
CSC2231 | Clifton Forlines, Justin Ho and Koji Yatani | October 31
st

 2007

CSC2231 PROGRESS REPORT 1
This report will give a brief description of the system we have designed using a system architecture diagram showing the various

components and how they interact. Rationales behind design choices are presented and a preliminary UI solution to the distributed

two-phase commit algorithm is presented. Milestones are included for the next six weeks.

THE PROPOSED SYSTEM
Shopping requires frequent visits to too many locations. In this project, we propose a system to allow friends in an online social

network to share “to do” lists so that they can coordinate their efforts in the real world. This system will tie the social network’s

master “to do” list to location based services so that group members know when they are in a position to help out a neighbor in the

network. In this architecture, a distributed locking algorithm is unreliable and slow. Instead, a novel user interface will be

developed so that users can participate in a distributed, two-phase commit system; the awareness of the status of other collocated

users facilitates the coordination among them to complete tasks on the shared to-do list without duplication of effort.

SYSTEM ARCHITECTURE OVERVIEW
There are three major components in our proposed system: Cellphones, Beacons and the Social Network Server. Figure 1 shows an

overview of the components of our system. Cellphones and Beacons are connected over Bluetooth, and Beacons and Social Network

Server communicate with each other through the Internet. The arrows represent the flow of messages. For the details of how

message passing in our system works, please see the USER SCENARIO section.

Cellphone

Bluetooth Beacon

Social Network
Service Server

Web Browser

Web Browser Web Browser

Web Browser

Bluetooth Beacon

Bluetooth Beacon

Cellphone

Cellphone

Cellphone

Cellphone

FIGURE 1 - SYSTEM OVERVIEW

CSC2231 | Clifton Forlines, Justin Ho and Koji Yatani | October 31
st

 2007

USER SCENARIO
We present a simple user scenario to see how our proposed system works. In this scenario, Mary wants a Starbucks Latté and John is

going to a Starbucks store soon.

Cellphone

Bluetooth Beacon

Social Network Service Server
Web Browser

(1) Post a request

(8) Send a notification

(2) Discover Bluetooth Beacon and
notify Beacon of user’s presence
(6) Send an agreement to fulfill
the request
(7) Send a message after request
is fulfilled

(3) Send phone information
(6,7) Route a message from
a phone

(4) Send the list of
appropriate requests

(5) Send an appropriate request

FIGURE 2 - SYSTEM ARCHITECTURE

1. Mary logs into the Social Network Server website and enters a request for a Starbucks Latté (Figure 2(1)).

2. John, one of Mary’s friends, walks into a Starbucks, and his Bluetooth-enabled phone registers his presence with the

Bluetooth beacon that is present at that location (Figure 2(2)).

3. This beacon passes John’s phone ID, along with its own location information to the social network server (Figure 2(3)),

which replies with a list of open requests that are applicable to that beacon’s location and Mary’s friendship (Figure 2(4)).

4. The beacon examines the list of requests, and finds that John’s phone is appropriate to notify about Mary’s request. The

beacon contacts John’s phone and tells him about this drink that Mary wants (Figure 2(5)).

5. John decides to purchase the drink for Mary and confirms this through the cell phone’s UI. A message is send to the Social

Network Server via the beacon and Mary’s request is locked so that no other people will buy Mary a Starbucks Latte (Figure

2(6)).

6. John approaches the counter, orders, pays and receives the drink.

7. John then taps the appropriate button on his phone to confirm with the system that he has the drink in his possession. The

beacon is notified, which informs the Social Network Server, which updates the status of the drink order (Figure 2(7)). Mary

is notified accordingly (Figure 2(8)).

8. John brings the drink to Mary and the necessary payment is given.

CSC2231 | Clifton Forlines, Justin Ho and Koji Yatani | October 31
st

 2007

DESIGN RATIONALES: PROBLEMS AND SOLUTIONS
We foresee some problems during the development of our proposed system. Some have been addressed or mitigated, while others

remain open and unresolved.

PROBLEM: PHONES MAY WANDER IN AND OUT OF A VENUE AND THE BEACON IS THE ONLY RELIABLE PIECE OF THE ARCHITECTURE

AT THE VENUE.
Solution: The beacon must continuously ping the phones, and ensure they are still in range. If a phone leaves, the beacon is

the only “reliable” device in the venue that can successfully unlock the request on the SNS. Agreed-to requests can be

restarted by the beacon if a phone returns into range and the request has not been fulfilled. Users who agree to requests,

leave, and then return to venues must be notified if their task has been fulfilled by another.

