
HomeViews
Geambasu et al., 2007

Presented by Jeremy Handcock



Motivation

• We have a lot of personal digital data

• Existing solutions for organizing and sharing  
aren’t ideal



Typical Scenario



Existing Solutions: 
Sharing

• One must manually upload content to 
centralized repository

• Centralized repositories typically require 
registration for new users

• Inevitably you end up with multiple copies

• Dynamic data isn’t supported



Existing Solutions: 
Organizing

• Desktop search tools

• Create abstract data views or smart folders

• Requires metadata for non-textual objects



Existing Solutions: 
Organizing



Idea!

• Decentralize data using P2P

• Share data using location-independent 
abstract views

• Provide lightweight access control

• Put it all in a middleware framework



HomeViews

Local File System

Local Query 
Engine

Query Executor

Capability Validation

Distributed 
Query Engine

Query Parser

Application

View
Query

Peers



Query Processing

Query Executor

Query

Local?

Run Local Query Contact Peer to Run 
Query

Yes No



Query Processing

Local Query Engine

Query

Local File System

Beagle
Spotlight

...
{



Capabilities

• Associated with a view

• Self-authenticating unit of permission

• Capabilities unforgeable with high 
probability

• Used in global naming and routing



Capabilities

global view ID password IP hint

... ... ...

Hash of 
node’s MAC

Locally-unique
view ID

+
128-bit random 

password



Capabilities

• Capability provides location information

• IP hint hopefully points to node where 
capability is defined

• When IP Hint fails, use a DHT (Chord) to 
locate the content



Capabilities

• Capability could be represented as a simple 
“token”

• Distributing capabilities is annoying, but 
relatively easy

• Revocation is easy



Capabilities

• Is this an appropriate model for sharing 
personal digital data?

• Do capabilities provide sufficient security?



Queries

• Extension of SQL

• Fundamental difference: relations replaced 
with capabilities

• Define a capability by creating a view

• Base capability provides access to all files



Queries: Views

CREATE VIEW MyFiles2007 AS
SELECT * FROM BaseCapability
WHERE createDate > ‘2007-01-01’
AND createDate < ‘2008-01-01’

New capability: Jeremy2007



Queries: Restrictions

RESTRICT Jeremy2007
RIGHTS SELECT

New capability: Jeremy2007_RO



Queries: Selections

SELECT * FROM Jeremy2007_RO
WHERE fileType = ‘image’



Queries: Complex 
Views

CREATE VIEW MyFriendMovies2007 AS

SELECT * FROM Jeremy2007_RO
WHERE fileType = ‘movie’
UNION
SELECT * FROM Rob2007_RO
WHERE fileType = ‘movie’

New capability: FriendMovies2007



Evaluation: Applications

• Simple read-only filesystem

• Photo gallery



Evaluation: Applications



Evaluation: Numbers

 0

 200

 400

 600

 800

 1000

Size 2 10 100 500 2 10 100 500 2 10 100500 

E
v
a

lu
a

ti
o

n
 t

im
e

 (
m

s
)

Local LAN Broadband

Beagle query time
Communication

Capability validation
Other

Figure 7: Query execution-time breakdown for simple
queries on local and remote views and for different result
sizes. The local query processing time (Beagle query
time) forms the bulk of total query execution even for
remote views.

were 3.2GHz Pentium-4s with 2GB of memory. From our
measurements, we believe that the hardware differences in
our environment had no significant impact on our results.

For our tests, we synthetically generated a file database of
38,000 music files. We chose music files because their ID3 tag
attributes enable rich queries that are supported by Beagle.
We controlled the query result size by appropriately setting
the ID3 tags of different files. For example, to experiment
with a query of size 100, we created 100 files with the album
tag “Album100” and a view that selected them.

We examine both simple and complex queries. Simple
queries are one level deep; that is, they involve a single view,
itself defined directly over a base view. Complex queries
involve views whose definitions include multiple other views
composed in various ways.

5.1 Evaluation of Simple Queries
Simple queries allow us to identify and reason about the

impact of different components of our system on total query
execution times. To evaluate simple queries, we measure the
time to execute such queries both from the local machine and
remotely. Remote queries use a capability on one machine
to access a view defined on another. We experiment with a
100 Mbps local-area network (LAN) and a slower 5 Mbps,
20 ms-delay network (characteristic of home-like broadband
connections). Our queries return file names, i.e., we evalu-
ate queries of the form SELECT filename FROM cap . In our
experiments, we also vary the query result size.

Figure 7 breaks down query execution time into compo-
nents for simple queries on local and remote views. Each
value is the average over 50 trials. For local and LAN config-
urations, most of the query execution time is due to Beagle.
Capability validation time and other HomeViews overhead
(query parsing, view definition lookup in local catalog, and
caching of local query results) are negligible, although the
HomeViews overhead increases slowly with result size.

As the result size increases, the network transmission time
becomes noticeable over slow connections. Table 3 shows
query execution times for larger-size query results. Query
execution is fast for medium-size results, both for local and
remote views (under two seconds for 1000 filenames). Trans-
mission delays increase evaluation time on slow networks

Result size Time (ms)
(# filenames) Beagle Local eval LAN Broadband

1000 1297 1341 1349 1779
3000 3897 4009 4025 5876
5000 6465 6641 6661 11876

Table 3: Local and remote evaluation of simple queries
with large-size results. Times are averages of 50 tri-
als. As the result size increases, result transmission over
broadband becomes the bottleneck.

Result size Time (ms)
Spotlight Local eval LAN Broadband

1000 332 376 384 814
3000 473 585 601 2452
5000 546 722 742 5957

Table 4: Expected query execution times if Spotlight
were used instead of Beagle. Local, LAN, and broad-
band evaluation times are computed from Table 3 by
replacing Beagle query time with Spotlight query time.
In the simple-query benchmarks, requests are serial
and the query engine time does not overlap with other
HomeViews components, which makes this a good ap-
proximation of HomeViews based on Spotlight.

when the result size is large. However, techniques such as
streaming the results can be employed to reduce the user-
perceived response latency.

Since Beagle represents a major component of query exe-
cution time, we ran some basic tests to compare it to Spot-
light (available on Mac OS X). We used out-of-the-box com-
mands to access each tool: beagle-query for Beagle and
mdfind for Spotlight. We used attribute-based queries in
both cases. While Spotlight has similar performance to Bea-
gle for queries with small results (up to 100 files), it scales
much better for large result sizes (e.g., for results contain-
ing 5,000 filenames mdfind is about 12 times faster than
beagle-query).

Table 4 shows the expected local and remote HomeViews
query execution time if we replaced Beagle with Spotlight.
After the substitution, total query execution times remain
below 6 seconds even for 5,000-filename results evaluated
over broadband. Even with a fast local query engine such as
Spotlight, the other HomeViews components (query parsing,
capability validation, etc.) remain below 25% of the total
local query execution time.

Thus, both local and remote query execution is fast for
small result sizes. For large result sizes, query execution
times are dominated by the query engine for LANs or net-
work latency for broadbands. However, with a fast query
engine such as Spotlight, even queries with many results
over broadband can achieve good performance.

5.2 Evaluation of Complex Queries
In our system, views can be composed and distributed

seamlessly. We now analyze the performance of more com-
plex queries. Views can be composed and distributed in two
ways: (1) either by applying a selection on top of another
(remote) view (in which case the depth of the view is said
to grow), or (2) by applying union, set difference, or inter-
section on top of other (remote) views (in which case the
breadth may also grow). Figure 8 gives an intuition of the
two dimensions in which views expand in our system. To
create a view of a given depth, we initially define a view on

Result Size



Evaluation: Numbers

 0

 5

 10

 15

 20

 25

 30

10 50 100 500 1000

C
o
m

p
le

te
d
 r

e
q
u
e
s
ts

/s
e
c

Result size

Throughput

Figure 10: HomeViews throughput for different query
result sizes.

scale environment of hundreds of friends who share photos,
blogs, videos, or other media over broadband, we do not
expect that queries on each node will have high frequency.
HomeViews (possibly based on Spotlight) should thus easily
support the expected workload, even on popular nodes.

5.4 Discussion
Our microbenchmarks show the parameters that charac-

terize our system’s performance and enable us to derive the
scalability of the system in real deployments. Our results
demonstrate that our prototype is sufficiently fast to be
practical in medium-scale environments. For local queries
with large-size results, Beagle dominates query execution
times. Using a faster local query engine, such as Spotlight,
could significantly improve performance and scalability. At
the same time, the query engine would still account for the
majority of the execution time. For queries executed re-
motely over slow networks, transmission latency adds signif-
icantly to the time. On fast networks, the depth and breadth
of views have little influence on recursive query evaluation
times. On slow networks, a simple rewrite of views in terms
of base views yields good query execution performance even
when result sizes are large.

Caching is known to increase a system’s performance,
availability, and scalability. In HomeViews, applications can
cache results from queries according to their own freshness
policy to avoid running queries at small time intervals. Also,
file contents can be cached; this allows the system to reduce
network traffic by transferring only new files or updates to
existing files. An in-depth study of the effects of caching
and replication on system performance is beyond the scope
of our current study.

6. RELATED WORK
In recent years, tools such as WinFS [28], Mac OS X Spot-

light [38], and Google Desktop [14] have emerged, enabling
users to create database-style views over their data. Per-
sonal Information Management systems (e.g., [7, 25]) have
begun to explore new techniques for organizing and search-
ing personal information. In particular, the Haystack [25]
project enables users to define “view prescriptions” that de-
termine the objects and relationships that an application
displays on the screen. Our work builds on the same idea
of using views to organize personal data, but our goal is to
facilitate the sharing and composition of these views in a
P2P environment.

Peer-to-peer systems have become popular for sharing dig-
ital information [3, 26]. The main goal of these systems is

for all participants to share all their public data with all
others. These systems thus focus on powerful and efficient
search and retrieval techniques (e.g., [18, 21, 30]). In con-
trast, HomeViews focuses on selective sharing of different
data items with different users. HomeViews is also geared
toward a medium-scale system rather than the millions of
users common in peer-to-peer file-sharing systems.

Operating systems and databases enable access control
(and thus selective sharing) by providing mechanisms that
associate privileges with users [12, 16, 19, 22, 33].

Significant work focuses on the flexibility, correctness,
and efficiency of these mechanisms (e.g., [35, 36]), mak-
ing them well-suited for many application domains. From
the perspective of sharing personal information, however,
these techniques suffer from the same administrative bur-
den: someone must create and manage user accounts.
HomeViews avoids this overhead by decoupling access rights
from user identities. Federated digital identities [8, 20,
31] have been proposed to allow registered users of an ad-
ministrative domain to access resources from another ad-
ministrative domain without requiring registration with the
later. Federated identities assume a contract or prior coor-
dination between the participating administrative domains.
HomeViews has no such requirement.

Another selective sharing technique is to encrypt data
with multiple keys and distribute different keys to different
users [29]. This approach is suitable only for static data sets
that can be encrypted once and published. More dynamic
sharing is possible [4] if users run secure operating environ-
ments. HomeViews enables dynamic sharing without this
restriction.

The capability protection model has been previously ap-
plied to operating systems [40, 42], languages [24], and archi-
tectures [17, 32]. Our sparse capabilities are related to pre-
vious password capability systems [5, 34, 40]. HomeViews
integrates concepts and mechanisms from capability systems
into database views in a distributed peer-to-peer system.

7. CONCLUSION
This paper described HomeViews, a new peer-to-

peer middleware system that simplifies the construction
of distributed, personal-information-sharing applications.
HomeViews facilitates ad hoc, peer-to-peer sharing of data
between unmanaged home computers. Key to HomeViews is
the integration of a dynamic view-based query system with
capability-based protection in a peer-to-peer environment.
With HomeViews, applications can easily create views, com-
pose views, and seamlessly integrate local and remote views.
Sharing and protection are accomplished without central-
ized management, global accounts, user authentication, or
coordination of any kind.

We prototyped HomeViews in a Linux environment us-
ing the Beagle search engine for keyword queries. Our im-
plementation and design show that capabilities are readily
supported by a query language such as SQL, which enables
integrated view definition and sharing. We implemented
two applications on top of HomeViews, a simple file-sharing
application and a port of the Gallery photo-sharing appli-
cation. Our experience with Gallery in particular shows
the ease of supporting protected peer data sharing on top
of HomeViews. Finally, our measurements demonstrate the
negligible cost of our protection mechanism and the practi-
cality of our approach for medium-scale environments.



Applicability to OSNs

• Middleware platform for OSN applications 
to share data between users: ie. 
PeerSpective, Facebook

• Capability management could be hidden



Applicability to OSNs

• Danger: lack of explicit sharing action and 
dynamic data



Conclusions

• P2P not always appropriate model for 
sharing personal digital data

• Complex views offer opportunities for 
poor performance

• We still don’t have an ideal solution


