
TCP Congestion Control with a Misbehaving Receiver

Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson
Department of Computer Science and Engineering

University of Washington, Seattle

Abstract

In this paper, we explore the operation of TCP congestion control
when the receiver can misbehave, as might occur with a greedy
Web client. We first demonstrate that there are simple attacks that
allow a misbehaving receiver to drive a standard TCP sender ar-
bitrarily fast, without losing end-to-end reliability. These attacks
are widely applicable because they stem from the sender behavior
specified in RFC 2581 rather than implementation bugs. We then
show that it is possible to modify TCP to eliminate this undesir-
able behavior entirely, without requiring assumptions of any kind
about receiver behavior. This is a strong result: with our solution
a receiver can onlyreducethe data transfer rate by misbehaving,
thereby eliminating the incentive to do so.

1 Introduction

End-to-end congestion control mechanisms, such as those used in
TCP, are the primary means used for sharing scarce bandwidth re-
sources in the Internet. These mechanisms implicitly rely on both
endpoints to cooperate in determining the proper rate at which to
send data. Obviously, if the sending endpoint misbehaves, and does
not obey the appropriate congestion control algorithms, then it may
send data more quickly than well-behaved hosts – possibly forc-
ing competing traffic to be delayed or discarded. Less obviously, a
misbehavingreceivercan achieve the same result.

While the possibility of such attacks has been hinted at pre-
viously [APS99, PAD+99], we believe the ease of exploiting this
vulnerability and the potential impact are not fully appreciated. We
note that the population of receivers is extremely large (all Inter-
net users) and has both the incentive (faster Web surfing) and the
opportunity (open source operating systems) to exploit this vulner-
ability.

In this paper, we explore the impact that a misbehaving receiver
can have on TCP congestion control. We present two kinds of re-
sults. First, we identify several vulnerabilities that can be exploited
by a malicious receiver to defeat TCP congestion control. This can
be done in a manner that does not break end-to-end reliability se-
mantics and that relies only on the standard behavior of correctly
implemented TCP senders. Tests against live Web servers using a
modified TCP implementation that we produced for this purpose,
“TCP Daytona”, confirm that common TCP implementations pos-
sess these vulnerabilities. Second, we show that it is possible to
modify the design of TCP to eliminate this behavior – without re-
quiring that the receiver be trusted in any manner. With our proto-

This work was funded by generous grants from NSF (CCR 94-53532), DARPA
(F30602-98-1-0205), USENIX, the National Library of Medicine, Cisco, Fuji and In-
tel. Correspondence concerning this paper may be sent to savage@cs.washington.edu.

col modifications, a faulty or malicious receiver can at most cause
the sender to transmit data at a slower rate than it otherwise would,
thus harming only itself. Because our work has serious practical
ramifications for an Internet that depends on trust to avoid conges-
tion collapse, we also describe backwards-compatible mechanisms
that can be implemented at the sender to mitigate the effects of un-
trusted receivers.

As far as we are aware, the division of trust between sender
and receiver has not been studied previously in the context of con-
gestion control. While end-to-end congestion control protocols as-
sume that both sender and receiver behave correctly, in many en-
vironments the interests of sender and receiver may differ consid-
erably – creating significant incentives to violate this “good faith”
doctrine. For example, in many wide-area data retrieval applica-
tions, such as Web browsing, the sender's interest is to provide
uniform service to all clients requesting data, while the interest of
each client receiver is to maximize its own data throughput. Tra-
ditional cryptographic security mechanisms, such as embodied in
IPSEC [KA98], can provide guarantees of authentication and con-
fidentiality, but they can not prevent a receiver from violating TCP's
congestion control specification and consequently undermining the
fairness and stability provided therein.

The potential congestion resulting from aggressivesenders
has received significant attention from the networking commu-
nity [She94, FF99, RHE99, VRC98], and has produced proposals
for per-flow bandwidth reservation [ZDE+93] and mechanisms to
detect and limit “unfriendly” flows in the network [FF99]. These
solutions, if workable, would solve the more general problem of
unconstrained data transmission and would make the issue of trust
in end-to-end congestion control less pressing. However, given that
it is unlikely that such mechanisms will be widely deployed in the
near term, we feel it is still prudent to consider the potential im-
pact of untrusted receivers on the congestion control mechanisms
in today's Internet.

