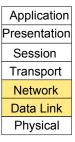
CSC458 – Lecture 4 Bridging LANs and IP

Administrivia


- Homework:
 - #1 due today
 - # 2 out today and due in two weeks
- Readings:
 Chapters 3 and 4
- Project:
 # 2 due next week
- Tutorial today:
 Joe Lim on project 2

Last Time ...

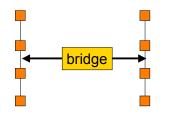
- Medium Access Control (MAC) protocols
 - Part of the Link Layer
 - At the heart of Local Area Networks (LANs)
- How do multiple parties share a wire or the air?
 - Random access protocols (CSMA/CD)
 - Contention-free protocols (turn-taking, reservations)
 - Wireless protocols (CSMA/CA and RTS/CTS)

This Time -- Switching (a.k.a. Bridging)

- Focus:
 - What to do when one shared LAN isn't big enough?
- Interconnecting LANs
 - Bridges and LAN switches
 - A preview of the Network layer

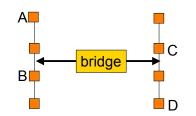
Limits of a LAN

- One shared LAN can limit us in terms of:
 - Distance
 - Number of nodes
 - Performance

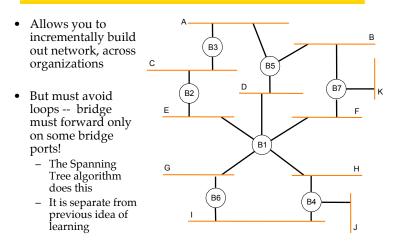

- How do we scale to a larger, faster network?
 - We must be able to interconnect LANs

Switching (a.k.a. Bridging)

Transferring a packet from one LAN to another LAN
 Build an "extended LAN"


Bridges and Extended LANs

- "Transparently" interconnect LANs with bridge
 - Receive frames from each LAN and forward to the other
 - Each LAN is its own collision domain; bridge isn't a repeater
 - Could have many ports

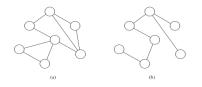

Learning Bridges

To optimize overall performance:
 Shouldn't forward A→B or C→D, should forward A→C and D→B



- How does the bridge know?
 - Learn who is where by observing source addresses and prune
 - Forward using destination address; age for robustness

Why stop at one bridge?

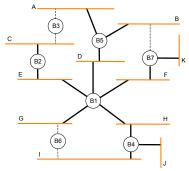


Spanning Tree Example

Spanning Tree

- Compute ST with *a* bridge as *root* such that
 - Root forwards onto all of its outgoing ports
 - Other bridges forward TO the root if a packet is coming from a bridge further from the root, else they forward away from the root
 - Packet traversal: forwards (UP)* then (DOWN*)

Spanning tree vs. learning


- Once the spanning tree is in place...
 - the bridge uses the regular learning algorithm to figure out which ports to forward / flood packet on
- Job of spanning tree algorithm is to disable some ports to eliminate cycles

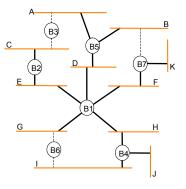
Spanning Tree Algorithm

- Distributed algorithm to compute spanning tree
 - Robust against failures, needs no organization
 - Developed by Radia Perlman at DEC
 - IEEE 802.1 spec
 - http://www1.cs.columbia.edu/~ji/F02/ir02/p44-perlman.pdf
- Outline: Goal is to turn some bridge ports off
 - 1. Elect a root node of the tree (lowest address)
 - 2. Grow tree as shortest distances from the root (using lowest address to break distance ties)
 - All done by bridges sending periodic configuration messages over ports for which they are the "best" path
 - Then turn off ports that aren't on "best" paths

Algorithm Overview

- Each bridge has a unique id - e.g., B1, B2, B3
- Select the bridge with the smallest id as root
- Select bridge on each LAN that is closest to the root as that LAN's designated bridge
 - use ids to break ties
- Each bridge forwards frames over each LAN on which it is the designated bridge

Algorithm continued

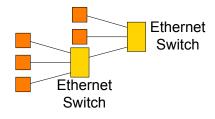

- Bridges exchange configuration messages, containing:
 - id for bridge sending the message
 - id for what the sending bridge believes to be the root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- Initially, each bridge believes it is the root
 - when learn not root, stop generating configuration messages
 - instead, forward root's configuration message
 - incrementing distance field by 1
 - in steady state, only root generates configuration messages

Algorithm More...

