
Total Recall: System Support for Automated Availability Management

Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego

Abstract
Availability is a storage system property that is both
highly desired and yet minimally engineered. While
many systems provide mechanisms to improve availabil-
ity – such as redundancy and failure recovery – how to
best configure these mechanisms is typically left to the
system manager. Unfortunately, few individuals have
the skills to properly manage the trade-offs involved, let
alone the time to adapt these decisions to changing con-
ditions. Instead, most systems are configured statically
and with only a cursory understanding of how the config-
uration will impact overall performance or availability.
While this issue can be problematic even for individual
storage arrays, it becomes increasingly important as sys-
tems are distributed – and absolutely critical for the wide-
area peer-to-peer storage infrastructures being explored.

This paper describes the motivation, architecture and
implementation for a new peer-to-peer storage system,
called TotalRecall, that automates the task of availability
management. In particular, the TotalRecall system auto-
matically measures and estimates the availability of its
constituent host components, predicts their future avail-
ability based on past behavior, calculates the appropriate
redundancy mechanisms and repair policies, and delivers
user-specified availability while maximizing efficiency.

1 Introduction
Availability is a storage system property that is highly de-
sired in principle, yet poorly understood in practice. How
much availability is necessary, over what period of time
and at what granularity? How likely are failures now and
in the future and how much redundancy is needed to tol-
erate them? When should repair actions be initiated and
how should they be implemented? These are all ques-
tions that govern the availability of a storage system, but
they are rarely analyzed in depth or used to influence the
dynamic behavior of a system.

Instead, system designers typically implement a static
set of redundancy and repair mechanisms simply param-
eterized by resource consumption (e.g., number of repli-
cas). Determining how to configure the mechanisms and
what level of availability they will provide if employed is
left for the user to discover. Moreover, if the underlying
environment changes, it is again left to the user to re-

configure the system to compensate appropriately. While
this approach may be acceptable when failures are con-
sistently rare, such as for the individual drives in a disk
array (and even here the management burden may be ob-
jectionable [23]), it quickly breaks down in large-scale
distributed systems where hosts are transiently inaccessi-
ble and individual failures are common.

Peer-to-peer systems are particularly fragile in this re-
spect as their constituent parts are in a continual state of
flux. Over short time scales (1-3 days), individual hosts
in such systems exhibit highly transient availability as
their users join and leave the system at will – frequently
following a rough diurnal pattern. In fact, the majority of
hosts in existing peer-to-peer systems are inaccessible at
any given time, although most are available over longer
time scales [4, 19]. Over still longer periods, many of
these hosts leave the system permanently, as most peer-
to-peer systems experience high levels of churn in their
overall membership. In such systems, we contend that
availability management must be provided by the system
itself, which can monitor the availability of the underly-
ing host population and adaptively determine the appro-
priate resources and mechanisms required to provide a
specified level of availability.

This paper describes the architecture, design and im-
plementation of a new peer-to-peer storage system, called
TotalRecall, that automatically manages availability in a
dynamically changing environment. By adapting the de-
gree of redundancy and frequency of repair to the distri-
bution of failures, TotalRecall guarantees user-specified
levels of availability while minimizing the overhead
needed to provide these guarantees. We rely on three key
approaches in providing these services:

� Availability Prediction. The system continuously
monitors the current availability of its constituent
hosts. This measured data is used to construct pre-
dictions, at multiple time-scales, about the future
availability of individual hosts and groups of hosts.

� Redundancy Management. Short time-scale predic-
tions are then used to derive precise redundancy re-
quirements for tolerating transient disconnectivity.
The system selects the most efficient redundancy
mechanism based on workload behavior and system
policy directives.

� Dynamic Repair. Long time-scale predictions cou-
pled with information about current availability
drive system repair actions. The repair policy is dy-
namically selected as a function of these predictions,
target availability and system workload.

TotalRecall is implemented in C++ using a modified
version of the DHash peer-to-peer object location ser-
vice [8]. The system implements a variety of redun-
dancy mechanisms (including replication and online cod-
ing), availability predictors and repair policies. However,
more significantly, the system provides interfaces that al-
low new mechanisms and policies to describe their be-
havior in a unified manner – so the system can decide
how and when to best use them.

The remainder of this paper describes the motivation,
architecture and design of the TotalRecall system. The
following section motivates the problem of availability
management and describes key related work. In Section 3
we discuss our availability architecture – the mechanisms
and policies used to ensure that user availability require-
ments are met. Sections 4 describes the design of the
TotalRecall Storage System and its implementation. Sec-
tion 5 describes the TotalRecall File System, a NFS file
service implemented on the core storage system. In Sec-
tion 6, we quantitatively evaluate the effectiveness of our
system and compare it against existing approaches. Fi-
nally, Section 7 concludes.

2 Motivation and Related Work
The implicit guarantee provided by all storage systems
is that data, once stored, may be recalled at some future
point. Providing this guarantee has been the subject of
countless research efforts over the last twenty years, and
has produced a wide range of technologies ranging from
RAID to robotic tape robots. However, while the effi-
ciency of these techniques has improved over time and
while the cost of storage itself has dropped dramatically,
the complexity of managing this storage and its availabil-
ity has continued to increase. In fact, a recent survey
analysis of cluster-based services suggests that the op-
erational cost of preparing for and recovering from fail-
ures easily dominates the capital expense of the individ-
ual hardware systems [17]. This disparity will only con-
tinue to increase as hardware costs are able to reflect ad-
vances in technology and manufacturing while manage-
ment costs only change with increases in human produc-
tivity. To address this problem, the management burden
required to ensure availability must be shifted from indi-
vidual system administrators to the systems themselves.
We are by no means the first to make this observation.

A major source of our inspiration is early work in-
vested by HP into their AutoRAID storage array [23].

The AutoRAID system provided two implementations of
storage redundancy – mirroring and RAID5 – and dy-
namically assigned data between them to optimize the
performance of the current workload. While this sys-
tem did not directly provide users with explicit con-
trol over availability it did significantly reduce the
management burden associated with configuring these
high-availability storage devices. A later HP project,
AFRAID, did allow user-specified availability in a disk
array environment, mapping availability requests into
variable consistency management operations [20].

In the enterprise context, several researchers have re-
cently proposed systems to automate storage manage-
ment tasks. Keeton and Wilkes have described a sys-
tem designed to automate data protection decisions that is
similar in motivation to our own, but they focus on longer
time scales since the expected failure distribution in the
enterprise is far less extreme than in the peer-to-peer en-
vironment [10]. The WiND system is being designed to
automate many storage management tasks in a cluster en-
vironment, but is largely focused on improving system
performance [2]. Finally, the PASIS project is exploring
system support to automatically make trade-offs between
different redundancy mechanisms when building a dis-
tributed file system [24].

Not surprisingly, perhaps the closest work to our own
arises from the peer-to-peer (P2P) systems community.
Due to the administrative heterogeneity and poor host
availability found in the P2P environment, almost all
P2P systems provide some mechanism for ensuring data
availability in the presence of failures. For example, the
CFS system relies on a static replication factor coupled
with an active repair policy, as does Microsoft’s FAR-
SITE system (although FARSITE calculates the replica-
tion factor as a function of total storage and and is more
careful about replica placement) [1,8,9]. The Oceanstore
system uses a combination of block-level erasure cod-
ing for long term durability and simple replication to tol-
erate transient failures [12, 22]. Finally, a recent paper
by Blake and Rodrigues argues that the cost of dynamic
membership makes cooperative storage infeasible in the
transiently available peer-to-peer environments [5]. This
finding is correct under certain assumptions, but is not
critical in the environments we have measured and the
system we have developed.