2 Vulnerabilities

By systematically considering sequences of message exchanges,
we have been able to identify several vulnerabilities that allow mis-
behaving receivers to control the sending rate of unmodified, con-
forming TCP senders. This section describes these vulnerabilities
and techniques for exploiting them. In addition to denial-of-service
attacks, these techniques can be used to enhance the performance
of the attacker's TCP sessions at the expense of behaving clients.



2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment's sequence number has been received and
can be retired from the sender's retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that wasexpected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow startandcongestion avoidance[Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwndto reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreasescwndquickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value ofcwndmore
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender's vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP incrementscwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance,cwndis incremented by 1
full-sized segment per round-trip time (RTT).

The incongruence between the byte granularity of error control
and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M� N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time,cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoreticallybe coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times!1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms,fast retransmitandfast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Setcwndto ssthreshplus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwndby SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such
as sender buffering, receiver buffering and network bandwidth.



RTT

Sender Receiver

ACK 1

Data 1:1461Data 1461:2921Data 2921:4381Data 4381:5841

ACK 1

ACK 1

Data 1:1461

ACK 1

ACK 1

Data 5841:7301

Figure 2: Sample time line for a DupACK spoofing attack. The receiver
forges multiple duplicate ACKs for sequence number 1. This causes the
sender to retransmit the first segment and send a new segment for each
additional forged duplicate ACK.

There are two problems with this approach. First, it assumes
that each segment that has left the network is full sized – again an
unfortunate interaction of byte granularity error control and seg-
ment granularity congestion control. Second, and more important,
because TCP requires that duplicate ACKs beexact duplicates,
there is no way to ascertain which data segment they were sent in
response to. Consequently, it is impossible to differentiate a “valid”
duplicate ACK, from a forged, or “spoofed”, duplicate ACK. For
the same reason, the sender cannot distinguish ACKs that are acci-
dentally duplicated by the network itself from those generated by a
receiver [APS99]. In essence, duplicate ACKs are a signal that can
be used by the receiver to force the sender to transmit new segments
into the network as follows:

Attack 2:
Upon receiving a data segment, the receiver sends a
long stream of acknowledgments for the last sequence
number received (at the start of a connection this would
be for the SYN segment).

Figure 2 shows a time line for this technique. The first four
ACKs for the same sequence number cause the sender to retransmit
the first segment. However,cwnd is now set to its initial value
plus 3*SMSS, and increased by SMSS for each additional duplicate
ACK, for a total of 4 segments (as per the fast recovery algorithm).
Since duplicate ACKs are indistinguishable, the receiver does not
need to wait for new data to send additional acknowledgments. As
a result, the sender will return data at a rate directly proportional
to the rate at which the receiver sends acknowledgments. After a
period, the sender will timeout. However, this can easily be avoided
if the receiver acknowledges the missing segment and enters fast
retransmit again for a new, later, segment.

2.4 Optimistic ACKing

Implicit in TCP's algorithms is the assumption that the time be-
tween a data segment being sent and an acknowledgment for that
segment returning is at least one round-trip time. Since TCP's con-
gestion window growth is a function of round-trip time (an expo-
nential function during slow start and a linear function doing con-

RTT

Sender Receiver

Data 1:1461

ACK 1461

ACK 2921
Data 1461:2921

Data 4381:5841

Data 2921:4381

Data 5841:7301

Figure 3: Sample time line for optimistic ACKing attack. The ACK for
the second segment is sent before the segment itself is received, leading
the receiver to growcwndmore quickly than otherwise. At the end of this
example,cwnd=3, rather than the expected value ofcwnd=2.

gestion avoidance), sender-receiver pairs with shorter round-trip
times will transfer data more quickly.

However, the protocol does not use any mechanism to enforce
its assumption. Consequently, it is possible for a receiver toemu-
late a shorter round-trip time by sending ACKs optimistically for
data it has not yet received:

Attack 3:
Upon receiving a data segment, the receiver sends a
stream of acknowledgments anticipating data that will
be sent by the sender.

