CSC458 – Lecture 6

Inter-domain Routing IP Addressing

Administrivia

- Homework:
 - #2 due today
 - #3 out today, due in two weeks (same date as midterm)
- No lecture next week
 Reading Week
- Midterm in two weeks
 - 60 minute, close-book
 - No tutorial that Monday
 - Homework #4 will be out that day

Midterm will Cover Following Topics

- Protocols and layering
- Encoding bits with signals: NRZ, NRZI, Manchester, 4B/5B
- Error detection and correction: parity, CRC, Hamming distance
- Latency and RTT calculation
- MAC Protocols:
 - Wired: Aloha, CSMA/CD, Ethernet
 - Wireless: CSMA/CA, RTS/CTS
 - Contention-free: token ring, FDDI, DQDB

Midterm will Cover Following Topics (2)

- Bridging LANs, spanning tree algorithm
- IPv4
 - Header fields
 - Fragmentation
 - Path MTU
- ICMP
- Forwarding and routing
- Distance vector protocols: RIP, count-to-infinity, split horizon, split horizon with poison reverse
- Link state routing: Dijkstra algorithm, OSPF, cost metrics

Midterm will Cover Following Topics (3)

- Inter-domain routing: BGP, AS, path vectors, multi-homing
- IP addressing: ARP, CIDR, hierarchical addressing
- That was the long version
- The short version is...
 - Everything so far including today's lecture

Midterm will Cover following Readings

- Chapters 1-4
- Fishnet projects 1 and 2 is fair game

Any Questions?

This Lecture

- Focus
 - How do we make routing scale?
- Inter-domain routing – ASes and BGP

Structure of the Internet

• Inter-domain versus intra-domain routing

Inter-Domain Routing

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale, use hierarchy: separate inter-domain and intra-domain routing
- Also called interior vs exterior gateway protocols (IGP/EGP)
 IGP = RIP, OSPF
 EGP = EGP, BGP

Inter-Domain Routing

- Border routers summarize and advertise internal routes to external neighbors and viceversa
- Border routers apply <u>policy</u>
- Internal routers can use notion of default routes
- Core is "default-free"; routers must have a route to all networks in the world

Exterior Gateway Protocol (EGP)

- First major inter-domain routing protocol
- Constrained Internet to tree structure; no longer in use

Border Gateway Protocol (BGP-4)

- EGP used in the Internet backbone today
- Features:
 - Path vector routing
 - Application of policy
 - Operates over reliable transport (TCP)
 - Uses route aggregation (CIDR)

Path Vectors

- Similar to distance vector, except send entire paths
 - e.g. 321 hears [7,12,44]
 - stronger avoidance of loops
 - supports policies (later)
- Modulo policy, shorter paths are chosen in preference to longer ones
- Reachability only no metrics

An Ironic Twist on Convergence

• Recently, it was realized that BGP convergence can undergo a process analogous to count-to-infinity!

- AS 4 uses path 4 1 X. A link fails and 1 withdraws 4 1 X.
- So 4 uses 4 2 1 X, which is soon withdrawn, then 4 3 2 1 X, ...
- Result is many invalid paths can be explored before convergence

Policies

- Choice of routes may depend on owner, cost, AUP, ...
 Business considerations
- Local policy dictates what route will be chosen and what routes will be advertised!
 - e.g., X doesn't provide transit for B, or A prefers not to use X

Simplified Policy Roles

- Providers sell <u>Transit</u> to their customers
 - Customer announces path to their prefixes to providers in order for the rest of the Internet to reach their prefixes
 - Providers announces path to all other Internet prefixes to customer C in order for C to reach the rest of the Internet
- Additionally, parties Peer for mutual benefit
 - Peers A and B announce path to their customer's prefixes to each other but do not propagate announcements further
 - Peering relationships aren't transitive
 - Tier 1s peer to provide global reachability

Multi-Homing

• Connect to multiple providers for reliability, load sharing

- Customer can choose the best outgoing path from any of the announcements heard from its providers
 - Easy to control outgoing traffic, e.g, for load balancing
- · Less control over what paths other parties will use to reach us
 - Both providers will announce that they can reach to the customer
 - Rest of Internet can choose which path to take to customer
 - Hard for the the customer to influence this

Impact of Policies – Example

- Early Exit / Hot Potato
 "if it's not for you, bail"
- Combination of best local policies not globally best
- Side-effect: asymmetry

Operation over TCP

- Most routing protocols operate over UDP/IP
- BGP uses TCP
 - TCP handles error control; reacts to congestion
 - Allows for incremental updates
- Issue: Data vs. Control plane
 - Shouldn't routing messages be higher priority than data?