What primarily distinguishes TotalRecall from previ-
ous work is that we allow the user to specify a specific
availability target and then automatically determine the
best mechanisms and policies to meet that request. In this
way, TotalRecall makes availability a first-class storage
property – one that can be managed directly and without
a need to understand the complexities of the underlying
system infrastructure.

3 Availability Architecture
There are three fundamental parameters that govern the
availability of any system: the times at which compo-
nents fail or become unavailable, the amount of redun-
dancy employed to tolerate these outages and the time to
detect and repair a failure.

The first of these is usually considered an independent
parameter of the system, governed primarily by the en-
vironment and external forces not under programmatic
control.1 The remaining variables are dependent – they
can be controlled, or at least strongly influenced, by the
system itself. Therefore, providing a given level of avail-
ability requires predicting the likelihood of component
failures and determining how much redundancy and what
kind of repair policies will compensate appropriately.

The remainder of this section discusses the importance
of these issues in turn, how they can be analyzed and how
they influence system design choices. The following sec-
tion then describes our concrete design and implementa-
tion of this overall architecture.

3.1 Availability Prediction
At the heart of any predictive approach to availability is
the assumption that past behavior can be used to create
a stochastic model of future outcomes. For example,
“mean-time-to-failure” (MTTF) specifications for disk
drives are derived from established failure data for simi-
lar components over a given lifetime. This kind of predic-
tion can be quite accurate when applied to a large group
of fail-stop components. Consequently, the future avail-
ability of single homogeneous disk arrays can be stati-
cally analyzed at configuration time.

However, in a distributed storage system – particularly
one with heterogeneous resources and administration –
this prediction can be considerably more complex. First,
since the hosts composing such systems are rarely identi-
cal, the availability distribution cannot be analytically de-
termined a priori – it must be measured empirically. Sec-
ond, unlike disks, individual hosts in a distributed system
are rarely fail-stop. Instead, hosts may be transiently un-
available due to network outages, planned maintenance
or other local conditions. Consequently, such hosts may
become unavailable and then return to service without
any data loss. Finally, as such systems evolve, the num-
ber of hosts populating the system may grow or shrink –
ultimately changing the availability distribution as well.

Nowhere is this issue more pronounced than in the
public peer-to-peer environment. In such systems, the
availability of an individual host is governed not only
by failures, but more importantly by user decisions to
disconnect from the network. Several recent studies of

1This is not always true, since processes that impact human error or
opportunities for correlated failures can have an impact. However, we
consider these issues outside the scope of this paper.

peer-to-peer activity have confirmed that individual hosts
come and go at an incredible rate. In one such study of
hosts in the Overnet system, we have observed that each
host joined and left the system over 6 times per day on
average [4]. In a similar study of Kazaa and Gnutella,
Saroiu et al. found that the median session duration
of a peer-to-peer system was only 60 minutes [19]. In
addition to the transient availability found in these sys-
tems, public peer-to-peer populations exhibit a high rate
of long-term churn as well. The previously-mentioned
Overnet study found that approximately 20 percent of
active hosts permanently departed from the system each
day and roughly the same number of new hosts joined as
well.

Consequently, in the peer-to-peer context, storage sys-
tems face two prediction requirements. First, the system
must empirically measure the short-term availability dis-
tribution of its host population on an ongoing basis. We
use this to model the probability of transient disconnec-
tions – those typically having no impact on the durability
of data stored on disconnected hosts. From this distribu-
tion we estimate the current likelihood that a set of hosts
will be available at any given time and subsequently de-
termine the proper amount of redundancy needed. Our
second prediction requirement focuses on non-transient
failures that take stored data out of the system for indefi-
nite periods. Since hosts are leaving the system continu-
ously, redundancy is insufficient to ensure long-term stor-
age availability. Instead the system must predict when
hosts have “permanently” left the system (at least for long
enough a period that they were no longer useful in the
short term) and initiate a repair process.

3.2 Redundancy Management
In a peer-to-peer environment, each host may only be
transiently available. When connected, the data stored on
a host contributes to the overall degree of redundancy and
increases the data’s availability; when disconnected, both
the degree of redundancy and data availability decreases.
With sufficient redundancy across many hosts, at any mo-
ment enough hosts will be in the system to make a given
data item available with high probability. However, it is
not trivially clear how much redundancy is necessary for
a given level of availability or what redundancy mecha-
nism is most appropriate for a given context. We discuss
both issues below.

There are a wide range of mechanisms available for
producing redundant representations of data. However,
each mechanism has unique trade-offs. For example, the
simplest form of redundancy is pure replication. It has
low run-time overhead (a copy) and permits efficient ran-
dom access to sub-blocks of an object. However, replica-
tion can be highly inefficient in low-availability environ-
ments since many storage replicas are required to tolerate

potential transient failures. At the other extreme, opti-
mal erasure codes are extremely efficient. For a constant
factor increase in storage cost, an erasure-coded object
can be recovered at any time using a subset of its con-
stituent blocks. However, the price for this efficiency is
a quadratic coding time and a requirement that reads and
writes require an operation on the entire object. By com-
parison, “non-optimal” erasure codes sacrifice some ef-
ficiency for significantly reduced on-line complexity for
large files. Finally, it is easy to conceive of hybrid strate-
gies as well. For example, a large log file written in an
append-only fashion, might manage the head of the log
using replication to provide good performance and even-
tually migrate old entries into an erasure coded represen-
tation for provide higher efficiency.

However, for all of these representations another ques-
tion remains: how much redundancy is required to de-
liver a specified level of availability. More precisely:
given an known distribution for short-term host availabil-
ity and a target requirement for instantaneous data avail-
ability, how should these mechanisms be parameterized?
Below we provide analytic approximations to these ques-
tions for pure replication and pure erasure coding. In
both cases, our approach assumes that host failures are
independent over short time scales. In previous work,
we have provided a detailed explanation of our stochastic
analysis and its assumptions [3], as well as experimental
evidence to support our independence assumption [16].
Consequently, the TotalRecall system is not designed to
survive catastrophic attacks or widespread network fail-
ures, but rather the availability dynamics resulting from
localized outages, software crashes, disk failures and user
dynamics.

Replication. Given a target level of availability
�

(where
�

represents the probability a file can be accessed
at any time) and a mean host availability of ��� , we can
calculate the number of required replicas, � , directly.�����
	���
	 � ����� (1)

Solving for c, � ������� ����	�� ������ ��
	 ��� � (2)

Consequently, if mean host availability is 0.5, then it
requires 10 complete copies of each file to guarantee a
target availability of 0.999.

Some systems may choose to perform replication for
individual blocks, rather than the whole file, as this al-
lows large files to be split and balanced across hosts.
However, this is rarely an efficient solution in a low-
availability environment since every block (and hence at
least one host holding each block) must be available for
the file to be available. To wit, if a file is divided into �

blocks, each of which has � copies, then the availability
of that file is given by:������
	���
	 ��� � � ��� (3)

Consequently, a given level of availability will require
geometrically more storage (as a function of �) in the
block-level replication context.

