
An Online Social Network-based Recommendation System

Jorge Aranda, Inmar Givoni, Jeremy Handcock, Danny Tarlow

Department of Computer Science
University of Toronto

10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4

Abstract

We present a social network-based recom-
mendation system that uses data from user
profiles and user-to-user connections. We
adapted our implementation to use data from
the BoardGameGeek (BGG) website. The
end result system will be usable by members
of BGG to get recommendations given both
their ratings history and their friend relation-
ships.

At this stage, we have gathered all of the
needed data from the BGG website, and we
have started to run the algorithm for our rec-
ommendation service. The remaining steps
are to run experiments to determine suitable
parameter settings for the algorithm, and cre-
ate a web-based application.

1 INTRODUCTION

With the rise of the web-based economy in the past 10
years, internet retailers have begun to find it practical
to use algorithmic approaches to decide on content to
show users. If a retailer can show a user more relevant
content, then the user will be more likely to buy or oth-
erwise use the service. Perhaps the most widespread
and successful class of these algorithmic solutions are
recommendation systems.

Recommendation systems on the web were first popu-
larized by Amazon.com, which would show users per-
sonalized recommendations of items that the system
thought they would like based on the items that they
had bought or rated in the past (Linden, et. al. 2003).
Since then, the practice has spread widely, as com-
puting power becomes cheaper and as the algorithms
become more widespread.

As research progresses on building faster and bet-
ter recommendation systems, a fundamental limitation

begins to appear, which is that there is only so much
information contained in a user’s rating history. Re-
gardless of the algorithm, it will be impossible to pass
certain baselines without incorporating additional in-
formation about the items and the users involved in
the system. One direction that has received attention
in the last couple years is to do ”content-based” col-
laborative filtering, which treats items as objects with
many attributes, some of which are shared across items
(Garden and Dudek, 2006). The goal of the system is
to figure out which attributes about items a user likes,
and to figure out which attributes an item has (usually
by asking users to provide this information as well).

An approach that has received less attention is to use
structure on the users as an additional source of infor-
mation. This is the problem we want to address. One
reason why this approach has received less attention
is likely because the data is harder to come by. In tra-
ditional recommendation systems, data can be made
public without too much worry about privacy, but as
descriptions of users become more complex, the risk
of privacy breaches rises. Thus, the companies that
do have access to both user histories and relationships
between users are unlikely to share their data.

The problem is difficult because good data sets are
hard to come by and because traditional algorithms
assume that users are independent. In order to make
use of the additional information that is available, we
must develop a new algorithm that uses this informa-
tion in a way that improves results, and in a way that
that can be implemented efficiently. Our project ad-
dresses exactly these two problems.

We describe the sociological and machine learning
foundations of the approach, and demonstrate it in
the domain of recommendations for users of an OSN
for boardgaming. Finally, we discuss the privacy issues
that arise from the use of our algorithm.



2 BACKGROUND

Recommendations in social networks

There are findings in the sociological and psychologi-
cal disciplines that point to the relevance of a person’s
social network in determining their tastes, preferences,
and activities. The principle of homophily, for in-
stance, is well established in the Social Networks field.
McPherson et al. reported how “similarity breeds con-
nection”. They discovered that “people’s personal net-
works are homogeneous with regard to many sociode-
mographic, behavioral, and intrapersonal characteris-
tics”. In other words, we share many attributes with
the people close to us. Reversing this principle sug-
gests that, if we have information about the connec-
tions in a person’s network, we can infer some of the
person’s attributes.

It is possible that at least some of the similarities
within a network are caused by the influence and in-
teractions of the people in the network. People tend
to remember information that was concretely given to
them (that is, in personal interactions) better than
abstract information (like statistical base rates). For
example, Hogarth states that when considering to buy
a certain car model we will likely give more thought
to the direct advice of a friend than to each of the 100
respondents to a survey in a specialized magazine.