- When learn not designated bridge on LAN, stop forwarding configuration messages
 - in steady state, only designated bridges forward configuration messages
- Root bridge continues to send configuration messages periodically
- If a bridge does not receive config. message after a period of time:
 - assumes topology has changed
 - starts generating configuration messages claiming to be root

Algorithm Example

- Message format:
 - (root, dist-to-root, sending bridge)
- Sample messages sequences to and from B3:
 - 1. B3 sends (B3, 0, B3) to B2 and B5
 - 2. B3 receives (B2, 0, B2) and (B5, 0, B5) and accepts B2 as root
 - 3. B3 sends (B2, 1, B3) to B5
 - 4. B3 receives (B1, 1, B2) and (B1, 1, B5) and accepts B1 as root
 - B3 could send (B1, 2, B3) but doesn't as its nowhere "best" B2 and B5 are better choices. so B3 is NOT a designated bridge
 - B3 receives (B1, 1, B2) and (B1, 1, B5) again ... stable
 B3 turns off data forwarding to LANs A and C



Some other tricky details

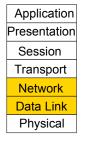
- Configuration information is aged
 - If the root fails a new one will be elected
- Reconfiguration is damped
 - Adopt new spanning trees slowly to avoid temporary loops

LAN Switches

- LAN switches are multi-port bridges
 - Modern, high performance form of bridged LANs
 - Looks like a hub, but frames are switched, not shared
 - Every host on a separate port, or can combine switches

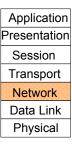
Limitations of Bridges/Switches

- LAN switches form an effective small-scale network
 Plug and play for real!
- Why can't we build a large network using bridges?
 - Little control over forwarding paths
 - Size of bridge forwarding tables grows with number of hosts
 - Broadcast traffic flows freely over whole extended LAN
 - Spanning tree algorithm limits reconfiguration speed
 - Poor solution for connecting LANs of different kinds


Key Concepts

- We can overcome LAN limits by interconnection
 - Bridges and LAN switches
 - But there are limits to this strategy ...
- Next Topic: Routing and the Network layer
 - How to grow large and really large networks

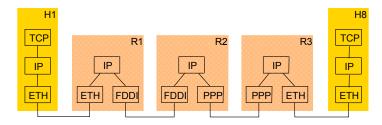
Part 2: IP


Last Time

- Focus:
 - What to do when one shared LAN isn't big enough?
- Interconnecting LANs
 - Bridges and LAN switches
 - But there are limits ...

This Lecture

- Focus:
 - How do we build large networks?
- Introduction to the Network layer
 - Internetworks
 - Service models
 - IP, ICMP



The Network Layer

- Job is to provide end-to-end data delivery between hosts on an internetwork
- Provides a higher layer of addressing

In terms of protocol stacks

- IP is the network layer protocol used in the Internet
- Routers are network level gateways
- Packet is the term for network layer PDUs

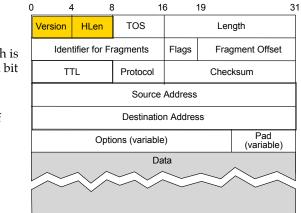
In terms of packet formats

- View of a packet on the wire on network 1 or 2
- Routers work with IP header, not higher
 Higher would be a "layer violation"
- Routers strip and add link layer headers

Ethernet Header IP Header Higher layer headers and Payload

I Front of packet to left (and uppermost)

Network Service Models

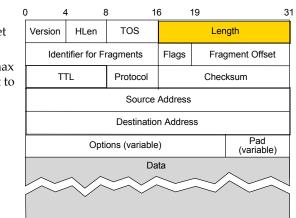

- Datagram delivery: postal service
 - connectionless, best-effort or unreliable service
 - Network can't guarantee delivery of the packet
 - Each packet from a host is routed independently
 - Example: IP
- Virtual circuit models: telephone
 - connection-oriented service
 - Signaling: connection establishment, data transfer, teardown
 - All packets from a host are routed the same way (router state)
 - Example: ATM, Frame Relay, X.25