Erasure coding. Given the number of blocks in a file� , and the stretch factor � specifying the erasure code’s
redundancy (and storage overhead) we can calculate the
delivered availability as:��� � � ! " � # �$�%�& ���

! ���
	 ��� �(' � ��) !�* (4)

If �+� is moderately large, we can use the normal ap-
proximation to the binomial distribution to rewrite this
equation and solve for � as:

� �-,.�/10 243 '657) 243 *� 8 0 97:;243 '657) 243 *� 8=< ���> ��� ?@
A

(5)

More details on this equation’s derivation can be found
in [3]. For the same 0.999 level of availability used in
the example above, an erasure-coded representation only
requires a storage overhead of 2.49.

3.3 Dynamic Repair
However, the previous analyses only consider short-term
availability – the probability that at a given instant there
is sufficient redundancy to mask transient disconnections
and failures. Over longer periods, hosts permanently
leave the system and therefore the degree of redundancy
afforded to an object will strictly decrease over time –
ultimately jeopardizing the object’s availability. In re-
sponse, the system must “repair” this lost redundancy by
continuously writing additional redundant data onto new
hosts.

The two key parameters in repairing file data are the
degree of redundancy used to tolerate availability tran-
sients and how quickly the system reacts to host depar-
tures. In general, the more redundancy used to store file
data, the longer the system can delay before reacting to
host departures.

Below we describe a spectrum of repair policies de-
fined in terms of two extremes: eager and lazy. Eager
repair uses a smaller degree of redundancy to maintain
file availability guarantees by reacting to host departures
immediately, but at the cost of additional communication
overhead. In contrast, lazy repair uses additional redun-
dancy, and therefore additional storage overhead, to delay
repair and thereby reduce communication overhead.

3.3.1 Eager Repair

Many current research peer-to-peer storage systems
maintain data redundancy pro-actively as hosts depart
from the system. For example, the DHash layer of CFS
replicates each block on five separate hosts [8]. When
DHash detects that one of these hosts has left the system,
it immediately repairs the diminished redundancy by cre-
ating a new replica on another host.

We call this approach to maintaining redundancy eager
repair because the system immediately repairs the loss of
redundant data when a host fails. Using this policy, data
only becomes unavailable when hosts fail more quickly
than they can be detected and repaired.

The primary advantage of eager repair is its simplicity.
Every time a host departs, the system only needs to place
redundant data on another host in reaction. Moreover, de-
tecting host failure can be implemented in a completely
distributed fashion since it isn’t necessary to coordinate
information about which hosts have failed. However, the
eager policy makes no distinction between permanent de-
partures that require repair and transient disconnections
that do not. Consequently, in public peer-to-peer en-
vironments, many repair actions may be redundant and
wasteful. In Section 6 we show via simulation that this
overhead is very high for contemporary peer-to-peer host
populations.

3.3.2 Lazy Repair

An alternative to eager repair is to defer immediate repair
and use additional redundancy to mask and tolerate host
departures for an extended period.2 We call this approach
lazy repair since the explicit goal is to delay repair work
for as long as possible. The key advantage of lazy repair
is that, by delaying action, it can eliminate the overhead
of redundant repairs and only introduce new redundant
blocks when availability is threatened.

However, lazy repair also has disadvantages. In partic-
ular, it must explicitly track the availability of individual
hosts and what data they carry. This is necessary to de-
termine when an object’s availability is threatened and a
repair should be initiated. Consequently, the system must
maintain explicit metadata about which hosts hold what
data. By contrast, eager implementations can make use
of the implicit mappings available through mechanisms
like consistent hashing [8]. For small objects, this can
significantly increase the overhead of repair actions.

For lazy repair, the system must incorporate additional
redundancy for files so that it can tolerate host departures
over an extended period. Hence while the analysis in the
previous section gives us the short-term redundancy fac-
tor used to tolerate transient failures, each file needs to

2This is similar, in spirit, to Oceanstore’s refresh actions which are
meant to ensure data durability in the face of disk failures [12].

use a larger long-term redundancy factor to accommo-
date host failures without having to perform frequent file
repairs.

As mentioned in Section 3.1, the system requires an
availability predictor that will estimate when a file needs
to be repaired. A simple predictor for lazy repair peri-
odically checks the total amount of available redundancy
for a given file. If this value falls below the short-term
redundancy factor for the file, then the system triggers a
repair. Thus we also refer to the short-term redundancy
factor as the repair threshold for the file.

Section 6 compares the repair bandwidth required by
each policy using an empirical trace of peer-to-peer host
availability patterns.

3.4 System Policies
The combination of these mechanisms – prediction, re-
dundancy and repair – must ultimately be combined into
a system-wide strategy for guaranteeing file availabil-
ity. Minimally, a system administrator must specify a
file availability target over a particular lifetime. From
these parameters, coupled with an initial estimate of host
availability, an appropriate level of redundancy can be
computed. In addition to repair actions triggered by the
disappearance of individual hosts, the system may occa-
sionally need to trigger new repair actions to compensate
for changes in the overall availability of the entire pop-
ulation. For example, a worm outbreak may reduce the
average host availability system-wide or the expansion
of broadband access may increase the average uptime of
connected hosts.

However, there is significant room for more advanced
policies. For example, there is a clear trade-off between
random access performance and storage efficiency in the
choice of redundancy mechanism. A system policy can
make this trade-off dynamically in response to chang-
ing workloads. For instance, a file might use an erasure
coded base representation, but then replicate frequently
accessed sub-blocks independently. As well, system poli-
cies could easily specify different availability require-
ments for different portions of the file system and even
calculate availability as a function of file dependencies
(e.g., a user may wish to request a given level of avail-
ability for the combination of the mail program and the
mail spool it uses).

4 TotalRecall Storage System
This section describes the design and implementation
of the TotalRecall Storage System. The TotalRecall
Storage System implements the availability architecture
described in Section 3 in a cooperative host environ-
ment. It provides a simple read/write storage interface

Inode
storage hosts
(eager repair)

Data
storage hosts
(lazy repair)

Data storage
hosts

(lazy repair)

Master

Client

Inode
storage hosts
(eager repair)

Data
storage hosts
(lazy repair)

Data storage
hosts

(lazy repair)

Master

Client

Figure 1: TotalRecall system architecture.

for maintaining data objects with specified target avail-
ability guarantees.

4.1 System Overview
Hosts in TotalRecall contribute disk resources to the sys-
tem and cooperatively make stored data persistent and
available. Figure 1 shows an overview of TotalRecall
with participating hosts organized in a ring ID space. To-
talRecall stores and maintains data objects, conveniently
referred to as files. Files are identified using unique IDs.
The system uses these IDs to associate a file with its mas-
ter host, the host responsible for maintaining the persis-
tence, availability, and consistency of the file. Storage
hosts persistently store file data and metadata according
to the repair policy the master uses to maintain file avail-
ability. Client hosts request operations on a file. Clients
can send requests to any host in the system, which routes
all requests on a file to its master. As a cooperative sys-
tem, every TotalRecall host is a master for some files and
storage host for others; hosts can also be clients, although
clients do not need to be TotalRecall hosts.

A TotalRecall server runs on every host in the system.
As shown in Figure 2, the TotalRecall host architecture
has three layers. The TotalRecall Storage Manager han-
dles file requests from clients and maintains file avail-
ability for those files for which it is the master. It uses
the Block Store layer to read and write data blocks on
storage hosts. The Block Store in turn uses an underly-
ing distributed hash table (DHT) to maintain the ID space
and provide scalable lookup and request routing.