More specifically, Leskovec et al. discuss the phe-
nomenon of information cascades, in which individuals
adopt a new action or idea due to influence by oth-
ers. In the most extreme cases, knowledge about a full
network’s behaviour determines the behaviour of its
members –making a “top hits” list available in a mu-
sic downloading website affects the popularity of the
songs, and several different networks, kept in isolation
of each other, prefer completely different songs, to the
point that it is impossible to predict which will be the
most popular songs for a network without observing
the behaviour of the users in the network.

Our domain: BoardGameGeek

BoardGameGeek (BGG) is the most popular commu-
nity for people that play board and cardgames. It
hosts a database of more than thirty thousand games,
along with their corresponding reviews, photos, rules
clarifications, ratings, player aids, and other user-
generated content. Over forty thousand registered
users have rated games in this website, and many of
them have recorded some of their personal information
in their profiles and made explicit their friendship links
(‘GeekBuddies’, in BGG parlance) with other users.
The relative openness of the BGG database (the web-
site provides an XML API that gives access to some of
its data), as well as its moderate size made it an appro-

priate choice to try our social-based recommendations
algorithm.

3 DATA COLLECTION

We intended to obtain our data directly from the BGG
system administrators. We e-mailed them twice, but
received no response from them. Therefore, we decided
to write a set of crawlers to gather the data.

At this point, we have finished collecting the data from
the BGG website. We crawled for the following data:

• Games that any user has rated (about 30K)

• Users that have rated any games (about 40K)

• Ratings given by all users to any games

• Games in all users’ wishlists, as well as the weight
given to wishlist items by each user

• Links between users (“GeekBuddies”)

To get the user information and ratings we used an
API provided by the BGG website. However, getting
game and GeekBuddy data was more problematic, as
it was only available to logged-in users. To overcome
this our crawler had to “trick” the website, passing as
a logged-in user. We sent requests to the BGG website
every 2 seconds; a complete pass to crawl the data we
need takes slightly more than 3 days if run sequentially.

We saved the collected data in a database, and wrote
scripts to generate flat text files with sparse represen-
tations of information to be used by the machine learn-
ing algorithm.

4 ALGORITHM

We have chosen to implement a modified version of
probabilistic matrix factorization (PMF [Minh 07]).
Different variants of this approach are very popular
among Netflix competitors [Netflix.com]. The algo-
rithm takes as input the M×N rating matrix R, where
Rij is the rating user i gave to game j. The basic idea
behind PMF is to find a low-rank decomposition of
R by approximating it as a product of two low-rank
matrices:

R ≈ UG (1)

Where U ∈ RM×D, G ∈ RD×N , and D is intentionally
kept small (D ≪ M, N). An intuitive explanation for
this kind of approach is as follows. We imagine there
exist only a small number of prototypical users in the



world. Each one is associated with her particular pro-
file of game ratings. An example of such prototypical
user is an ardent war-games lover, another might be
a person who most enjoys word-based games. These
profiles are stacked one on top of the other to create
our G matrix. It is clear then , that D represents the
number of prototypical users we believe to exist, and is
a model parameter that needs to be tuned. It is impor-
tant it is kept small to avoid data overfitting1. Now,
each real user is explained as some weighted combina-
tion of this small set of profiles. By mixing the profiles
we can ’span’ the space of all real users. Each user is
associated with D numbers that tell us how to mix the
prototypical profiles together in order to generate that
user’s ratings profile. These length D vectors stacked
on top of each other give us the U matrix. The task of
the algorithm is to determines the set of prototypical
profiles and the linear combination coefficients associ-
ated with each user, or in other words, find U and G

that when multiplied together come as close as possi-
ble to the original matrix R. There are many matrix
factorization approaches that seek a low-rank approx-
imation (i.e. FA and PCA [Jolliffe, 86]). PMF is par-
ticulary suited for very sparse input matrices since it
minimizes the squared error (

∑
i,j Rij − UT

i Gj)
2 only

over the non-zero R entries. In such a model, once we
determine U and G, we can easily find out what rat-
ings the model predicts users will give to games they
have not ranked (the empty entries of the original R).
Then we can choose the games with the highest pre-
dicted ratings and recommend them to the users.