Key Concepts

- Internet is a collection of Autonomous Systems (ASes)
 - Policy dominates routing at the AS level
- Structural hierarchy helps make routing scalable
 - BGP routes between autonomous systems (ASes)

This Lecture

- Focus
 - How do we make routing scale?
- IP Addressing
 - Hierarchy (prefixes, class A, B, C, subnets)
 - Also allocation (DHCP, ARP)

Scalability Concerns

- Routing burden grows with size of an internetwork
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation
- To scale to the size of the Internet, apply:
 - Hierarchical addressing
 - Use of structural hierarchy
 - Route aggregation

IP Addresses

- Reflect location in topology; used for scalable routing – Unlike "flat" Ethernet addresses
- Interfaces on same network share prefix
 - Prefix administratively assigned (IANA or ISP)
 - Addresses globally unique
- Routing only advertises entire networks by prefix
 - Local delivery in a single "network" doesn't involve router
 - (will make "network" precise later on)

Getting an IP address

- Old fashioned way: sysadmin configured each machine
- Dynamic Host Configuration Protocol (DHCP)
 - One DHCP server with the bootstrap info
 - Host address, gateway address, subnet mask, ...
 - Find it using broadcast
 - Addresses may be leased; renew periodically
- "Stateless" Autoconfiguration (in IPv6)
 - Get rid of server reuse Ethernet addresses for lower portion of address (uniqueness) and learn higher portion from routers

Address Resolution Protocol (ARP)

- On a single link, need Ethernet addresses to send a frame
 - ... source is a given, but what about destination?
 - Requires mapping from IP to MAC addresses
- ARP is a dynamic approach to learn mapping
 - Node A sends broadcast query for IP address X
 - Node B with IP address X replies with its MAC address M
 - A caches (X, M); old information is timed out (~15 mins)
 - Also: B caches A's MAC and IP addresses, other nodes refresh

ARP Example

- To send first message use ARP to learn MAC address
- For later messages (common case) don't need to ARP

IPv4 Address Formats

• 32 bits written in "dotted quad" notation, e.g., 18.31.0.135

IPv6 Address Format

001 RegistryID ProviderID SubscriberID SubnetID Interface

- 128 bits written in 16 bit hexadecimal chunks
- Still hierarchical, just more levels

Network Example

Network number

Network number

Updated Forwarding Routine

- Used to be "look up destination address for next hop"
- Now addresses have network and host portions:
 - If host: if destination network is the same as the host network, then deliver locally (without router). Otherwise send to the router
 - If router: look up destination network in routing table to find next hop and send to next router. If destination network is directly attached then deliver locally.
- (Note that it will get a little more complicated later)

Subnetting – More Hierarchy

- Split up one network number into multiple physical networks
- Helps allocation efficiency -- can hand out subnets
- Class B address
 1111111111111111111
 00000000
 Subnet mask (255.255.255.0)

Host number

Host ID

- Rest of internet does not see subnet structure
 - subnet is purely internal to network
 - aggregates routing info

Subnetted address

Subnet ID

Subnet Example

Updated Forwarding Routine

- Used to know network from address (class A, B, C)
- Now need to "search" routing table for right subnet
 - If host: easy, just substitute "subnet" for "network"
 - If router: search routing table for the subnet that the destination belongs to, and use that to forward as before
- (Note that it will get a little more complicated later :)

CIDR (Supernetting)

- CIDR = Classless Inter-Domain Routing
- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address
- · Aggregate adjacent advertised network routes
 - e.g., ISP has class C addresses 192.4.16 through 192.4.31
 - Really like one larger 20 bit address class ...
 - Advertise as such (network number, prefix length)
 - Reduces size of routing tables
- But IP forwarding is more involved
 - Based on Longest Matching Prefix operation

CIDR Example

• X and Y routes can be aggregated because they form a bigger contiguous range.

IP Forwarding Revisited

- Routing table now contains routes to "prefixes"
 - IP address and length indicating what bits are fixed
- Now need to "search" routing table for longest matching prefix, only at routers
 - Search routing table for the prefix that the destination belongs to, and use that to forward as before
 - There can be multiple matches; take the longest prefix
- This is the IP forwarding routine used at routers.

Key Concepts

- Hierarchical address allocation helps routing scale
 - Addresses are constrained by topology
 - Only need to advertise and compute routes for networks
 - Hide internal structure within a domain via subnets
 - Keep host simple and let routers worry about routing
- ARP learns the mapping from IP to MAC address