4.2 Storage Manager
The TotalRecall Storage Manager (TRSM) implements
the availability architecture described in Section 3. It
has three components, the policy module, the availabil-
ity monitor, and the redundancy engine (see Figure 2).

The TRSM invokes the policy module when clients
create new files or substantially change file characteris-
tics such as size. The policy module determines the most

Recall FS
Recall
Storage
Manager

Availability
Monitor

Redundancy
Engine

Policy
Module

Block Store

DHT

Recall FS
Recall
Storage
Manager

Availability
Monitor

Redundancy
Engine

Policy
Module

Block Store

DHT

Figure 2: TotalRecall host architecture.

efficient strategy for maintaining stored data with a tar-
get availability guarantee. The strategy is a combination
of redundancy mechanism, repair policy, and number of
blocks used to store coded data. It chooses the redun-
dancy mechanism (e.g., erasure coding vs. whole-file
replication) based on workload characteristics such as file
size and the rate, ratio, and access patterns of read and
write requests to file data (Section 3.4). The repair pol-
icy determines how the TRSM maintains data availability
over long-term time scales to minimize repair bandwidth
for a target level of availability (Section 3.3). Although
redundancy and repair are orthogonal, for typical work-
loads TotalRecall uses replication and eager repair for
small files and erasure coding and lazy repair for large
files (Section 6.3.1). Finally, with lazy repair the pol-
icy module also determines the number of blocks to use
with erasure coding to balance file availability and com-
munication overhead; more blocks increases availability
but requires the TRSM to contact more storage hosts to
reconstruct the file [3].

The TRSM dynamically adapts its mechanisms and
policies for efficiently maintaining data according to the
availability of hosts in the system. To do this, the avail-
ability monitor (AM) tracks host availability, maintains
host availability metrics that are used by other compo-
nents, and notifies the redundancy engine when the sys-
tem reaches availability thresholds that trigger repair.
The AM tracks the availability of the storage hosts stor-
ing the metadata and data for those files for which it is
the master. Based upon individual host availability, the
AM maintains two metrics: short-term host availability
and long-term decay rate (Section 3.1). Short-term host
availability measures the minimum average of all tracked
hosts that were available at any given time in the past 24
hours (e.g., 50% of hosts were available at 4am). It is a
conservative prediction of the number of hosts available
over the course of a day. Long-term decay rate measures
the rate at which hosts leave the system over days and
weeks, and is used to predict the frequency of repair. Fi-
nally, the TRSM registers to receive events from the AM
whenever the availability of a set of storage hosts drops

below a specified threshold to trigger repairs.
Whereas the policy module decides what kind of re-

dundancy mechanism to use based upon high-level work-
load characteristics, the redundancy engine (RE) imple-
ments the redundancy mechanisms and determines how
much short-term and long-term redundancy to use for a
file based upon current system conditions. The TRSM
invokes the redundancy engine when writing and repair-
ing files. The RE currently supports simple replication
and erasure coding. For replication, the RE uses Equa-
tion 2 in Section 3.2 to determine the number of replicas
� to create when storing the file. It uses the target avail-
ability

�
associated with the file and the short-term host

availability from the AM as inputs to the equation. For
erasure coding, the RE uses Equation 5 to determine the
short-term redundancy � (also called repair threshold) for
encoding the file. It uses the target availability

�
associ-

ated with the file, the short-term host availability from
the AM, and the number of blocks � determined by the
policy module as inputs to the equation.

4.3 Storage Layout
For every file, the TotalRecall Storage Manager uses in-
odes as metadata to locate file data and maintain file at-
tributes such as target availability, size, version, etc. It
stores inodes for all files using replication and eager re-
pair. The master stores inodes itself and a set of repli-
cas on its successors, much like DHash blocks [8], and
the redundancy engine determines the number of replicas
(Section 4.2). Figure 1 shows an example of storing an
inode for a lazily repaired file. The master updates in-
odes in place, and it serializes all operations on files by
serializing operations on their inodes (e.g., a write does
not succeed until all inode replicas are updated).

The TRSM stores data differently depending upon the
repair policy used to maintain file availability. For files
using eager repair, the TRSM on the master creates a
unique file data ID and uses the DHT to lookup the stor-
age host responsible for this ID. It stores file data on this
storage host and its successors in a manner similar to in-
odes. The inode for eagerly repaired files stores the file
data ID as a pointer to the file data.

For files using lazy repair, the TRSM stores file data on
a randomly selected set of storage hosts (Section 3.3.2).
Figure 1 also shows how the master stores file data for
lazily repaired files. It stores the IDs of the storage hosts
in the file’s inode to explicitly maintain pointers to all
of the storage hosts with the file’s data. It also uses the
redundancy engine to determine the number of storage
hosts to use, placing one block (erasure coding) or replica
(replication) per storage host.

File data is immutable. When a client stores a new
version of a file that is lazy repaired, for example, the
TRSM randomly chooses a new set of storage hosts to

store the data and updates the file’s inode with pointers to
these hosts. The TRSM uses the version number stored
in the inode to differentiate file data across updates. A
garbage collection process periodically reclaims old file
data, and a storage host can always determine whether
its file data is the latest version by looking up the inode
at the master (e.g., when it joins the system again after
being down).

4.4 Storage API
The TotalRecall Storage Manager implements the stor-
age API. The API supports operations for creating, open-
ing, reading, writing, and repairing files, and similar op-
erations for inodes. All request operations on a file are
routed to and handled by the file’s master. Lacking the
space to detail all operations, we highlight the semantics
of a few of them.

Clients use tr create to create new files, specifying
a target availability

�
for the file upon creation. It is es-

sentially a metadata operation that instantiates a new in-
ode to represent the file, and no data is stored until a write
operation happens. tr read returns file data by read-
ing data from storage hosts, decoding erasure-coded data
when appropriate. tr write stores new file data or log-
ically updates existing file data. It first sends the data to
storage hosts and then updates the inode and inode repli-
cas (see Section 4.5). For lazily repaired files, encoding
and distributing blocks for large files can take a consid-
erable amount of time. To make writes more responsive,
the master uses a background process that performs the
encoding and block placement offline. The master ini-
tially eagerly repairs the blocks using simple replication,
and then erasure codes and flushes these blocks out to the
storage hosts.

The TRSM also implements the tr repair opera-
tion for repairing file data, although its execution is usu-
ally only triggered internally by the availability manager.
For eager repair, tr repair repairs data redundancy
immediately when a host storing data departs. For lazy
repair, it only repairs data when the number of hosts stor-
ing file data puts the file data at risk of violating the file’s
target availability. Since this occurs when much of the
file’s data is on hosts that are not available, tr repair
essentially has the semantics of a file read followed by a
write onto a new set of hosts.

4.5 Consistency
Since the system maintains replicas of inodes and inodes
are updated in place, the master must ensure that inode
updates are consistent. In doing so, the system currently
assumes no partitions and that the underlying DHT pro-
vides consistent routing — lookups from different hosts
for the same ID will return the same result.

