
CSC458

Sliding Windows, ARQ

Connections

Administrivia

• Projects

– Project #3 due on Wednesday at 2pm

– Project #4 out today -- last project

• Homework

– Homework #4 out last week, due in two weeks

– This is our last homework

• Readings

– Chapters 5.1, 5.2, 6.1, 6.3, 6.4

• No tutorial today

Last Time

• We finished up the Network layer
– Internetworks (IP)

– Routing (DV/RIP, LS/OSPF)

• It was all about routing: how to
provide end-to-end delivery of
packets. Physical

Data Link

Network

Transport

Session

Presentation

Application

This Time

• We begin on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– The Transport layer

– Acknowledgements and
retransmissions (ARQ)

– Sliding windows

Physical

Data Link

Network

Transport

Session

Presentation

Application

The Transport Layer

• Builds on the services of the Network layer

• Communication between processes running on hosts
– Naming/Addressing

• Stronger guarantees of message delivery
– Reliability

Example – Common Properties

TCP

• Connection-oriented

• Multiple processes

• Reliable byte-stream delivery

– In-order delivery

– Single delivery

– Arbitrarily long messages

• Synchronization

• Flow control

• Reliable delivery

IP

• Datagram oriented

• Lost packets

• Reordered packets

• Duplicate packets

• Limited size packets

What does it mean to be “reliable”

• How can a sender “know” the sent packet was received?
– sender receives an acknowledgement

• How can a receiver “know” a received packet was sent?
– sender includes sequence number, checksum

• Do sender and receiver need to come to consensus on what is sent
and received?
– When is it OK for the receiver’s TCP/IP stack to deliver the data to the

application?

Internet Transport Protocols

• UDP
– Datagram abstraction between processes

– With error detection

• TCP
– Bytestream abstraction between processes

– With reliability

– Plus congestion control (later!)

SrcPort DstPort

Length Checksum

Data

0 16 31

Automatic Repeat Request (ARQ)

• Packets can be corrupted or lost. How do we add reliability?

• Acknowledgments (ACKs) and retransmissions after a timeout

• ARQ is generic name for protocols based on this strategy

Sender Receiver

Frame

ACKT
im

e
o

u
t

T
im

e

Sender Receiver

Frame

T
im

e
o

u
t

Frame

ACKT
im

e
o

u
t

The Need for Sequence Numbers

• In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish this message from the next
– Need to understand how many packets can be outstanding and

number the packets; here, a single bit will do

Sender Receiver

Frame

ACK

T
im

e
o

u
t

Frame

ACKT
im

e
o

u
t

Sender Receiver

Frame

ACKT
im

e
o

u
t

Frame

ACKT
im

e
o

u
t

Stop-and-Wait

• Only one outstanding
packet at a time

• Also called alternating
bit protocol

0

1

0

1

Sender Receiver

0

1

1

0

Limitation of Stop-and-Wait

• Lousy performance if trans. delay << prop. delay
– Max BW: B

– Actual BW: M/2D

• Example: B = 100Mb/s, M=1500Bytes, D=50ms

• Actual BW = 1500Bytes/100ms --> 15000 Bytes/s -->
~100Kb/s

• 100Mb vs 100Kb?

Data

Ack

More BW Please

• Want to utilize all available bandwidth
– Need to keep more data “in flight”

– How much? Remember the bandwidth-delay product?

• Leads to Sliding Window Protocol
– “window size” says how much data can be sent without waiting

for an acknowledgement

Sliding Window – Sender

• Window bounds outstanding data
– Implies need for buffering at sender

• Specifically, must buffer unack’ed data

• “Last” ACK applies to in-order data
– Need not buffer acked data

• Sender maintains timers too
– Go-Back-N: one timer, send all unacknowledged on timeout

– Selective Repeat: timer per packet, resend as needed

! Send Window

“Last” ACK’ed Last Sent

… …Sender:

Sliding Window – Timeline

Sender Receiver

T
im

e

Data

Ack

•Receiver ACK choices:

–Individual

•Each packet acked

–Cumulative (TCP)

•Ack says “got everything up to X-
1…”

•really, “my ack means that the next
byte I am expecting is X”

–Selective (newer TCP)

•Ack says “I got X through Y”

– Negative

•Ack says “I did not get X”

Sliding Window – Receiver

• Receiver buffers too:

– data may arrive out-of-order
– or faster than can be consumed by receiving process

• No sense having more data on the wire than can be buffered at the
receiver.

– In other words, receiver buffer size should limit the sender’s
window size

 <= Receive Window

Last byte read

(by app)

Largest Acceptable

… …Receiver:

Flow Control

• Sender must transmit data no faster than it can be consumed by receiver

– Receiver might be a slow machine

– App might consume data slowly

• Accomplish by adjusting the size of sliding window used at the sender

– sender adjusts based on receiver’s feedback about available buffer space

– the receiver tells the sender an “Advertised Window”

 <= Receive Window

Last byte read Largest Acceptable

… …

Sender and Receiver Buffering

Sending application

LastByteWritten

LastByteSentLastByteAcked

= available buffer

LastByteAcked <= LastByteSent

LastByteSent <= LastByteWritten

Older bytes Newer bytes

These bytes

have

not shown

up yet.