PROBLEM: BEACONS ARE LIKELY SITTING ON PUBLIC NETWORK CONNECTIONS AND ARE UNABLE TO ACCEPT INBOUND

CONNECTIONS FROM THE SNS.
Solution: The beacon logic must initiate all communications to the SNS and keep the entire system state consistent. The

beacons must be aware of all active phones in the area, and any active requests that have been broadcasted to the phones.

The system will use HTTP GET/POST requests with high timeout to simulate the “push” functionality. As soon as new

requests are posted to the SNS, the GET requests will be filled by the webserver, and the beacons will be instantly aware of

updated requests.

PROBLEM: USERS MAY NOT WANT TO PARTICIPATE, OR NEED TO TURN OFF REQUESTS AS NECESSARY. BLUETOOTH IS BAD FOR

BATTERY LIFE.
Solution: Phones are proactively and constantly looking for beacons, and actively seek requests to fulfill. This ensures that

the user is in complete control and can opt-out if necessary. If a user does not wish to participate in this exercise, the

particular functionality can be easily controlled by the end user. This ensures the user will not be bombarded with

requests. Additionally, the SNS can limit the number of requests sent to a single user in a specified period (e.g. one per day).

PROBLEM: PEOPLE MAY COMMIT TO BUY A DRINK AND THEN DECIDE NOT TO OR MAY DECIDE TO PURCHASE DRINKS ONLY IF NO

ONE ELSE IS AROUND. SIMPLE 2-PHASE COMMIT IS NOT ENOUGH SINCE WE CAN’T CONTACT PHONES SEQUENTIALLY – WE’D BE

MISSING OUT ON TOO MANY OPPORTUNITIES. SOME USERS MAY REQUIRE ADDITIONAL CONTEXT INFORMATION TO MAKE

PURCHASING DECISIONS.
Solution: We are developing a status UI that will allow 2 or more users to “negotiate” who will purchase the drink. By

looking at the display, any notified user will see what the “other” users are doing; is someone else more likely to buy the

drink? See the “UI Sketches” section below.

PROBLEM: COMMUNICATION BETWEEN BEACON AND SOCIAL NETWORK SERVER MAY BE UNRELIABLE.
Potential solution: Caching and merging logic may be necessary on the beacon. Regardless, system should ensure a state of

correctness in the face of network troubles.

PROBLEM: USERS WHO REQUEST PURCHASES MAY NOT CHECK SOCIAL NETWORK WEBSITE CONSTANTLY.
Potential solution: Server may notify users directly via email if there are status updates for their requests.

CSC2231 | Clifton Forlines, Justin Ho and Koji Yatani | October 31
st

 2007

WHAT’S BEEN BUILT
 Detailed system architecture has been documented, along with Java interface classes set up on CVS

 Obtained development cell phones and installed Java-based SDK for cell phone development (S60 based Nokia N93

and N95 phones)

 Written simple “Hello World” Bluetooth Discovery application for cell phone

 Written simple “Hello World” Forms-based UI for cell phone

 Set up Social Network Server HTTP server with backend mySQL

SCHEDULE FOR COMPLETION OF REMAINING COMPONENTS OF PROTOTYPE
2

nd
 week, November (4

th
 ~ 10

th
)

 Building the user registration system and the friend list system in Social Network Server

 Implementing Bluetooth service on the Beacon and Bluetooth discovery on the cell phone

 Implement cell phone UI in Java for request accept/decline/confirm

3
rd

 week, November (11
th

 ~ 17
th

)

 Building the request posting system in Social Network Server

 Enabling Social Network Server and Beacon to communicate with each other via HTTP

 Enabling Beacon and cell phone to communicate via Bluetooth once service is discovered

4
th

 week, November (18
th

 ~ 24
th

)

 Implementing minor functions (like notification via email) in Social Network Server

 Refining the algorithm for picking up appropriate requests

5
th

 week, November (25
th

 ~ 1
st

 December)

 Debugging the system in Social Network Server

 Writing the second progress report

1
st

 week, December (2
nd

 ~ 8
th

)

 Testing the whole system

2
nd

 week, December (9
th

 ~ 15
th

)

 Taking a demonstration video

 Finishing the final report

 Preparing the presentation

CSC2231 | Clifton Forlines, Justin Ho and Koji Yatani | October 31
st

 2007

UI SKETCHES
The cell phone UI is very minimal so that interactions with the system are lightweight. There are two states in which the cell phone

polls the user for an answer, when a request is first made and when a confirmation is sought by the beacon. While a user is fulfilling

a request, a status screen shows the details of the request as well as information about friends in the same location.

REQUEST SCREEN CONFIRMATION SCREEN STATUS SCREEN

