CSC2231: Progress Report #2

Lee Chew (992234970) & Maryam Fazel-Zarandi (994849296)

INTRODUCTION

We propose to modify the Google Calendar interface to allow people to publish different views of their calendar to different social networks. This interface will leverage an existing social attestation scheme which can establish and verify the relationship between any two people. The modifications should be integrated as seamlessly as possible, so as to provide a familiar and unified interface with a very low learning curve.

The impetus behind our project is that people have different types of relationships, and these relationships generally place constraints on which events should be visible. For example, a person may want the entries in the calendar between 9-5 on work days to be viewable only by his/her co-workers. Or a person might only want members of the Department of Computer Science to view events pertaining to a lecture series. There currently does not exist an easy to accomplish this in Google Calendar.

The challenge is that we have no control over Google Calendar, and thus any solution must fit naturally in the webpage's design and layout, and must work within the confines the Google API. In addition, since Google Calendar lacks a mechanism for identifying the relationship between two people, our solution must also be transparent to the webpage and the Google API.

BACKGROUND/RELATED WORK

Many existing websites such as Google Calendar and Flickr have a notion of access control lists (ACL's), where different groups can access different resources. Unfortunately, the groups are limited to public vs. private or friends vs. non-friends. There is no concept of different social relationships, and attempts to emulate it often require excessive effort (i.e. manually listing members). For example, the current Google Calendar only allows whole calendars to be shared. Thus a person would have to create a different calendar for every combination of their social network, and manually list who can see each calendar. For example, a person would have to create a calendar for friends and list all friends, one for co-workers with a list of coworkers, one for classmates with a list of classmates, one for friends and co-workers with a list of co-workers who are also friends, one for classmates and friends and a list of classmates who are also friends, etc. Our system seeks to solve this deficiency by providing an easy way to implement ACL's based on social relationships for Google Calendar.

A systems graduate student Kiran Gollu has been working on a social attestation system (SAS), and we will be integrating his work into our system. The system allows people to issue tokens called attestations that specify relationships. For example, Alice (the issuer) could issue an attestation to Bob (the recipient)that states Bob is her friend. The attestations are signed with the issuer's private key to prevent forgery, and encrypted with a shared key to preserve confidentiality. Our Google Calendar interface is an application of the SAS.

There are other applications which build on top of the SAS. One modifies BitTorrent (a popular peer-to-peer file transfer protocol) to mark content as being shareable based on relationships (i.e. only family members can download my photos). Another one is a firewall where connections are allowed based on relationships (i.e. only coworkers can connect to my work computer). Our interface, while a completely separate application of SAS, is in a sense complementary to these other applications because it showcases how existing applications can be modified to take advantage of a person's social network. All SAS applications can make use of the same attestations, so that an issuer only has to issue an attestation once, and the recipient can present it to any SAS application to prove his/her relationship with the issuer.

There is a browser plugin for Flickr, which allows the path to pictures to be encrypted. For example, Alice could encrypt the path of her birthday party pictures with a “friend” key. Now, only Alice's friends, who have the “friend” key, can decrypt the path and fetch the pictures. Other people will simply see image placeholders. This method differs from ours in that there is no central authority, and that it leaks information because viewers know of the existence of photos, without knowing their contents. While this is acceptable for pictures, it is not for calendar events. Due to limitations of Google Calendar, it is not possible to encrypt the times of events. Thus, using this Flickr approach would mean that viewers could know of the existence of events and when they occur (the contents of the events remain protected).

DESIGN

Our system consists of three parts:a client-side application for publishers called PubClient, a client-side application for viewers called ViewClient, and server called ServiceServer. PubClient allows the publisher to specify which groups can view each event (i.e. friends can view the movie night event next Friday). PubClient transmits this information to SerivceServer, who then places it in a database.