In order to incorporate the social network information
into the model we introduce the M × M friendship
matrix F . Fi,j = 1 if user i listed user j as a geek
buddy2 and zero otherwise. We then formulate the
following model of the data:

R ≈ FUG (2)

In other words, each user ‘internal’ ratings profile is
originally that linear combination of the prototypical
users’ profiles. However, he is ‘externally’ affected by
his friends’ profiles as well and they are added onto
his. The friendship matrix simply adds that external
influence. Since the F is known, we can easily find U

and G by solving the problem

F−1R ≈ UG (3)

1Overfitting is a term that refers to learning a model
that can predict its input extremely well but does poorly
on any new data. For PMF, the extent of overfitting is
determined by the control knob over D

2Note that in BGG friendships are directed relationship,
and are not necessarily symmetric

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
x 10

5 Squared Error for baseline algorithm

Iteartion

S
qu

ar
ed

 R
ec

on
st

ru
ct

io
n 

E
rr

or

Figure 1: Decreasing sum of squared error during
learning process

Recommendations can be obtained by calculating
(R̂) = FUG and proceeding, as before, to reccomend
games users have not rated which are predicted to have
high ratings.

We have implemented PMF in java based on a matlab
implementation provided to us by the authors. Addi-
tional algorithmic and implementation details can be
found in appendix 7.

An interesting question in the context of social net-
work information is whether we can implement the
algorithm in a distributed manner so that users do
not have to enclose friendship information. We as-
sume for the sake of argument a setting where one’s
geek buddies are private information. We discuss the
implications of such a requirement in appendix 7.

5 EXPERIMENTAL EVALUATION

The base-line version of the algorithm is complete (not
using friendship information) and we are able to show
it consistently decreases the average squared error.

We will use some of the collected information as a held-
out test set and find out whether we can achieve any
improvement in predicting user ratings compared to
the base-line algorithm. We would like to test dif-
ferent settings of how we construct the entries of the
friendship matrix. For example, it might be more sen-
sible to have 1 on the diagonal entries of F , and some
value between 0 and 1 for friendship information, in-
dicating that friends are not as equally influential as
one’s ‘internal’ preferences.

We have written matlab scripts that randomly gener-
ate splits of the data to use as training and testing
data. The idea is to hold out parts of the data and



evaluate performance on the held out part. We are
currently resolving numerical precision issues related
to calculation of the inverse of the sparse matrix F

matrix, and are meanwhile writing the scripts that will
run the comparisons.

6 APPLICATION

The end result of our project will be a web-based ap-
plication in which users of the BGG website can log in
and get recommendations from our algorithm.

The service will work as follows. We will have a job ex-
ecuting weekly to pull data from BGG, and passing it
on to our recommendation algorithm. The algorithm
will output weight matrices, which will be uploaded
to our server. Whenever a user logs in to our web-
site, the server will perform a matrix multiplication
for that user, and present a set of recommendations
for him. New users will be presented with a list of
board games to rate, so that we can offer them some
initial recommendations.

Ideally, linking this application with the BGG website
would conveniently allow us to use dynamic data, and
would be more convenient for BGG users. We will
continue to attempt to communicate with the system
administrators of the website to establish this link. If
this is not possible, we will announce the application
to the BGG users through the forums of the website.

7 CONCLUSIONS

This is a stub. In this final report, we will discuss our
results and future directions for our application in this
section.

References

R. Hogarth. Judgment and Choice, John Wiley and Sons,
1980.

J. Leskovec, A. Singh, and J. Kleinberg. Patterns of Influ-
ence in a Recommendation Network. Proceedings of the
Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), 2006.

M. McPherson, L. Smith-Lovin, and J.M. Cook. Birds of
a Feather: Homophily in Social Networks. Annual Review
of Sociology, 2001, 27:415-44.

A. Minh, et al. Probabilistic Matrix Factorization Applied
to the Netflix Rating Prediction Problem. To appear in
NIPS 2007.

