
CSC 458

HTTP + Web

DNS

Stefan Saroiu

http://www.cs.toronto.edu/syslab/courses/csc458

University of Toronto at Mississauga

2

Exercise in Democracy

• Old scheme for project grades:

– 4 projects, 9% each

• New scheme for project grades:

– First 3 projects, 12% each

– 4th project, 0%

• Effectively canceled

3

Last Time …

• The Transport Layer

• Focus
– How does TCP share bandwidth?

• Topics
– AIMD

– Slow Start

– Fast Retransmit / Fast Recovery Physical

Data Link

Network

Transport

Session

Presentation

Application

4

This Lecture

• HTTP and the Web (but not HTML)

• Focus

– How do Web transfers work?

• Topics

– HTTP, HTTP1.1

– Performance Improvements

• Protocol Latency

• Caching
Physical

Data Link

Network

Transport

Session

Presentation

Application

5

Web Protocol Stacks

• To view the URL http://server/page.html the client makes a TCP

connection to port 80 of the server, by it’s IP address, sends the

HTTP request, receives the HTML for page.html as the response,

repeats the process for inline images, and displays it.

Ethernet

IP

TCP

HTTP

apache

Ethernet

IP

TCP

HTTP

Netscape request

response

OS

kernel

user

space

serverclient

6

HTTP Request/Response

7

Simple HTTP 1.0

• HTTP is a tiny, text-based language

• The GET method requests an object

• There are HTTP headers, like “Content-Length:”, etc.

• Try “telnet server 80” then “GET index.html HTTP/1.0”
– Other methods: POST, HEAD,… google for details

GET index.html

GET ad.gif

GET logo.gif

8

HTTP Request/Response in Action

• Problem is that:

– Web pages are made up of many
files

• Most are very small (< 10k)

– files are mapped to connections

• For each file

– Setup/Teardown

• Time-Wait table bloat

– 2RTT “first byte” latency

– Slow Start+ AIMD Congestion
Avoidance

• The goals of HTTP and TCP

protocols are not aligned.

– Implications

9

TCP Behavior for Short Connections

Over Slow Networks

RTT=70ms

10

It’s the RTT

RTT=1ms

No slow start here (ULTRIX LAN)

11

HTTP1.1: Persistent Connections

• Bright Idea: Use one TCP connection for multiple page downloads

(or just HTTP methods)

• Q: What are the advantages?

• Q: What are the disadvantages?

– Application layer multiplexing

GET index.html GET ad.gif …

12

HTTP/1.1

13

Effect of Persistent HTTP

Image size=2544

Image size=45566

14

Caching

• It is faster and cheaper to get data that is closer to here
than closer to there.

• “There” is the origin server. 2-5 RTT

• “Here” can be:

– Local browser cache (file system) (1-10ms)

– Client-side proxy (institutional proxy) (10-50)

– Content-distribution network (CDN -- “cloud” proxies) (50-100)

– Server-side proxy (reverse proxy @ origin server) (2-5RTT)

15

Browser Caches

• Bigger win: avoid repeated transfers of the same page

• Check local browser cache to see if we have the page

• GET with If-Modified-Since makes sure it’s up-to-date

• Q: What are the advantages and disadvantages?

Cache

“Changed?”

“Here it is.” or “Same.”

16

Consistency and Caching Directives

• Key issue is knowing when cached data is fresh/stale
– Otherwise many connections or the risk of staleness

• Browsers typically use heuristics
– To reduce server connections and hence realize benefits

– Check freshness once a “session” with GET If-Modified-Since
and then assume it’s fresh the rest of the time

– Possible to have inconsistent data.

• Caching directives provide hints
– Expires: header is basically a time-to-live

– Also indicate whether page is cacheable or not

17

Proxy

Cache

Proxy Caches

• Insert further levels of caching for greater gain

• Share proxy caches between many users (not shown)

– If I haven’t downloaded it recently, maybe you have

• Your browser has built-in support for this

Cache

“Changed?”

“Here it is.”

or “Same.”

“Changed?”

“Here it is.”

or “Same.”

18

Proxy Cache Effectiveness

?

?

19

Hit Rate Follows Request Rate

20

Sharing, Not Locality, Drives

Effectiveness

21

The Trends

• HTTP Objects are getting bigger

• But Less important

22

Next Steps?

• Different types of content (streaming media, XML)

• Content Delivery Networks (caching alternative)

• Security (for all those purchases)

23

Key Concepts

• HTTP and the Web is just a shim on top of TCP

– Sufficient and enabled rapid adoption

– Many “scalability” and performance issues now important

24

This Lecture

• Naming

• Focus

– How do we name hosts etc.?

• Topics

– Domain Name System (DNS)

– Email/URLs Physical

Data Link

Network

Transport

Session

Presentation

Application

25

Names and Addresses

• Names are identifiers for objects/services (high level)

• Addresses are locators for objects/services (low level)

• Binding is the process of associating a name with an address

• Resolution is the process of looking up an address given a name

• But, addresses are really lower-level names; many levels used

Stefan Saroiu

2040D South Building

UTM

51¢

name

address

26

Naming in Systems

• Ubiquitous

– Files in filesystem, processes in OS, pages on the web, …

• Decouple identifier for object/service from location

– Hostnames provide a level of indirection for IP addresses

• Naming greatly impacts system capabilities and performance

– Ethernet addresses are a flat 48 bits

• flat ! any address anywhere but large forwarding tables

– IP addresses are hierarchical 32/128 bits

• hierarchy ! smaller routing tables but constrained locations

27

Internet Hostnames

• Hostnames are human-readable identifiers for end-

systems based on an administrative hierarchy

– cleo.slup.cs.toronto.edu is my desktop machine

• IP addresses are a fixed-length binary encoding for end-
systems based on their position in the network

– 192.12.174.140 is cleo’s IP address

• Original name resolution: HOSTS.TXT

• Current name resolution: Domain Name System

• Future name resolution: ?

28

Original Hostname System

• When the Internet was really young …

• Flat namespace

– Simple (host, address) pairs

• Centralized management

– Updates via a single master file called HOSTS.TXT

– Manually coordinated by the Network Information Center (NIC)

• Resolution process

– Look up hostname in the HOSTS.TXT file

29

Scaling Problems

• Coordination

– Between all users to avoid conflicts

• Inconsistencies

– Between update and distribution of new version

• Reliability

– Single point of failure

• Performance

– Competition for centralized resources

30

Domain Name System (DNS)

• Designed by Mockapetris and Dunlap in the mid 80s

• Namespace is hierarchical

– Allows much better scaling of data structures

– e.g., cleo.slup.cs.toronto.edu

• Namespace is distributed

– Decentralized administration and access

– e.g., *.toronto.edu managed by CSC

• Resolution is by query/response

– With replicated servers for redundancy

– With heavy use of caching for performance

31

DNS Hierarchy

edu

lcs

mit

auorgmilcom

ai

• “dot” is the root of the hierarchy

• Top levels now controlled by ICANN

• Lower level control is delegated

• Usage governed by conventions

• FQDN = Fully Qualified Domain Name

…

32

DNS Distribution

• Data managed by zones that contain resource records

– Zone is a complete description of a portion of the namespace

– e.g., all hosts and addresses for machines in toronto.edu with pointers to
subdomains like cs.toronto.edu

• One or more nameservers manage each zone

– Zone transfers performed between nameservers for consistency

– Multiple nameservers provide redundancy

• Client resolvers query nameservers for specified records

– Multiple messages may be exchanged per DNS lookup to navigate the name
hierarchy (coming soon)

33

DNS Lookups/Resolution

• DNS queries/responses carried

on UDP port 53

Root
name
server

Princeton

name
server

CS

name
server

Local

name
server

Client

1
cicada.cs.princeton.edu

192.12.69.60
8

cicada.cs.prin
ceton.edu

prin
ceton.edu, 1

28.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

34

Hierarchy of Nameservers

Root

name server

Princeton

name server

Cisco

name server

CS

name server

EE

name server

…

…

35

Caching

• Servers and clients cache results of DNS lookups

– Cache partial results too (e.g., server for princeton.edu)

– Greatly improves system performance; lookups the rare case

• Cache using time-to-live (TTL) value from provider

– higher TTL means less traffic, lower TTL means less stale info

• Negative caching is used too!

– errors can cause repeated queries for non-existent data

36

DNS Bootstrapping

• Need to know IP addresses of root servers before we

can make any queries

• Addresses for 13 root servers ([a-m].root-servers.net)
handled via initial configuration (named.ca file)

37

Building on the DNS

• Other naming designs leverage the DNS

• Email:

– e.g., stefan@cs.toronto.edu is stefan in the domain

cs.toronto.edu

• Uniform Resource Locators (URLs) name for Web pages

– e.g., www.cs.toronto.edu/~stefan

– Use domain name to identify a Web server

– Use “/” separated string to name path to page (like files)

38

Future Evolution of the DNS

• Design constrains us in two major ways that are

increasingly less appropriate

• Static host to IP mapping

– What about mobility (Mobile IP) and dynamic address

assignment (DHCP)

• Location-insensitive queries

– What if I don’t care what server a Web page comes from, as

long as it’s the right page?

– e.g., a yahoo page might be replicated

39

Akamai

• Use the DNS to effect selection of a nearby Web cache

• Leverage separation of static/dynamic content

• Beware DNS caching

Nearby

Cache

Server

DNS servers

for akamai.com

client

1

2
3

456

40

Key Concepts

• The design of names, addresses and resolution has a

significant impact on system capabilities

• Hierarchy, decentralization and caching allow the DNS
to scale

– These are general techniques!