Receiving application

LastByteRead

LastByteRcvdNextByteExpected

= buffer in use

LastByteRead < NextByteExpected

NextByteExpected <= LastByteRvcd+1

== if data arrives in order

else start of first gap.

These bytes

have gone

to the app.

Older bytes Newer bytes

Flow Control

To accomplish this, receiver advertises the following window size:

• AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead)

• “All the buffer space minus the buffer space that’s in use.”

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Receiver’s goal: always ensure that LastByteRcvd - LastByteRead <= MaxRcvBuffer

• in other words, ensure it never needs to buffer more than MaxRcvBuffer data

Flow control on the receiver

• As data arrives:
– receiver acknowledges it so long as all preceding bytes have

also arrived

– ACKs also carry a piggybacked AdvertisedWindow

– So, an ACK tells the sender:

1. All data up to the ACK’ed seqno has been received

2. How much more data fits in the receiver’s buffer, as of
receiving the ACK’ed data

• AdvertisedWindow:
– shrinks as data is received

– grows as receiving app. reads the data from the buffer

Flow Control On the Sender

OK to send that which there is room for, which is that which was advertised (AdvertisedWindow)

minus that which I’ve already sent since receiving the last advertisement.

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Sender’s goal: always ensure that LastByteSent - LastByteAcked <= AdvertisedWindow

• in other words, don’t sent that which is unwanted

Notion of “EffectiveWindow”: how much new data it is OK for sender to currently send

• EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Sending Side

• As acknowledgements arrive:
– advance LastByteAcked

– update AdvertisedWindow

– calculate new EffectiveWindow

• If EffectiveWindow > 0, it is OK to send more data

• One last detail on the sender:
– sender has finite buffer space as well

• LastByteWritten - LastByteAcked <= MaxSendBuffer

– OS needs to block application writes if buffer fills

• i.e., block write(y) if
(LastByteWritten - LastByteAcked) + y > MaxSendBuffer

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3

SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has

buffer of size 4

and application

doesn’t readStall due to

flow control

here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

Packet Format

16 bit window size gets

Cramped with large

Bandwidth x delay

16 bits --> 64K

BD ethernet: 122KB

STS24 (1.2Gb/s): 14.8MB

32 bit sequence number

must not wrap around faster

than the maximum packet

lifetime. (120 seconds)

 -- 622Mb/s link: 55 seconds

Sliding Window Functions

• Sliding window is a mechanism
• It supports multiple functions:

– Reliable delivery

• If I hear you got it, I know you got it.

• ACK (Ack # is “next byte expected”)

– In-order delivery

• If you get it, you get it in the right order.

• SEQ # (Seq # is “the byte this is in the sequence”)

– Flow control

• If you don’t have room for it, I won’t send it.

• Advertised Receiver Window

• AdvertisedWindow is amount of free space in buffer

Key Concepts

• Transport layer allows processes to communicate with
stronger guarantees, e.g., reliability

• Basic reliability is provided by ARQ mechanisms
– Stop-and-Wait through Sliding Window plus retransmissions

Last Time

• We began on the Transport layer

• Focus
– How do we send information reliably?

• Topics
– ARQ and sliding windows

Physical

Data Link

Network

Transport

Session

Presentation

Application

This Time

• More on the Transport Layer

• Focus
– How do we connect processes?

• Topics
– Naming processes

– Connection setup / teardown

– Flow control Physical

Data Link

Network

Transport

Session

Presentation

Application

Naming Processes/Services

• Process here is an abstract term for your Web browser (HTTP), Email
servers (SMTP), hostname translation (DNS), RealAudio player (RTSP), etc.

• How do we identify for remote communication?
– Process id or memory address are OS-specific and transient

• So TCP and UDP use Ports
– 16-bit integers representing mailboxes that processes “rent”

• typically from OS

– Identify process uniquely as (IP address, protocol, port)

• OS converts into process-specific channel, like “socket”

Processes as Endpoints

Protocol

stuff

OS

stuff

port

Socket file descriptor

port

Socket file descriptor

read(), recvfrom(), recv()write(), sendto(), send()
app

stuff

Picking Port Numbers

• We still have the problem of allocating port numbers
– What port should a Web server use on host X?

– To what port should you send to contact that Web server?

