
CSC 458 -- Lecture 5

Routing Protocols

Administrivia

• Projects:
– #2 due today

– #3 out today

• Homework:
– #2 due next week

• Midterm:
– One more class next week before midterm

This Time

• Focus
– How do we calculate routes for packets?

– Routing is a network layer function

• Routing Algorithms
– Distance Vector routing (RIP)

Physical

Data Link

Network

Transport

Session

Presentation

Application

Forwarding and Routing

• Forwarding is the process that each router goes through
for every packet to send it on its way
– Involves local decisions

• Routing is the process that all routers go through to
calculate the routing tables
– Involves global decisions

What’s in a Routing Table?

• The routing table at A, for example, lists at a minimum
the next hops for the different destinations

D

G

A

F

E

B

C

F

G

E

D

C

B

Next
Hop

Dest

Kinds of Routing Schemes

• Many routing schemes have been proposed/explored!

• Distributed or centralized

• Hop-by-hop or source-based

• Deterministic or stochastic

• Single or multi-path

• Static or dynamic route selection

• Internet is to the left !

Routing Questions

• How to choose best path?
– Defining “best” is slippery

• How to scale to millions of users?
– Minimize control messages and routing table size

• How to adapt to failures or changes?
– Node and link failures, plus message loss

– We will use distributed algorithms

Some Pitfalls

• Using global knowledge is challenging
– Hard to collect

– Can be out-of-date

– Needs to summarize in a locally-relevant way

• Inconsistencies in local /global knowledge can cause:
– Loops (black holes)

– Oscillations, esp. when adapting to load

• Routing is essentially a problem in graph theory

D

G

A

F

E

B

C

=router

=link

Network as a Graph

X

1
1

1

1

1

1

1

1
1 =cost

Distance Vector Routing

• Assume:
– Each router knows only address/cost of neighbors

• Goal:
– Calculate routing table of next hop information for each

destination at each router

• Idea:
– Tell neighbors about learned distances to all destinations

DV Algorithm

• Each router maintains a vector of costs to all
destinations as well as routing table
– Initialize neighbors with known cost, others with infinity

• Periodically send copy of distance vector to neighbors
– On reception of a vector, if neighbors path to a destination plus

neighbor cost is better, then switch to better path

• update cost in vector and next hop in routing table

• Assuming no changes, will converge to shortest paths
– But what happens if there are changes?

DV Example – Initial Table at A

D

G

A

F

E

B

C

F

G

E

D

C

B

NextCostDest

DV Example – Final Table at A

• Reached in a single iteration … simple example

D

G

A

F

E

B

C

F

G

E

D

C

B

NextCostDest

What if there are changes?

• One scenario: Suppose link between F and G fails
1. F notices failure, sets its cost to G to infinity and tells A

2. A sets its cost to G to infinity too, since it learned it from F

3. A learns route from C with cost 2 and adopts it

D

G

A

F

E

B

C

XXXXX F1F

C3G

E1E

C2D

C1C

B1B

NextCostDest

• Simple example
– Costs in nodes are to reach Internet

• Now link between B and Internet fails …

Count To Infinity Problem

InternetA/2 B/1

Count To Infinity Problem

• B hears of a route to the Internet via A with cost 2

• So B switches to the “better” (but wrong!) route

update

InternetA/2 B/3 XXX

Count To Infinity Problem

• A hears from B and increases its cost

update

InternetA/4 B/3 XXX

Count To Infinity Problem

• B hears from A and (surprise) increases its cost

• Cycle continues and we “count to infinity”

• Packets caught in the crossfire loop between A and B

update

InternetA/4 B/5 XXX

Split Horizon

• Solves trivial count-to-infinity problem

• Router never advertises the cost of a destination back to
to its next hop – that’s where it learned it from!

• Poison reverse: go even further – advertise back infinity

• However, DV protocols still subject to the same problem
with more complicated topologies
– Many enhancements suggested

Routing Information Protocol (RIP)

• DV protocol with hop count as metric
– Infinity value is 16 hops; limits network size

– Includes split horizon with poison reverse

• Routers send vectors every 30 seconds
– With triggered updates for link failures

– Time-out in 180 seconds to detect failures

• RIPv1 specified in RFC1058
– www.ietf.org/rfc/rfc1058.txt

• RIPv2 (adds authentication etc.) in RFC1388
– www.ietf.org/rfc/rfc1388.txt

RIP is an “Interior Gateway Protocol”

• Suitable for small- to medium-sized networks
– such as within a campus, business, or ISP

• Unsuitable for Internet-scale routing
– hop count metric poor for heterogeneous links

– 16-hop limit places max diameter on network

• Later, we’ll talk about “Exterior Gateway Protocols”
– used between organizations to route across Internet

Key Concepts

• Routing is a global process, forwarding is local one

• The Distance Vector algorithm and RIP
– Simple and distributed exchange of shortest paths.

