly to change

• small g can be smooth, but slow to respond

• typically, g = .1 or .2, -->  stable is better than precise

• (lousy estimate right now does more damage than so-so estimate right now, followed
by better one a little later)
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Original TCP (RFC793) retransmission

timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1-g)(EstimatedRTT) + g(SampleRTT)

0 ! g !  1,  usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate
– in order to account for variance

Retransmission Timeout = 2 x EstimatedRTT

• Reason?
– Better to wait “too long” than not long enough.    (How come?)

24

retransmission timeout

Sampled

Loaded Region
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Bad Estimators and the Bad Things

They Do

• Problem:

– Variance in RTTs gets large as network gets loaded

– So an average RTT isn’t a good predictor when we need it most

• Time out too soon, unnecessarily drop another packet onto
the network.

• Timing out too soon occurs during load increase

– if we time out when load increases but packet not yet lost, then
we’ll inject another packet onto the network which will
increase load, which will cause more timeouts, which will
increase load, until we actually starting dropping packets!
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Jacobson/Karels Algorithm

• EstimatedRTT + “safety margin”
– large variation in EstimatedRTT --> larger safety margin

– safety margin based on estimate of variance

1.   Estimate how much SampledRTT deviates from EstimatedRTT
– DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

• typically, b = .25

2.   Set timeout interval as:
– retransmission timeout = EstimatedRTT + k * DevRTT
– k is generally set to 4

• timeout =~ EstimatedRTT when variance is low (estimate is good)
– timeout quickly moves away from EstimatedRTT (4x!) when the variance is high

(estimate is bad)
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Estimate with Mean + Variance
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Karn/Partridge Algorithm

• Problem: RTT for retransmitted packets ambiguous

• Solution: Don’t measure RTT for retransmitted packets and do not relax
backed off timeout until valid RTT measurements
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3. Equilibrium is lost because of resource contention along the way.

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source

1 10-Mbps Ethernet

Packets queued here

Packets Lost Here
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In Real Life

32

Four Simultaneous Streams
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TCP is “Self-Clocking”

• Neat observation: acks pace transmissions at
approximately the botteneck rate

• So just by sending packets we can discern the “right”
sending rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet
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Congestion Control Relies on Signals

from the Network

• The network is not saturated:  Send even more
• The network is saturated: Send less

• ACK signals that the network is not saturated.

• A Lost packet (no ACK) signals that the network is saturated
– Assumption here??

• Leads to a simple strategy:
– On each ack, increase congestion window (additive increase)

– On each lost packet, decrease congestion window (multiplicative
decrease)

• Why increase slowly and decrease quickly?
– Respond to good news conservatively, but  bad news aggressively
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AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we
believe there is bandwidth
– Additive increase per RTT

– Cwnd += 1 packet / RTT

• Decrease quickly when there
is loss (went too far!)
– Multiplicative decrease

– Cwnd /= 2

Source Destination

…

36

With Additive Increase/Multiplicative

Decrease
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TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d

 (
K

B
)

T ime (seconds)

70

30

40

50

10

10.0

38

Comparing to “Slow Start”

• Q: What is the ideal value of cwnd?
How long will AIMD take to get
there?

• Use a different strategy to get close to
ideal value
– Slow start:

• Double cwnd every RTT
– cwnd *= 2    per RTT

– i.e., cwnd += 1   per ACK

– AIMD:

• add one to cwnd per RTT
– cwnd +=1   per RTT

– i.e., cwnd += (1/cwnd)   per ACK

Source Destination

…
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Combining Slow Start and AIMD

• Slow start is used whenever the connection is not running with
packets outstanding
– initially, and after timeouts indicating that there’s no data on the wire

• But we don’t want to overshoot our ideal cwnd on next slow start,
so remember the last cwnd that worked with no loss
– ssthresh = cwnd after cwnd /= 2 on loss
– switch to AIMD once cwnd passes ssthresh

ssthresh
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Example (Slow Start +AIMD)
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The Long Timeout Problem

• Would like to “signal” a lost packet earlier than timeout
– enable retransmit sooner

• Can we infer that a packet has been lost?
– Receiver receives an “out of order packet”

– Good indicator that the one(s) before have been misplaced

• Receiver generates a duplicate ack on receipt of a
misordered packet

• Sender interprets sequence of duplicate acks as a signal
that the as-yet-unacked packet has not arrived
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Fast Retransmit

• TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

• We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

• 3 duplicate acks are used
in practice

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Example (with Fast Retransmit)
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Fast Recovery

• After Fast Retransmit, use further duplicate acks to
grow cwnd and clock out new packets, since these acks
represent packets that have left the network.

• End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a real
timeout.
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Example (with Fast Recovery)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

n
d

 (
K

B
)

T ime (seconds)

70

30

40

50

10

10.0

(Not the same trace as before)

The Familiar Saw Tooth Pattern
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Key Concepts

• Routers queue packets
– if queue overflows, packet loss occurs

– happens when network is “congested”

• Retransmissions deal with loss
– need to retransmit sensibly

• too early:   needless retransmission
• too late:      lost bandwidth

• Senders must control their transmission pace
– flow control:  send no more than receiver can handle

– congestion control:  send no more than network can handle
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Key Concepts

• Packet conservation is a fundamental concept in TCP’s
congestion management
– Get to equilibrium

• Slow Start

– Do nothing to get out of equilibrium

• Good RTT Estimate

– Adapt when equilibrium has been lost due to other’s attempts to
get to/stay in equilibrium

• Additive Increase/Multiplicative Decrease

• The Network Reveals Its Own Behavior
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Key Concepts (next level down)

• TCP probes the network for bandwidth, assuming that
loss signals congestion

• The congestion window is managed to be additive
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD


