CSC458 - Winter 2006

Introduction to Computer Networks Protocols and Layering

Stefan Saroiu

http://www.cs.toronto.edu/syslab/courses/csc458

University of Toronto at Mississauga

This Lecture

- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

1. Administrative Stuff

- Important high-level questions?
- Is this the same as CSC458 from St. George?
 - Not really: focus here is on systems building
 - · You will learn a lot about how the Internet works
 - You will learn less about the theoretical underpinnings of networks
- This guy is a new instructor ... who is he?
 More info see: http://www.cs.toronto.edu/~stefan

Visit the Course Web Page!

- Everything you need is on the course web page

 http://www.cs.toronto.edu/syslab/courses/csc458
- Your TODO list:
 - Visit and familiarize yourself with the course web page
 - Get Computer Networks by Peterson and Davie (3rd edition)
 - Read chapters 1 and 2
 - Go to the tutorial (after this class)
 - Start on Fishnet assignment 1
 - Start on homework 1
- · Is there anything unclear on the handout?

TAs

- Joe Lim
 - He's the grand-master of the projects in this course!
 - This means:
 - · He will answer your questions and help you with the projects
 - He won't answer nor help you with the homework

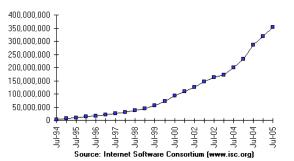
Setting the right expectations

- Read the chapters in the book
 - I will not go over the material in the book during lectures
 - I will assume that you have read the chapters
- Homework
 - Make sure you've read the book chapters first
 - Start early
- · Projects
 - You will most likely fail this class if one of the following:
 - You're struggling with Java, a text editor (vi or Emacs), make files, Unix tools
 - You start working on the projects 3-4 days before the deadline ...
 - Think/design/create first before sitting down to code

What is a Network?

A Network in CSC458

- "Network" is clearly an overloaded word:
 - Economic networks, regulatory networks, social networks...
 - Telephone, Cable TV, Bank tellers, computer clusters
- For 458, a network is what you get anytime you connect two or more computers together by some kind of a link.


This Lecture

- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

2. The networks we study

- · We are interested in networks that are:
 - Large scale
 - Intrinsically Unreliable
 - Distributed
 - Heterogeneous

The meaning of "Large-scale"

Internet Domain Survey Host Count

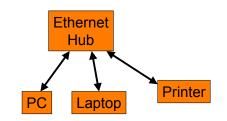
Intrinsic Unreliability

- · Information sent from a first place to a second
 - May not arrive
 - May arrive more than once
 - May arrive in garbled fashion
 - May arrive out of order
 - May be read by others
 - May be modified by others
- · Why build intrinsically unreliable networks?

Distributed

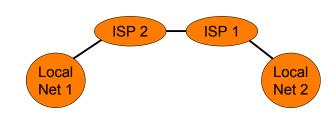
"A distributed system is a system in which I can't do my work because some computer has failed that I've never even heard of." – Lamport

- · (Hopefully) independent failure modes
- · Exposed and hidden dependencies
- · Independent administrative controls
- · Leads to...


Heterogeneous Networks

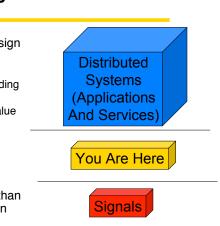
- · Heterogeneous: Made up of different kinds of stuff
- · Homogeneous: Made up of the same kind of stuff
- Principles
 - Homogeneous networks are easier to deal with
 - Heterogeneous networks lead to greater innovation and scale
 - Consider telephone network vs. Internet
 - Reasons?

Model of a Network


- Links carry information (bits)
 - Wire, wireless, fiber optic, smoke signals ...
 - May be point-to-point or broadcast
- Switches move bits between links
 - Routers, gateways, bridges, CATV headend, PABXs, ...
- Hosts are the communication endpoints
 - PC, PDA, cell phone, tank, toaster, ...
 - Hosts have names
- Much other terminology: channels, nodes, intermediate systems, end systems, and much more.

Example – Local Area Network

- Your home network
 - Ethernet is a broadcast-capable multi-access LAN

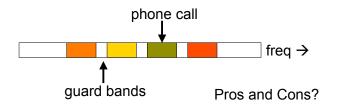

Example – An Internetwork

- · Internetwork is a network of networks
- The Internet is a global internetwork in which all participants speak a common language
 - IP, the Internet Protocol

Goal of this Course

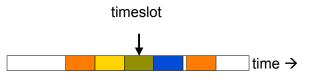
- You will understand how to design and build *large, distributed computer* networks.
 - Fundamental problems in building networks
 - Design principles of proven value
 - Common implementation technologies
- This is a systems course, not queuing theory, signals, or hardware design.
- We focus on networks, rather than applications or services that run on top of them (distributed systems).

This Lecture


- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

3. An example technical problem: multiplexing

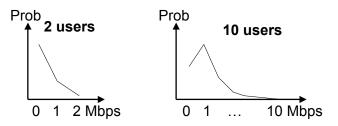
- Networks are shared among users
 - This is an important benefit of building them
 - (why we can't just buy everybody their own network!)
- How should you multiplex (share) a resource amongst multiple users?
 - e.g., how do you share a network link?
- · First Solution: Static Partitioning
 - (Synchronous) Time Division Multiplexing (TDM, STDM)
 - Frequency Division Multiplexing (FDM)


Frequency Division Multiplexing

- · Simultaneous transmission in different frequency bands
- "Speaking at different pitches"
 - e.g., take one 3MHz signal and break it into 1000 3KHz signals
 - Analog: Radio, TV, AMPS cell phones (800MHz)
 - also called Wavelength DMA (WDMA) for fiber

Time Division Multiplexing

- · "Slice up" the given frequency band between users
- · Speaking at different times
 - Digital: used extensively inside the telephone network
 - T1 (1.5Mbps) is 24 x 8 bits/125us; also E1 (2Mbps, 32 slots)


Pros and Cons?

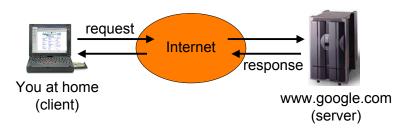
Statistical Multiplexing

- Static partitioning schemes are not well-suited to data networks
 - why? because peak rate >> average rate.
 - it's rare for many clients to want to transmit at the same time.
 - so, statically assigning fractions of the link wastes capacity, since users tend to underuse their fraction
 - (Q: When would S.P. schemes be well suited to communications?)
- · If we share on demand we can support more users
 - Based on the statistics of their transmissions
 - If you need more, you get more. If you need less, you get less.
 - · It's all supposed to "balance out" in the end
 - Occasionally we might be oversubscribed
 - This is called statistical multiplexing -- used heavily in data networks

Why We Like Statistical Multiplexing

- One user sends at 1 Mbps and is idle 90% of the time.
 - 10 Mbps channel; 10 users if statically allocated
- Two scenarios: 2 users in the population, or 10 users in population
 - what is the probability of a certain bandwidth consumption at any given moment in time?

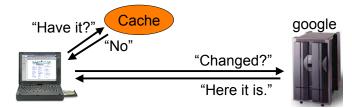
Example continued


- For 10 users, Prob(need 10 Mbps) = 10⁻¹⁰ = 0.0000000100%
- Not likely! So keep adding users ...
- For 35 users, Prob(>10 active users) = 0.17%, which is acceptably low
- With statistical multiplexing, we can support three times as many users than static allocation!
- · What's the rub?

This Lecture

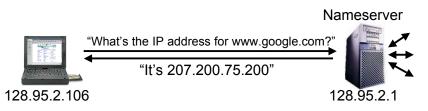
- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

4. A Brief Tour of the Internet


• What happens when you "click" on a web link?

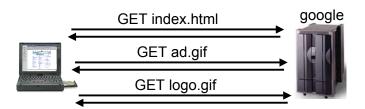
• This is the view from 10,000 ft ...

9,000 ft: Scalability


Caching improves scalability

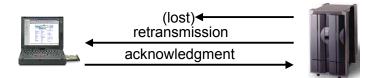
- We cut down on transfers:
 - Check cache (local or proxy) for a copy
 - Check with server for a new version

8,000 ft: Naming (DNS)


· Map domain names to IP network addresses

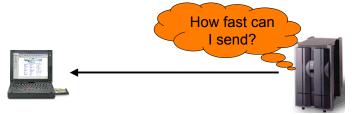
- · All messages are sent using IP addresses
 - So we have to translate names to addresses first
 - But we cache translations to avoid doing it next time (why?)

7,000 ft: Sessions (HTTP)


· A single web page can be multiple "objects"

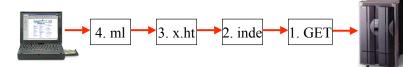
Fetch each "object"
 – either sequentially or in parallel

6,000 ft: Reliability (TCP)


Messages can get lost

• We acknowledge successful receipt and detect and retransmit lost messages (e.g., timeouts)

5,000 ft: Congestion (TCP)


· Need to allocate bandwidth between users

• Senders balance available and required bandwidths by probing network path and observing the response

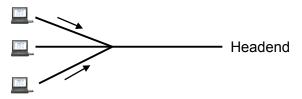
4,000 ft: Packets (TCP/IP)

- · Long messages are broken into packets
 - Maximum Ethernet packet is 1.5 Kbytes
 - Typical web page is 10 Kbytes



GET index.html

• Number the segments for reassembly


3,000 ft: Routing (IP)

· Packets are directed through many routers

2,000 ft: Multi-access (e.g., Cable)

· May need to share links with other senders

- Poll headend to receive a timeslot to send upstream
 Headend controls all downstream transmissions
 - A lower level of addressing (than IP addresses) is used ... why?