– Weak at adapting to changes (loops, count to infinity)

Last Time …

• Routing Algorithms
– Introduction

– Distance Vector routing (RIP)

Physical

Data Link

Network

Transport

Session

Presentation

Application

This Lecture

• Routing Algorithms
– Link State routing (OSPF)

Physical

Data Link

Network

Transport

Session

Presentation

Application

Why have two protocols?

• DV: “Tell your neighbors about the world.”
– Easy to get confused (“the telephone game”)

– Simple but limited, costly and slow

• 15 hops is all you get. (makes it faster to loop to infinity)
• Periodic broadcasts of large tables

• Slow convergence due to ripples and hold down

• LS: “Tell the world about your neighbors.”
– Harder to get confused (“the nightly news”)
– More complicated

• As many hops as you want
• Faster convergence (instantaneous update of link state changes)

• Able to impose global policies in a globally consistent way
– Richer cost model, load balancing

Link State Routing

• Same assumptions/goals, but different idea than DV:
– Tell all routers the topology and have each compute best paths

– Two phases:

1. Topology dissemination (flooding)

- New News travels fast.

- Old News should eventually be forgotten

2. Shortest-path calculation (Dijkstra’s algorithm)

- nlogn

• Each router maintains link state database and
periodically sends link state packets (LSPs) to neighbor
– LSPs contain [router, neighbors, costs]

• Each router forwards LSPs not already in its database on
all ports except where received
– Each LSP will travel over the same link at most once in each

direction

• Flooding is fast, and can be made reliable with
acknowledgments

Flooding Example

• LSP generated by X at T=0

• Nodes become yellow as they receive it

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

Complications

• When link/router fails need to remove old data. How?
– LSPs carry sequence numbers to determine new data

– Send a new LSP with cost infinity to signal a link down

• What happens if the network is partitioned and heals?
– Different LS databases must be synchronized

– A version number is used!

Shortest Paths: Dijkstra’s Algorithm

• N: Set of all nodes
• M: Set of nodes for which we think we have a shortest

path
• s: The node executing the algorithm
• L(i,j): cost of edge (i,j) (inf if no edge connects)
• C(i): Cost of the path from ME to i.
• Two phases:

– Initialize C(n) according to received link states

– Compute shortest path to all nodes from s

• As link costs are symmetric, shortest path from A to B is also
the shortest path from B to A.

The Algorithm

// Initialization
M = {s} // M is the set of all nodes considered so far.

For each n in N - {s}
C(n) = L(s,n)

// Find Shortest paths

Forever {
Unconsidered = N-M

If Unconsidered == {} break
M = M + {w} such that C(w) is the smallest in Unconsidered

For each n in Unconsidered

C(n) = MIN(C(n), C(w) + L(w,n))

}

Dijkstra Example – After the flood

10

2 3

5

2

1

4 6

7

9
0

The Unconsidered.The Considered

* *

Dijkstra Example – Post Initialization

* *

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered

Considering a Node

10

2 3

5

2

1

4 6

7

9
0

5

10
inf

inf

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 8,14, and 7

Pushing out the horizon

8

2 3

5

2

1

4 6

7

9
0

5 7

14

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 13

Next Phase

8

2 3

5

2

1

4 6

7

9
0

5 7

13

The Unconsidered.The Considered The Under Consideration (w).

Cost updates of 9

Considering the last node

8

2 3

5

2

1

4 6

7

9
0

5 7

9

The Unconsidered.The Considered The Under Consideration (w).

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

Open Shortest Path First (OSPF)

• Most widely-used Link State protocol today

• Basic link state algorithms plus many features:
– Authentication of routing messages

– Extra hierarchy: partition into routing areas

• Only bordering routers send link state information to
another area

– Reduces chatter.

– Border router “summarizes” network costs within an area by
making it appear as though it is directly connected to all
interior routers

• Load balancing

Cost Metrics

• How should we choose cost?

– To get high bandwidth, low delay or low loss?

– Do they depend on the load?

• Static Metrics

– Hopcount is easy but treats OC3 (155 Mbps) and T1 (1.5 Mbps) same

– Can tweak result with manually assigned costs

• Dynamic Metrics

– Depend on load; try to avoid hotspots (congestion)

– But can lead to oscillations (damping needed)

• Based on load and link

• Variation limited (3:1)
and change damped

• Capacity dominates at
low load; we only try to
move traffic if high load

225

N
e

w
 m

e
tr

ic
 (

ro
u

ti
n

g
 u

n
it
s
)

140

90

75

60

30

25% 50% 75% 100%

9.6-Kbps satellite link

9.6-Kbps terrestrial link

56-Kbps satellite link

56-Kbps terrestrial link

Utilization

Revised ARPANET Cost Metric Key Concepts

• Routing uses global knowledge; forwarding is local

• Many different algorithms address the routing problem
– We have looked at two classes: DV (RIP) and LS (OSPF)

• Challenges:
– Handling failures/changes

– Defining “best” paths

– Scaling to millions of users