The viewer first uses ViewClient to upload attestations to ServiceServer, who then verifies the attestation before entering it into a database. In our version, we decided to simplify the design by having the attestations encrypted using the public key of the ServiceServer instead of a shared key – this choice does not impact the confidentiality guarantees of the original scheme since no one but the ServiceServer should have the ServiceServer's private key, and thus no one but the ServiceServer should be able to decrypt the attestation. The viewer also gives ViewClient his/her public and private key information, which will be used for verification purposes later on. Afterwards, the viewer issues a calendar request (i.e. I want to see Alice's calendar) to ViewClient. ViewClient takes the request, and appends the viewers' public key, a message and the message encrypted with the viewer's private key, and sends it to ServiceServer. ServiceServer will decrypt the encrypted message using the supplied public key, and checks whether it matches the plaintext message. If it doesn't, ServiceServer returns an error page. If it does, ServiceServer looks up the attestations issued by the target user to the viewer in the database, and then looks up the target user's events in the database, and calculates the subset of events that the viewer is allowed to see. ServiceServer then returns these events to the user in the form of a webpage.

EVALUATION

PubClient is implemented as a GreaseMonkey script and serves two purposes. The first one is to modify the Google Calendar page when appropriate by inserting a “Who” textbox to allow the user to specify which groups can see a particular event. This is accomplished by registering appropriate event listeners and then modifying the DOM. The second purpose is to transmit the text in the textbox to the ServiceServer. This was accomplished by registering an appropriate event handler and using Javascript to send an asynchronous XML-HTTP request with the text encoded in the URL. The asynchronous nature of the request means that there may a slight delay after the rest of the event information is displayed before the “Who” information appears (since it needs to fetched from the ServiceServer). Informal tests show that the delay is minimal. The use of GreaseMonkey scripts was to accomplish the previously stated goal of making the modifications as seamless as possible.

ViewClient is implemented as a Firefox plugin (which contains a combination of XUL and Javascript) – Firefox was chosen since it has an easily and freely extensible interface, and a browser plugin was chosen since it provided a fairly seamless interface for the viewer. The plugin provides a textbox for specifying the GMail address of the target user (i.e. the person who's calendar the viewer wishes to see), as well as options for specifying the public and private key, and uploading an attestation to ServiceServer. All communication with the ServiceServer is done through asynchronous XML-HTTP requests, with information to the server being encoded in the URL, and any replies being contained in the response of the request.

SerivceServer is implemented as a local web server running Apache 2.2 with PHP 5 as the scripting language. Encryption and decryption are performed using a PHP-OpenSSL module. The database is implemented using MySQL and stores the following data:

 * Publisher's GMail account address and public key

 * Viewer attestations

 * Events created by the publisher to be viewed by viewers from different social relationships

Thus, the database is composed of three tables with the following schema, where fully underlined words represent primary keys:

 * Publishers(gmail_account, public_key)

 * Events(event_eID, gmail_account, social_network)

 * Attestations(attest_ID, issuer_key, recv_key, relation)

In order to populate the attestations table, after verifying the signature of an uploaded attestation, the server will extract the needed information and delete the attestation file.

For using the service, publishers must go to www.LM.com and subscribe to the service by providing their GMail account address and public key. In order for the service to access a publisher's calendars, the publisher would also have to add our service's GMail account (for example, LMGCal@gmail.com) as an owner of the calendars s/he wants to be viewed by others under our service.

We are done the parts of the system that deal with the publisher. We have implemented, or have a detailed plan of how to implement, the parts of the system that deal with the viewer. Thus, we still need to construct a few remaining viewer components, integrate viewer components with each other and then with the rest of the system, and conduct testing.

At this point, we do not anticipate any major difficulties, and so with high probability we can say that our design is sound. Certainly, the confines of Google Calendar's webpage design and Google API provided numerous difficulties, as we had originally surmised it would. In particular, extracting the event identifier required some non-trivial reverse-engineering of the webpage, and translating that into an identifier that the Google API understood required a fair amount of investigation (the documentation was non-existent in this area).

CONCLUSION

We haven't completed the project, and so cannot conclude anything yet.