A. Narayanan and V. Shmatikov. How to
Break Anonymity of the Netflix Prize Dataset.
arXiv:cs/0610105v2 [cs.CR]

Netflix forum. http://www.netflixprize.com/community/
viewtopic.php?id=778

Board Game Geek. http://www.boardgamegeek.com/

IT Jolliffe. Principal Component Analysis. Springer-
Verlag, New York NY, 1986.

R. Crammer et al.. Secure Distributed Linear Algebra in a
Constant Number of Rounds. Lecture Notes in Computer
Science, 2001.

M. Garden and G. Dudek. Mixed Collaborative and
Content-Based Filtering with User-Contributed Semantic
Features, AAAI, 2006.

G. Linden, B. Smith, J. York. Amazon.com Recommenda-
tions: Item-to-item Collaborative Filtering. IEEE Internet
Computing Industry Report, 2003.

APPENDIX A: PMF

Stub - more information about the algorithm.

APPENDIX B: Secure Recommendations

Here we discuss the possibility of building a distributed
version of our recommendation system that does not re-
quire users to disclose their friendship relationships to the
server or to any other user. There are several operations
that need to be described in a privacy conserving manner
(ranging in

For a new user,with some ratings and no friends, securely
getting recommendation based on the learned model is
fairly straight-forward since his expected ratings do not
involve friendship information, and thus the problem es-
sentially reduces to distributed recommendation under the
standard PMF model. The user obtains the G matrix,
which does not reveal any social information3, from the
server. He then needs to solve a least square optimization
problem

min
x

(G̃T
x − r̃)2 (4)

where x is the desired recomendation vector for the user,
G̃ is a submatrix of G composed only of these columns for
which the user has provided ratings, and r̃ is a vector of
the users’s existing ratings. The user can easily compute
the solution by calculating locally x = (G̃G̃

T )−1(G̃)T (r̃)

The next scenario is a new user with some ratings and some
friends (who appeared in the original R matrix). Again,
the user needs to solve a least squares problem, but this
time he needs to know his friends information as well. In
this case we also send the U matrix and he can retrieve the
necessary rows of U without disclosing who his friends are
and proceed.

The most difficult problem lies in the training phase of the
algorithm. i.e. calculating

F
−1

≈ UG (5)

without knowing F, or its inverse. We assume each user
maintains a secret vector of his friends, (there must be

3Although there are statistical de-anonimization meth-
ods which could perhaps shed some light on the F matrix
based on U and G



some ordering on the users, that can be the users id which
are not secret). It is a vector of length (num users) with
ones at position i,i (user himself) and positions i,j for every
friend of the user.

There are two issues that must be resolved. The first is
calculating F

−1 while conserving privacy. The second issue
is that if the user simply sends us his respective F

−1
R, we

can find the solution for F
−1.

1. Calculating F
−1:

It appears there exist secure multi-party calculating
(SMPC) protocols for linear algebraic operations. Such
protocols usually treat the case where each participant has
only one entry in the matrix. They allow calculating quan-
tities such as the matrix determinant [Crammer 2001]. It
might be possible to create a protocol for determining the
matrix minors securely and calculating the inverse There
also might be more straightforward ways of doing so. There
remains to verify that knowing a whole vector, rather than
a single entry does not reveal too much information.

2. Exposing F
−1

R to the server (so that over all the server
has the full F

−1
R) without compromising F .

In general if we know aR = x, and R. finding a is again
a least square approximation. Assuming an underdeter-
mined system there is an infinite number of solutions, but
ones that are binary might be easy to check. The user
might resort in this case, to removing some of the friend-
ship entries when performing F

−1
R in order to increase

the level of ambiguity so that there are many possible so-
lutions with zero one entries. Although we lose some of the
social leverage, we maintain privacy. The user the evalu-
ate the ambiguity level (number of different solutions such
that not all of them reveal a particular friend) for different
removals of friends (since there are few friends, he can in
theory evaluate all (n choose k) options and choose what
to return.

In this setting we assume the server provider is the actual
adversary, and to ensure the users the solution is valid we
need to verify we cannot use the over all information to
glean the friendship information the directionality of the
friend’s information come in handy in this case. If we knew
symmetry hold that would have made the task easier. This
is still work in progress.