1,000 ft: Framing/Modulation

· Protect, delimit and modulate payload as signal

Sync / Unique Header Payload w/ error correcting code

- E.g, for cable, take payload, add error protection (Reed-Solomon), header and framing, then turn into a signal
 - Modulate data to assigned channel and time (upstream)
 - Downstream, 6 MHz (~30 Mbps), Upstream ~2 MHz (~3 Mbps)

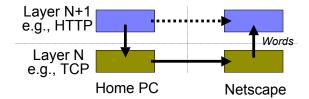
This Lecture

- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

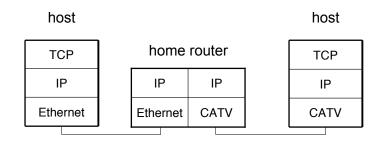
5. Protocols and Layering

· We need abstractions to handle all this system complexity

A <u>protocol</u> is an agreement dictating the form and function of data exchanged between parties to effect communication

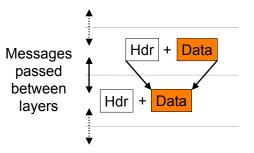

- · Two parts:
 - Syntax: format -- where the bits go
 - Semantics: meaning -- what the words mean, what to do with them
- · Examples:
 - Ordering food from a drive-through window
 - IP, the Internet protocol
 - TCP and HTTP, for the Web

Protocol Standards


- Different functions require different protocols
- · Thus there are many protocol standards
 - E.g., IP, TCP, UDP, HTTP, DNS, FTP, SMTP, NNTP, ARP, Ethernet/802.3, 802.11, RIP, OPSF, 802.1D, NFS, ICMP, IGMP, DVMRP, IPSEC, PIM-SM, BGP, ...
- · Organizations: IETF, IEEE, ITU
- · IETF (www.ietf.org) specifies Internet-related protocols
 - RFCs (Requests for Comments)
 - "We reject kings, presidents and voting. We believe in rough consensus and running code." – Dave Clark.

Layering and Protocol Stacks

- · Layering is how we combine protocols
 - Higher level protocols build on services provided by lower levels
 - Peer layers communicate with each other

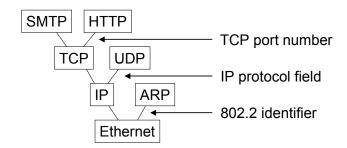


Example – Layering at work

Layering Mechanics

· Encapsulation and de(en)capsulation

A Packet on the Wire


· Starts looking like an onion!

- This isn't entirely accurate
 - ignores segmentation and reassembly, Ethernet trailers, etc.
- · But you can see that layering adds overhead

More Layering Mechanics

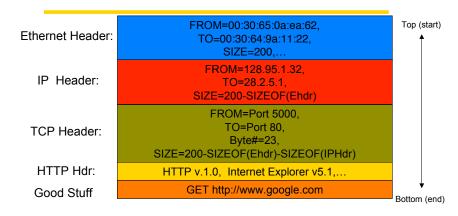
· Multiplexing and demultiplexing in a protocol graph

This Lecture

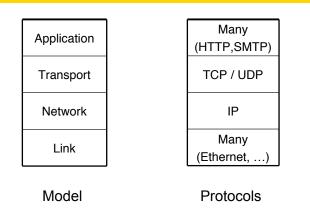
- 1. Administrative stuff
- 2. Introduction to Networks
- 3. Statistical Multiplexing
- 4. A top-down look at the Internet
- 5. Mechanics of protocols and layering
- 6. The OSI/Internet models

6. OSI/Internet Protocol Stacks

Key Question: What functionality goes in which protocol?


• The "End to End Argument" (Reed, Saltzer, Clark, 1984):

Functionality should be implemented at a lower layer only if it can be correctly and completely implemented.
(Sometimes an incomplete implementation can be useful as a performance optimization.)


Tends to push functions to the endpoints, which has aided the transparency and extensibility of the Internet.

Ethernet Hdr IP Hdr TCP Hdr HTTP Hdr Payload (Web object)

What's Inside a Packet

Internet Protocol Framework

OSI "Seven Layer" Reference Model

•	Seven Layers:	
		Application
		Presentation
		Session
		Transport
		Network
		Link
		Physical

Their functions:

- · Up to the application
- Encode/decode messages
- Manage connections
- Reliability, congestion control
- Routing
- Framing, multiple access
- · Symbol coding, modulation

Key Concepts

- · Networks are comprised of links, switches and hosts
- Networks are used to share distributed resources
 Key problems revolve around effective resource sharing
- Multiplexing lets multiple users share a resource
- Static multiplexing is simple
 - but not efficient unless the workloads are static
- Statistical multiplexing is more complicated
 not guaranteed to work
 - but well-suited to data communications (bursty traffic)
- · Protocol layers are modularity used in networks to handle complexity
- Internet/OSI models are roadmap of what function belongs at what layer