Internet Protocol (IP)

- IP (RFC791) defines a datagram "best effort" service
 - May be loss, reordering, duplication, and errors!
 - Currently IPv4 (IP version 4), IPv6 on the way
- Routers forward packets using predetermined routes
 - Routing protocols (RIP, OSPF, BGP) run between routers to maintain routes (routing table, forwarding information base)
- Global, hierarchical addresses, not flat addresses
 - 32 bits in IPv4 address; 128 bits in IPv6 address
 - ARP (Address Resolution Protocol) maps IP to MAC addresses

IPv4 Packet Format

- Version is 4
- Header length is number of 32 bit words
- Limits size of options



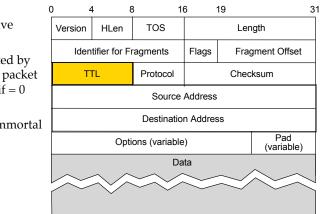
IPv4 Header Fields ...

		0 4	4 8	3 1	6	19		31
•	Type of Service	Version	HLen	TOS		Len	igth	
•	Abstract notion,	Iden	tifier for F	ragments	Flags	Frag	gment Offset	
	never really worked out	Т	TL	Protocol		Chec	ksum	
	 Routers ignored 	Source Address						
•	But now being	Destination Address						
	redefined for Diffserv						Pad (variable)	
		Data						
		\sim	\sim	\sim	\geq	\sim		

IPv4 Header Fields ...

- Length of packet
- Min 20 bytes, max 65K bytes (limit to packet size)

IPv4 Header Fields ...

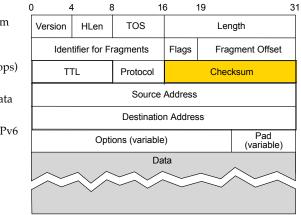

0 4 8 16 19 • Fragment fields HLen TOS Length Version • Different LANs Identifier for Fragments Flags Fragment Offset have different frame size limits TTL Protocol Checksum Source Address • May need to break **Destination Address** large packet into smaller fragments Pad Options (variable) (variable) Data

IPv4 Header Fields ...

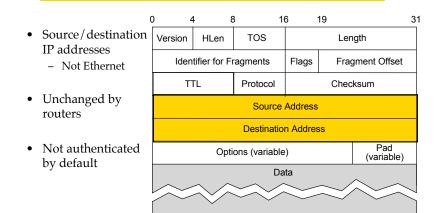
Time To Live

31

- Decremented by router and packet discarded if = 0
- Prevents immortal packets

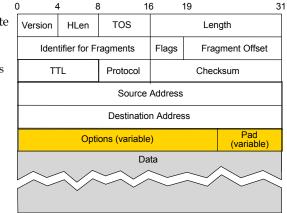

IPv4 Header Fields ...

 Identifies higher layer protocol
 E.g., TCP, UDP

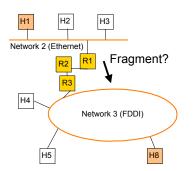

0	4	. 8	3 1	6	19		31		
Versi	on	HLen	TOS	TOS Ler		ngth			
I	Identifier for Fragments			Flags Fragment Offset					
	TΠ	L	Protocol	Checksum					
	Source Address								
	Destination Address								
	Options (variable) Pad (variable)								
	Data								
	, in the second								

IPv4 Header Fields ...

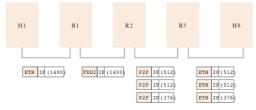
- Header checksum
- Recalculated by routers (TTL drops)
- Doesn't cover data
- Disappears for IPv6



IPv4 Header Fields ...


IPv4 Header Fields ...

- IP options indicate special handling
 Timestamps
 - "Source" routes
- Rarely used ...