When writing, the master ensures that all data writes

complete before it updating the inode. The master writes
all redundant data to the storage hosts, but does not start
updating the inode until all the storage hosts have ac-
knowledged their writes. If a storage host does fail during
the write, the master will retry the write on another stor-
age host. Until all data writes complete, all reads will see
the older inode and, hence, the older version of the file.
As the master makes replicas of the inode on its succes-
sors, it only responds that the write has completed after
all successors have acknowledged their writes. Each in-
ode stores a version number assigned by the master or-
dered by write requests to ensure consistent updates to
inode replicas. Once a successor stores an inode replica,
eager repair of the inode ensures that the replica remains
available. If the master fails as it updates inodes, the new
master will synchronize inode versions with its succes-
sors. If the master fails before acknowledging the write,
the host requesting the write will time out and retry the
write to the file. A new master will assume responsibility
for the file, receive the write retry request, and perform
the write request. As a result, once a write completes, i.e.,
the master has acknowledged the write to the requester,
all subsequent reads see the newest version of the file.

4.6 Implementation
We have implemented a prototype of the TotalRecall stor-
age system on Linux in C++. The system consists of over
5,700 semi-colon lines of new code. We have also reused
existing work in building our system. We use the SFS
toolkit [14] for event-driven programming and MIT’s
Chord implementation as the underlying DHT [21]. Files
stored using eager repair use a modified version of the
DHash block store [8].

The prototype implements all components of the To-
talRecall Storage Manager, although some advanced be-
havior remains future work. The prototype policy module
currently chooses the redundancy mechanism and repair
policy solely based on file size: files less than 32 KB use
replication and eager repair, and larger files use erasure
coding and lazy repair. For lazy repair, files are frag-
mented into a minimum of 32 blocks with a maximum
block size of 64 KB. To erasure code lazily repaired files,
the redundancy engine implements Maymounkov’s on-
line codes [13], a sub-optimal linear-time erasure-coding
algorithm. The redundancy engine also uses a default
constant long-term redundancy factor of 4 to maintain
lazy file availability during the repair period.

The availability monitor tracks host availability by pe-
riodically probing storage hosts with an interval of 60
seconds. This approach has been sufficient for our exper-
iments on PlanetLab, but would require a more scalable
approach (such as random subsets [11]) for tracking and
disseminating availability information in large-scale de-
ployments. The TRSM uses the probes to storage hosts

for a file to measure and predict that file’s availability.
Based upon storage host availability, the TRSM calcu-
lates the amount of available redundancy for the file. The
available redundancy for the file is the ratio of the total
number of available data blocks (or replicas) to the to-
tal number of data blocks (replicas) needed to read the
file in its entirety. When this value drops below the re-
pair threshold, the AM triggers a callback to the TRSM,
prompting it to start repairing the file. The prototype by
default uses a repair threshold of 2. With a long-term re-
dundancy factor of 4 for lazy repair, for example, when
half of the original storage hosts are unavailable the AM
triggers a repair.

In building our prototype, we have focused primarily
on the issues key to automated availability management,
and have not made any significant effort to tune the sys-
tem’s runtime performance. Addressing run-time over-
heads, as well as implementing more advanced perfor-
mance and availability tradeoffs in the policy module, re-
mains ongoing work.

5 TotalRecall File System
The TotalRecall Storage System provides a core storage
service on which more sophisticated storage services can
be built, such as backup systems, file-sharing services,
and file systems. We have designed one such service, the
TotalRecall File System (TRFS), an NFSv3-compatible
file system [7]. To provide this service, the TotalRecall
File System extends the Storage Manager with the TRFS
Manager (see Figure 2). The TRFS Manager extends the
storage system with file system functionality, implement-
ing a hierarchical name space, directories, etc. It extends
the TotalRecall Storage Manager with an interface that
roughly parallels the NFS interface, translating file sys-
tem operations (e.g., mkdir) into lower-level TRSM op-
erations.

Clients use a TRFS loopback server to mount and ac-
cess TRFS file systems. The loopback server runs on the
client as a user-level file server process that supports the
NFSv3 interface [14]. It receives redirected NFS opera-
tions from the operating system and translates them into
RPC requests to TotalRecall.

We have implemented TRFS as part of the TotalRecall
prototype, adding 2,000 lines of code to implement the
TRFS Manager and loopback server. It currently sup-
ports all NFSv3 operations except hard links.

6 Experimental Evaluation
In this section, we evaluate TotalRecall using both trace-
driven simulation and empirical measurements of our
prototype implementation. We use simulation to study
the effectiveness of our availability predictions, the be-

Hosts 5500
Files 5500
No. of Blocks 32
Before Encoding
File Sharing 4 MB (50%), 10 MB (30%),
File Sizes 750 MB (20%)
File System 256 B (10%), 2 KB (30%),
File Sizes 4 KB (10%), 16 KB (20%),

128 KB (20%), 1 MB (10%)

Table 1: File workloads used to parameterize simulation.

havior of the system as it maintains file availability, the
tradeoffs among different repair policies, and TotalRe-
call’s use of bandwidth resources to maintain file avail-
ability. And we evaluate the prototype implementation
of the TotalRecall File System on a 32-node deployment
on PlanetLab and report both per-operation microbench-
marks and results from the modified Andrew benchmark.

6.1 Simulation Methodology
Our simulator, derived from the well-known Chord simu-
lation software [21], models a simple version of the Total-
Recall Storage System. In particular, it models the avail-
ability of files across time as well as the bandwidth and
storage used to provide data and metadata redundancy.
The simulator is designed to reveal the demands imposed
by our system architecture and not for precise prediction
in a particular environment. Consequently, we use a sim-
ple model for host storage (infinite capacity) and the net-
work (fixed latency, infinite bandwidth, no congestion).

To drive the simulator we consider two different file
workloads and host availability traces. The two file work-
loads, parameterized in Table 1, consist of a File Sharing
workload biased towards large files [18] and a more tra-
ditional File System workload with smaller files [6]. Sim-
ilarly, we use two corresponding host availability traces.
The File Sharing trace is a scaled down version of a trace
of host availability in the Overnet file sharing system [4],
while the File System availability trace is synthetically
generated using the host availability distribution in [6].
The two availability traces are both one week long and
differ primarily in their dynamics: the File Sharing trace
has an average host uptime of 28.6 hours, compared to
109 hours in the File System trace.

The simulations in this section execute as follows.
Hosts join and leave the system, as dictated by the
availability trace, until the system reaches steady-state
(roughly the same number of joins as leaves). Then files
are inserted into the system according to the file work-
load. Subsequent joins and leaves will cause the system
to trigger repair actions when required. The system re-
pairs inodes eagerly, and data eagerly or lazily depending
on policy (Section 4.6). From the simulation we can then
determine the delivered file availability and bandwidth

11

Figure 3: Empirical file availability calculated for the File
Sharing host availability distribution.

usage: the two primary metrics we evaluate.

6.2 Delivered Availability
It is critical that TotalRecall is able to deliver the level
of availability requested. To verify, we specify a target
availability of 0.99 and from this compute the required
repair threshold. Using Equation 4 with an average host
availability of 0.65, we compute that an erasure coded
file with lazy repair will require a repair threshold of at
least 2 to meet the availability target.

To see how well this prediction holds, we simulate a
series of periodic reads to all 5500 files in the File Shar-
ing workload. Using the associated host availability trace
to drive host failures, we then calculate the average file
availability as the ratio of completed reads to overall re-
quests. Figure 3 shows how this ratio varies with changes
in the repair threshold (this assumes a constant long-term
redundancy factor of 4). From the graph, we see that files
with a repair threshold of 2 easily surpass our 0.99 avail-
ability target. For this trace a lower repair threshold could
also provide the same level of availability, although doing
so would require more frequent file repairs.

To provide better intuition for this dynamic, Figure 4
shows the repair behavior of TotalRecall over time at a
granularity of 60 minutes. We use the File Sharing work-
load parameters in Table 1 to parameterize the system
and the File Sharing host availability trace to model host
churn. The three curves on the graph show the num-
ber of available hosts, the bandwidth consumed by the
system, and the average normalized available file redun-
dancy across all files in each time interval. Available file
redundancy measures the amount of redundant data that
the system has available to it to reconstruct the file. For
each file, we normalize it with respect to the long-term
redundancy factor used for the file, so that we can com-
pute an average over all files.

Looking at the curves over time, we see how TotalRe-
call uses lazy repair to maintain a stable degree of data

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7
 0

 50

 100

 150

 200

 250

 300

 350

 400
N

um
be

r
of

 a
va

il.
 h

os
ts

B
an

dw
id

th
 (

M
B

/s
)

No. of avail. hosts
Bandwidth used

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7
 0

 0.2

 0.4

 0.6

 0.8

 1

N
or

m
. a

vg
. a

va
il.

 fi
le

 r
ed

un
da

nc
y

Time(days)

Figure 4: System behavior on the File Sharing workload.

redundancy as host availability varies substantially over
time. Note that though the total number of hosts avail-
able at any time is roughly between 800 and 1000, new
hosts are constantly joining the system while old hosts
leave, causing substantial amounts of host churn. We
make three observations of the system behavior.

First, we see that system bandwidth varies with host
availability. As hosts leave the system, TotalRecall ea-
gerly repairs inodes and lazily repairs data blocks for
those files whose predicted future availability drops be-
low the lazy repair threshold. Consequently, relative
system bandwidth increases as the number of hosts de-
creases. As hosts join the system, TotalRecall eagerly
repairs inodes but does not need to repair data blocks.
Consequently, relative system bandwidth decreases as the
number of hosts increases.

Second, the normalized average degree of available re-
dundancy reaches and maintains a stable value over time,
even with substantial host churn. This behavior is due to
the design of the lazy repair mechanism. Files stored us-
ing a lazy repair policy experience cyclic behavior over
time. When the system first stores a file using lazy re-
pair, it places all of the redundant data blocks on available
hosts. At this time, the file has maximum available re-
dundancy (since we create all files at time 0, all files have
maximum available redundancy at time 0 in Figure 4).
As hosts leave the system, file blocks become unavail-
able. As hosts join the system again, file blocks become
available again. As a result, available file redundancy
fluctuates over time. But the long-term trend is for blocks
to become unavailable as hosts depart the system for ex-
tended periods of time (possibly permanently). Eventu-
ally, based upon TotalRecall’s prediction of future host
availability and current available file redundancy (Sec-
tion 3.1), enough blocks will become inaccessible that
the system will trigger a lazy repair to ensure continued
file availability. Lazy repair will replace missing redun-
dant blocks and raise available file redundancy back to its

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

F
ra

ct
io

n
of

 h
os

ts

Bandwidth (Kilobytes per second)

Eager
Lazy (red.factor 4)
Lazy (red.factor 6)

Lazy (red.dfactor 8)
Lazy (red.factor 10)

Figure 5: CDF of the bandwidth usage of hosts in Total-
Recall for different repair policies.

maximum, and the cycle continues.
Third, the overall average system repair bandwidth for

the entire time duration is 35.6 MB/s. Dividing by the
number of files, the average repair bandwidth per file
is 6.5 KB/s. While this is not insignificant, we believe
that, given the large file sizes in the File Sharing work-
load (20% 750MB), this figure is reasonably small. Also,
note that using larger long-term redundancy factors has
the effect of reducing the bandwidth usage of the system
(Figure 5). Breaking down bandwidth overhead by use,
overall 0.6% of the bandwidth is used for eager repair of
inodes and 99.4% is used for lazy repair of data blocks

.

6.3 Repair Overhead
A key design principle of TotalRecall is to adapt the use
of its repair policies to the state of the system. These
policies have various tradeoffs among storage overhead,
bandwidth overhead, and performance, and interact with
the distributions of host availability and file sizes as well.
Finally, TotalRecall efficiency hinges on accurate predic-
tion of future failures. We investigate these issues in turn.

6.3.1 Repair Policy

To illustrate the tradeoff between storage and bandwidth,
we simulate the maintenance of the File Sharing work-
load on TotalRecall and measure the bandwidth required
to maintain file availability using the File Sharing host
availability trace to model host churn. (Note that we do
not include the bandwidth required to write the files for
the first time.) We measure the average bandwidth re-
quired by each node to maintain its inode and data blocks
across the entire trace for five different repair policies:
eager repair, and lazy repair with erasure coded data us-
ing four different long-term redundancy factors.

Figure 5 shows the cumulative distribution function of
the average bandwidth consumed by the hosts in the sys-
tem over the trace for the different repair policies. From
the graph, we see that eager repair requires the most

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

F
ra

ct
io

n
of

 h
os

ts

Bandwidth (Kilobytes per second)

Replication
Erasure coding

Figure 6: CDF of the bandwidth usage of hosts compar-
ing replication and erasure coding for lazy repair.

maintenance bandwidth across all hosts, lazy repair with
a long-term redundancy factor of 4 requires the second-
most bandwidth, and larger long-term redundancy factors
require progressively less bandwidth. These results illus-
trate the fundamental tradeoffs between redundancy and
repair bandwidth. Eager repair, which uses convenient
but minimal redundancy, cannot delay repair operations
and requires the most bandwidth. Lazy repair, which uses
more sophisticated redundancy to delay repair, requires
less bandwidth, especially with significant host churn as
in the File Sharing scenario. Lazy repair with lower long-
term redundancy factors require less storage, but more
frequent repair. Higher long-term redundancy factors de-
lay repair, but require more storage.

The shapes of the curves in Figure 5 show how the
bandwidth requirements vary across all of the hosts in
the system for the different repair policies. Eager re-
pair essentially has a uniform distribution of bandwidth
per node across all hosts. This is mainly due to the fact
that hosts are assigned random IDs. Consequently, hosts
leave and join the system at random points in the DHT,
and the load of making replicas of inodes and file blocks
is well distributed among all the hosts in the system.

In contrast, lazy repair essentially has two categories
of hosts. The first is all the hosts that store some file data
blocks. The second are hosts that join and leave the sys-
tem before any file repairs are triggered, do not receive
any file data, and participate only in the eager repair of
inodes. As a result, the bandwidth usage of these hosts
is smaller than those that store data. For larger long-term
redundancy factors such as 8 and 10, file repairs are not
that frequent, and hence there are a significant number of
hosts that fall into the second category. Curves for these
long-term redundancy factors in Figure 5 have a sharp
rise around 30 bytes per second, demonstrating the pres-
ence of an increasing number of such hosts with increas-
ing long-term redundancy factor.

So far we have concentrated on evaluating lazy repair
with erasure coding. We now study how lazy repair with
coding compares with lazy repair with replication. The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

F
ra

ct
io

n
of

 h
os

ts

Bandwidth (Kilobytes per second)

File System Lazy (red.factor 4)
File System Eager

File Sharing Lazy (red.factor 4)
File Sharing Eager

Figure 7: CDF of the bandwidth usage of hosts compar-
ing eager and lazy repair on different workloads.

question that this experiment seeks to answer is that for
the same level of file availability and storage, how does
the bandwidth usage of lazy repair with coding compare
to the bandwidth usage of lazy repair with replication.

To maintain a file availability of 0.99, Equations 3
and 4 estimate that lazy repair with erasure coding has
a repair threshold of 2 and lazy repair with replication
requires 5 replicas. In other words, the system needs to
repair files with erasure coding when the redundancy (de-
gree of coded data) falls below 2, and the system would
have to perform repairs with replication when the avail-
able redundancy (number of replicas) falls below 5. Lazy
repair with replication therefore potentially uses more
bandwidth than lazy repair with erasure coding.

To quantify how much more bandwidth replication
uses, we repeat the bandwidth measurement simulation
experiment but assign a long-term redundancy factor of
10 to each file. For lazy repair with coding, the system
performs a file repair when the file redundancy falls to 2
and, for lazy repair with replication, the system repairs
the file when the redundancy falls to 5. Figure 6 shows
the CDF of bandwidth required per host for these two
cases. From the graph, we see that the system bandwidth
requirements to perform lazy repair with replication are
far higher than that required for lazy repair with erasure
codes. The average bandwidth per host for lazy repair
with erasure coding is 655 Bps, while lazy repair with
replication is 75 KBps. Our conclusion from these ex-
periments is that for large file size distributions, and for
highly dynamic and highly unavailable storage compo-
nents, lazy repair with erasure coding is the more efficient
availability maintenance technique.

6.3.2 Host Availability

To study the affect of different host availability distribu-
tions on bandwidth usage, we compared the bandwidth
consumed for each host for the File Sharing host avail-
ability trace with that of the File System trace.

Figure 7 shows that the File System availability trace
requires less bandwidth and that lazy repair works partic-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10 100 1000 10000 100000 1e+06 1e+07

M
ai

nt
en

an
ce

 d
at

a
tr

an
sf

er
re

d
(K

B
)

File Size (KB)

File Sharing Eager
File Sharing Lazy (sf 4)

File System Eager
File System Lazy (sf 4)

Figure 8: Per-file bandwidth required for repair.

ularly well. Since the availability of hosts is higher for
this trace, the host churn is lower. Moreover, the source
of this trace was collected from a workplace, and as a re-
sult we see a more cyclic pattern of availability for some
hosts. These hosts contribute to eager repair bandwidth
usage since they increase the churn in the system. How-
ever, since they cyclically re-appear in the system, they
do not trigger lazy repair.

6.3.3 File Size

The repair policy for a file depends on file size (Sec-
tion 4.2). To illustrate the tradeoff between eager and
lazy repair on file size, we measure the bandwidth usage
per file in the system with both eager and lazy repair, for
both File Sharing and File System host availability traces,
for various file sizes.

Figure 8 shows the average system bandwidth for
maintaining each file for the entire trace for a range of file
sizes. For each host availability trace, the graph shows
two curves, one where the system maintains files using
eager repair and the other where the system uses lazy
repair. From the graph, we see that, for the File Shar-
ing trace, eager repair requires less bandwidth to main-
tain small files less than approximately 4 KB in size, but
that lazy repair requires less bandwidth for all larger files.
This crossover between eager and lazy is due to the larger
inodes required for lazy repair. For the File System trace
however, we do not see a crossover point. Since the trace
has less churn, fewer repairs are required and less band-
width is consumed for eager repair. Eager repair is better
for smaller file sizes and higher host availability.

To see the effect of using a hybrid repair policy, i.e., us-
ing eager repair for files smaller than 4 KB and lazy for
all others, we simulated the File System workload on To-
talRecall using the File Sharing and the File System host
traces. Figure 9 shows the CDF of average bandwidth
usage per host for pure lazy repair and the hybrid policy,
and for both host availability traces. There is very little
difference in the bandwidth usage between the two curves
for the same host trace. From this we conclude that, for
small files, TotalRecall should use eager repair. While

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10

F
ra

ct
io

n
of

 h
os

ts

Bandwidth (Kilobytes per second)

File Sharing Lazy (red.factor 4)
File Sharing Hybrid

File System Lazy (red.factor 4)
File System Hybrid

Figure 9: CDF of the bandwidth usage per host for lazy
repair and the hybrid policy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000
F

ra
ct

io
n

of
 h

os
ts

Bandwidth (Kilobytes per second)

Perfect
TotalRecall

Figure 10: CDF of the bandwidth usage per host compar-
ing TotalRecall with an optimal system.

bandwidth usage is comparable to that for lazy repair, the
performance will be better since the system avoids the
computational overhead of encoding/decoding these files
and also avoids the communication overhead of distribut-
ing them over many storage hosts.

6.3.4 Prediction

Though we have established that lazy repair with erasure
coding is the most efficient availability maintenance tech-
nique in our system, we would like to see how close To-
talRecall comes to optimal bandwidth usage in the sys-
tem. The question we address is, if there existed an Or-
acle that would repair a file

%������
before it becomes un-

available, how would the system’s bandwidth usage char-
acteristics compare to those of TotalRecall?

To answer this question, we compare TotalRecall’s
bandwidth consumption using lazy repair and erasure
coding to that of an optimal system that also uses lazy re-
pair and erasure coding. The optimal system minimizes
bandwidth by performing repairs just before the files be-
come unavailable. Note that a file becomes unavailable
when its redundancy drops below 1 (less data available
than originally in the file). To model the optimal system,
we modified the simulator so that whenever the availabil-
ity monitor detected that a file’s redundancy dropped be-
low 1, it would initiate a repair. In contrast, TotalRecall

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

File Size (KB)

Read
Write

Repair

Figure 11: File system performance on PlanetLab.

initiates file repair whenever the file’s redundancy drops
just below the repair threshold of 2. Both TotalRecall and
the optimal simulator use a long-term redundancy factor
of 4 for this experiment.

Figure 10 shows the results of this experiment. The
bandwidth usage in TotalRecall is almost an order of
magnitude more than the optimal system. While the aver-
age bandwidth usage in TotalRecall is 49 KBps, the op-
timal system is 7 KBps. The difference is due to two
reasons. First, it is very difficult to predict host behavior
accurately given the strong dynamics in the system. Sec-
ond, TotalRecall’s main goal is to guarantee availability
of files, and in doing so, it tends to make conservative es-
timates of when file repairs are required. We believe this
to be a suitable design decision given the system’s goals.
However, this experiment does show that there is room
for the system to improve its bandwidth usage by using
more sophisticated techniques to predict host failures and
file availability.

6.4 Prototype Evaluation
The simulation experiments focused on the file availabil-
ity and bandwidth overhead of providing available files
in the TotalRecall Storage System. Next, we evaluate
the performance of the prototype TotalRecall File System
implementation. To perform our measurements, we ran
TRFS on a set of 32 PlanetLab hosts distributed across
the U.S. We used a local machine as a client host mount-
ing the TotalRecall File System via the TRFS loopback
server. In all experiments below, the system uses an ea-
ger repair threshold of 32 KB, i.e., the system replicates
and eager-repairs all files smaller than 32 KB, and it uses
erasure coding and lazy repair for all files of size greater
than 32 KB. For lazy repair, the system uses a long-term
redundancy factor of 4.

6.4.1 Microbenchmarks

We first evaluate the TotalRecall File System by measur-
ing the performance of file system operations invoked via
the NFS interface. Figure 11 shows the sequential file
read, write, and repair performance for lazily repaired
files in TRFS running on the 32 PlanetLab hosts for a

Phase Duration (s)

mkdir 12
create/write 60
stat 64
read 83
compile 163
Total 392

Table 2: Wide-area performance of the modified Andrew
benchmark on 32 PlanetLab nodes.

range of file sizes. First, we measured the performance of
using the NFS interface to write a file of a specified size
using a simple C program. We then measured the perfor-
mance of the same program reading the file again, mak-
ing sure that no cached data was read. Finally, we forced
the master node responsible for the file to perform a lazy
repair. Lazy repair roughly corresponds to a combined
read and write: the master node reads a sufficient number
of file blocks to reconstruct the file, and then writes out
a new encoded representation of the file to a new set of
randomly chosen nodes.

From the graph, we see that write performance is the
worst. Writes perform the most work: writing a file in-
cludes creating and storing inodes, encoding the file data,
and writing all encoded blocks to available hosts. Read
performance is better because the master node need only
read a sufficient number of blocks to reconstruct the file.
Since this number is smaller than the total number of en-
coded blocks stored during a write read operations re-
quire fewer RPC operations to reconstruct the file.

Finally, lazy repair performs the best of all. Although
this might seem counterintuitive since the lazy repair op-
eration requires more work than read or write, lazy re-
pair operates within the TotalRecall Storage System. As
a result, it is able to operate in parallel on much larger
data aggregates than the read and write operations. NFS
serializes read operations, for example, in 4KB block re-
quests to the master. However, when the master reads
blocks to perform a lazy repair, it issues 64KB block re-
quests in parallel to the storage hosts.

6.4.2 Modified Andrew Benchmarks

We also ran the modified Andrew benchmarks on TRFS
on 32 hosts on PlanetLab. We chose hosts that were
widely distributed across the U.S. Table 2 shows the re-
sults of running these benchmarks on TotalRecall. We
see that the read phase of the benchmark takes longer
than the write phase. Since the benchmark primarily con-
sists of small files that are eagerly-repaired and replicated
in our system, the writes take less time than if they were
erasure coded. The compile phase, however, takes a fair
amount of time since the final executable is large and it is
erasure-coded and lazy-repaired. The total time of execu-
tion of the benchmarks was 392 seconds. As one point of

rough comparison, we note that in [15] the authors evalu-
ated the Ivy peer-to-peer file system on 4 hosts across the
Internet using the same benchmark with a total execution
time of 376 seconds.

The absolute performance of the TotalRecall File Sys-
tem is not remarkable, and not surprising since we have
not focused on performance. In part this is due to the
wide variance in the underlying network performance of
the PlanetLab hosts used in our experiments (e.g., 25% of
the nodes have RPC latency over 100 ms) and time spent
in software layers underneath TotalRecall (e.g., 87% of
the time writing 4 KB files in Figure 11 is spent in Chord
lookups and block transfers from storage hosts). Given
that our implementation is an unoptimized prototype, we
are also exploring optimizations to improve performance,
such as aggregating and prefetching data between clients
and the master to improve NFS performance.

7 Conclusions
In this paper, we have argued that storage availability
management is a complex task poorly suited to human
administrators. This is particularly true in the large-
scale dynamic systems found in peer-to-peer networks.
In these environments, no single assignment of storage to
hosts can provide a predictable level of availability over
time and naive adaptive approaches, such as eager repli-
cation, can be grossly inefficient.

Instead, we argue that availability should become a
first class system property – one specified by the user
and guaranteed by the underlying storage system in the
most efficient manner possible. We have proposed an ar-
chitecture in which the storage system predicts the avail-
ability of its components over time, determines the ap-
propriate level of redundancy to tolerate transient out-
ages, and automatically initiates repair actions to meet
the user’s requirements. Moreover, we have described
how key system parameters, such as the appropriate level
of redundancy, can be closely approximated from under-
lying measurements and requirements. Finally, we de-
scribed the design and implementation of a prototype of
this architecture. Our prototype peer-to-peer storage sys-
tem, called TotalRecall, automatically adapts to changes
in the underlying host population, while effectively man-
aging file availability and efficiently using resources such
as bandwidth and storage.

Acknowledgments
We would like to thank the reviewers for their valuable
comments, Barbara Liskov for being our shepherd, and
Marvin McNett for the system support during the devel-
opment of TotalRecall. Support for this work was pro-
vided in part by DARPA FTN Contract N66001-01-1-
8933 and AFOSR MURI Contract F49620-02-1-0233.

References
[1] A. Adya et al. FARSITE: Federated, Available, and Re-

liable Storage for an Incompletely Trusted Environment.
In Proc. of OSDI, 2002.

[2] A. C. Arpaci-Dusseau et al. Manageable storage via adap-
tation in WiND. In IEEE CCGrid, 2001.

[3] R. Bhagwan, S. Savage, and G. M. Voelker. Replication
strategies for highly available peer-to-peer systems. Tech-
nical Report CS2002-0726, UCSD, Nov 2002.

[4] R. Bhagwan, S. Savage, and G. M. Voelker. Understand-
ing availability. In Proc. of IPTPS, 2003.

[5] C. Blake and R. Rodrigues. High availability, scalable
storage, dynamic peer networks: Pick two. In Proc. of
HotOS, 2003.

[6] W. J. Bolosky et al. Feasibility of a serverless distributed
file system depoloyed on an existing set of desktop PCs.
In Proc. of SIGMETRICS, 2000.

[7] B. Callaghan. NFS Illustrated. Addison Wesley, 1999.
[8] F. Dabek et al. Wide-area cooperative storage with CFS.

In Proc. of SOSP, 2001.
[9] J. R. Douceur and R. P. Wattenhofer. Optimizing file avail-

ability in a secure serverless distributed file system. In
Proc. of SRDS, 2001.

[10] K. Keeton and J. Wilkes. Automating data dependability.
In Proc. of the ACM SIGOPS European Workshop, 2002.

[11] D. Kostic et al. Using random subsets to build scalable
services. In Proc. of USITS, 2003.

[12] J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In Proc. of ASPLOS, 2000.

[13] P. Maymounkov and D. Mazieres. Rateless codes and big
downloads. In Proc. of IPTPS, 2003.

[14] D. Mazieres. A toolkit for user-level file systems. In Proc.
of the USENIX technical conference, 2001.

[15] A. Muthitacharoen et al. Ivy: a read-write peer-to-peer
file system. In Proc. of OSDI, 2002.

[16] Overnet website, http://www.overnet.com.
[17] D. A. Patterson et al. Recovery-Oriented Computing

(ROC): Motivation, definition, techniques, and case stud-
ies. Technical Report UCB-CSD-02-1175, UC Berkeley,
2002.

[18] S. Saroiu et al. An Analysis of Internet Content Delivery
Systems. In Proc. of OSDI, 2002.

[19] S. Saroiu et al. A measurement study of peer-to-peer file
sharing systems. In Proc. of MMCN, 2002.

[20] S. Savage and J. Wilkes. AFRAID – a frequently redun-
dant array of independent disks. In Proc. of the USENIX
Technical Conference, 1996.

[21] I. Stoica et al. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. of SIGCOMM,
2001.

[22] H. Weatherspoon et al. Silverback: A global-scale
archival system. Technical Report UCB-CSD-01-1139,
UC Berkeley, 2001.

[23] J. Wilkes et al. The HP AutoRAID hierarchical storage
system. In Proc. of SOSP, 1995.

[24] J. J. Wylie et al. Survivable information storage systems.
IEEE Computer, 2001.