• Servers typically bind to “well-known” port numbers
– e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services

– Ports below 1024 reserved for “well-known” services

• Clients use OS-assigned temporary (ephemeral) ports
– Above 1024, recycled by OS when client finished

SrcPort DstPort

Checksum Length

Data

0 16 31

User Datagram Protocol (UDP)

• Provides message delivery between processes
– Source port filled in by OS as message is sent

– Destination port identifies UDP delivery queue at endpoint

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux on

Port #

UDP Delivery

Kernel

boundary

UDP Checksum

• UDP includes optional protection against errors
– Checksum intended as an end-to-end check on delivery

– So it covers data, UDP header, and IP pseudoheader

SrcPort DstPort

Checksum Length

Data

0 16 31

Transmission Control Protocol (TCP)

• Reliable bi-directional bytestream between processes
– Message boundaries are not preserved

• Connections
– Conversation between endpoints with beginning and end

• Flow control
– Prevents sender from over-running receiver buffers

• Congestion control
– Prevents sender from over-running network buffers

TCP Delivery

Application process

Write

bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read

bytes

TCP

Receive buffer

…

… …

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Ports plus IP addresses identify a connection

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Sequence, Ack numbers used for the sliding window

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Flags may be URG, ACK, PSH, RST, SYN, FIN

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

TCP Header Format

• Advertised window is used for flow control

Other TCP Header Fields

• Header length allows for variable length TCP header
– options for extensions such as timestamps, selective

acknowledgements, etc.

• Checksum is analogous to that of UDP

• Urgent pointer/data not used in practice

TCP Connection Establishment

• Both sender and receiver must be ready before we start
to transfer the data
– Sender and receiver need to agree on a set of parameters

– e.g., the Maximum Segment Size (MSS)

• This is “signaling”
– It sets up state at the endpoints

– Compare to “dialing” in the telephone network

• In TCP a Three-Way Handshake is used

Three-Way Handshake

• Opens both directions for transfer

Active opener
(client)

Passive listener
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Some Comments

• We could abbreviate this setup, but it was chosen to be
robust, especially against delayed duplicates
– Three-way handshake from Tomlinson 1975

• Choice of changing initial sequence numbers (ISNs)
minimizes the chance of hosts that crash getting
confused by a previous incarnation of a connection

• But with random ISN it actually proves that two hosts
can communicate
– Weak form of authentication

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN

SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACKClose /FIN

FIN/ACKAC
K + FIN

/AC
K Timeout after two

segment lifetimes
FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open/SYN

TCP State Transitions

Again, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• TCP provides a “symmetric” close
– both sides shutdown independently

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…

The TIME_WAIT State

• We wait 2MSL (two times the maximum segment
lifetime of 60 seconds) before completing the close

• Why?

• ACK might have been lost and so FIN will be resent

• Could interfere with a subsequent connection

Berkeley Sockets interface

• Networking protocols implemented in OS
– OS must expose a programming API to applications

– most OSs use the “socket” interface

– originally provided by BSD 4.1c in ~1982.

• Principle abstraction is a “socket”
– a point at which an application attaches to the network

– defines operations for creating connections, attaching to
network, sending and receiving data, closing connections

TCP (connection-oriented)

Server

Socket()

Bind()

Client

Socket()

Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until

connect

Process

request

Connection Establishmt.

Data (request)

Data (reply)

UDP (connectionless)

Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until

Data from

client

Process

request

Data (request)

Data (reply)

Socket call

• Means by which an application attached to the network

– #include <sys/socket.h>…

• int socket(int family, int type, int protocol)

• Family: address family (protocol family)

– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

• Type: semantics of communication
– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.

– Family and type usually imply the protocol

• Return value is a handle for new socket

Bind call

• Typically a server call

• Binds a newly created socket to the specified address
– int bind(int socket, struct sockaddr *address, int addr_len)

• Socket: newly created socket handle

• Address: data structure of address of local system
– IP address and port number (demux keys)

– Same operation for both connection-oriented and connectionless
servers

• Can use well known port or unique port

Listen call

• Used by connection-oriented servers to indicate an
application is willing to receive connections

• Int(int socket, int backlog)

• Socket: handle of newly creates socket

• Backlog: number of connection requests that can be
queued by the system while waiting for server to
execute accept call.

Accept call

• A server call

• After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a connection
request.

• When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

Connect call

• A client call

• Client executes an active open of a connection
– int connect(int socket, struct sockaddr *address, int addr_len)

– How does the OS know where the server is?

• Call does not return until the three-way handshake
(TCP) is complete

• Address field contains remote system’s address

• Client OS usually selects random, unused port

Input and Output

• After connection has been made, application uses send/recv to data

• int send(int socket, char *message, int msg_len, int flags)

– Send specified message using specified socket

• int recv(int socket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

• Or can use read/write
– int read(int socket, char* buffer, int len)

– int write(int socket, char* buffer, int len);

• Or can sometimes use sendto/recvfrom

• Or can use sendmsg, recvmsg for “scatter/gather”

Sample Code

Key Concepts

• We use ports to name processes in TCP/UDP
– “Well-known” ports are used for popular services

• Connection setup and teardown complicated by the
effects of the network on messages
– TCP uses a three-way handshake to set up a connection

– TCP uses a symmetric disconnect