Fragmentation Issue

- Different networks may have different frame limits (MTUs)
 – Ethernet 1.5K, FDDI 4.5K
- Don't know if packet will be too big for path beforehand
 - IPv4: fragment on demand and reassemble at destination
 - IPv6: network returns error message so host can learn limit

Fragmentation and Reassembly

- Strategy
 - fragment when necessary (MTU < Datagram size)
 - try to avoid fragmentation at source host
 - refragmentation is possible
 - fragments are self-contained IP datagrams
 - delay reassembly until destination host
 - do not recover from lost fragments

Fragment Fields

- Fragments of one packet identified by (source, dest, frag id) triple - Make unique
- Offset gives start, length changed
- Flags are More Fragments (MF) Don't Fragment (DF)

) 4	4 8	3 1	6	19		3	
Version	HLen	TOS		igth			
lden	tifier for Fi	ragments	Flags	Fraç	gment Offset		
T	TTL Protocol Checksum						
Source Address							
Destination Address							
Options (variable) Pad (variable)							
Data							

Fragmenting a Packet Start of header Ident = x 0 Offset = 0 16 19 HLen TOS Length ersion Identifier for Fragments lags Fragment Offse TTL Protocol Checksum Source Address Destination Address Pad (variable) Options (variable) Data

_			_	-			_
	Re	est of h	ead	er			
	140	00 data	byt	es			
	St	art of h	ie ad	er			
	Ident = x			1	01	fset	=
	Re	est of h	iead	er			
	51	2 data	byte	28			
							_
	St	art of h	ie ad	er			
			1 1	. T			-

Start of	fheader		
Ident = x		1	Offset = 512
Rest of	header	r	
512 dat	ta bytes		
		_	

Start of header							
Ident = x 0 Offset = 1024							
Rest of header							
376 data bytes							

Fragment Considerations

- Making fragments be datagrams provides:
 - Tolerance of loss, reordering and duplication
 - Ability to fragment fragments
- Reassembly done at the endpoint
 - Puts pressure on the receiver, not network interior
- Consequences of fragmentation:
 - Loss of any fragments causes loss of entire packet
 - Need to time-out reassembly when any fragments lost

Fragmentation Issues Summary

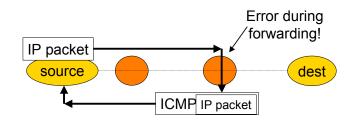
- Causes inefficient use of resources within the network - BW, CPU
- Higher level protocols must re-xmit entire datagram - on lossy network links, hard for packet to survive
- Efficient reassembly is hard
 - Lots of special cases
 - (think linked lists)

Avoiding Fragmentation

- Always send small datagrams
 - Might be too small
- "Guess" MTU of path
 - Use DF flag. May have large startup time
- Discover actual MTU of path
 - One RT delay w/help, much more w/o.
 - "Help" requires router support
- Guess or discover, but be willing to accept your mistakes

Path MTU Discovery

- Path MTU is the smallest MTU along path
 - Packets less than this size don't get fragmented
- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs
- Hosts send packets, routers return error if too large
 - Hosts discover limits, can fragment at source
 - Reassembly at destination as before
- Learned lesson from IPv4, streamlined in IPv6


IP Addresses and IP Datagram Forwarding

- IP datagram (packet) contains destination address
- How the source gets the packet to the destination:
 - if source is on same network (LAN) as destination, source sends packet directly to destination host
 - else source sends data to a router on the same network as the source
 - router will forward packet to a router on the next network over
 - and so on...
 - until packet arrives at router on same network as destination; then, router sends packet directly to destination host
- Requirements
 - every host needs to know IP address of the router on its LAN
 - every router needs a routing table to tell it which neighboring network to forward a given packet on

ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system
- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP required functionality
- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network

ICMP Generation

Common ICMP Messages

- Destination unreachable
 - "Destination" can be host, network, port or protocol
- Packet needs fragmenting but DF is set
- Redirect
 - To shortcut circuitous routing
- TTL Expired
 - Used by the "traceroute" program
- Echo request/reply
 - Used by the "ping" program
- Cannot Fragment
- Busted Checksum
- ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload

ICMP Restrictions

- The generation of error messages is limited to avoid cascades ... error causes error that causes error!
- Don't generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first
- ICMP messages are often rate-limited too.

Key Concepts

- Network layer provides end-to-end data delivery across an internetwork, not just a LAN
 - Datagram and virtual circuit service models
 - IP/ICMP is the network layer protocol of the Internet
- Up next: More detailed look at routing and addressing