This technique is demonstrated in Figure 3. Note that while it
is easy for the receiver to anticipate the correct sequence numbers
to use in each acknowledgment (since senders generally send full-
sized segments), this accuracy is not necessary. As long as the
receiver acknowledges new data the sender will transmit additional
segments. Moreover, if an ACK arrives for data that has not yet
been sent, this is generally ignored by the sending TCP – allowing
a sender to be arbitrarily aggressive in its generation of optimistic
ACKs.

Unlike the previous attacks, this technique does not necessarily
preserve end-to-end reliability semantics – if data from the sender
is lost it may be unrecoverable since it has already been acknowl-
edged. However, new features in protocols such as HTTP-1.1 al-
low receivers to request particular byte-ranges within a data ob-
ject [FGM+99]. This suggests a strategy in which data is gath-
ered on one connection and lost segments are then collected se-
lectively with application-layer retransmissions on another. Opti-
mistic ACKing could be used to ramp the transfer rate up to the
bottleneck rate immediately, and then hold it there by sending ac-
knowledgments in spite of losses. This ability of the receiver to
conceal losses is extremely dangerous because it eliminates the
only congestion signal available to the sender. A malicious at-
tacker could concealall losses and therefore lead a sender to in-
creasecwndindefinitely – possibly overwhelming the network with
useless packets.



0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
eq

ue
nc

e 
nu

m
be

r 
(B

yt
es

)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 4: The TCP DaytonaACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for theindex.html ob-
ject fromcnn.com , with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
eq

ue
nc

e 
nu

m
be

r 
(B

yt
es

)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 5: The TCP DaytonaDupACK spoofingattack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S
eq

ue
nc

e 
nu

m
be

r 
(B

yt
es

)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 6: The TCP Daytonaoptimistic ACKattack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.



Figure 6 shows our optimistic ACK algorithm in action trans-
ferring the sameindex.html , again with a normal transfer su-
perimposed. Note that after the first few data segments arrive at
around 140ms, the receiver sends a steady stream of ACKs, where
each ACK is sent about 10ms-70msbeforethe corresponding data
arrives! The result is that the data transfer employing optimistic
ACKs completes in approximately half the normal transfer time.
Though this is a modest gain relative to the other attacks, a more
bold optimistic ACKing scheme could achieve far greater through-
put by acknowledging data at a more rapid pace.

3.4 Applicability

In order to verify that common TCP implementations have these
vulnerabilities, we tested each attack against a set of nine Web
servers running a diverse array of popular server operating systems.
To determine the operating system running on each Web server,
we usednmap, a tool that identifies TCP implementations based
on the “fingerprint” of their characteristic response to TCP seg-
ments whose correct response is under-specified [Vas]. To further
decrease the possibility of misidentifying an operating system, in
all but three cases we were able to use Web servers that were op-
erated by OS vendors and thatnmap confirmed were running the
high-end server operating system from that vendor.

Table 1 shows which TCP implementations are vulnerable to
each attack. The attacks are all widely applicable, with three ex-
ceptions. First, Linux 2.2 is not vulnerable to the ACK division
attack because it increases its congestion window only if at least
one whole previously-unacknowledged segment is acknowledged.
Second, Linux 2.0 refuses to count duplicate acknowledgments un-
til cwnd is greater than three. Consequently, the DupACK attack
will fail if initiated on connection startup. Finally, Windows NT
appears to have a bug that causes it to rarely, if ever, enter fast re-
covery. This bug renders NT immune to attacks that rely on extra
duplicate acknowledgments.

4 Solutions

As demonstrated in the previous section, TCP's current specifica-
tion has several vulnerabilities that allow a misbehaving receiver
to control the sender's transmission rate. While it is impossible
to force a receiver to behave correctly, it is both possible and de-
sirable to remove its incentive to misbehave. That is, we wish to
ensure that a misbehaving receiver can not obtain data faster than
a behaving one. In this section we describe simple modifications
to the TCP protocol that, without changing the nature of conges-
tion control, allow the verification of what has historically been an
implicit contract between sender and the receiver – that each ac-
knowledgment faithfully and unambiguously reflects data that has
been successfully transferred to the receiver.

4.1 Designing robust protocols

We believe TCP's vulnerabilities arise from a combination of un-
stated assumptions, casual specification and a pragmatic need to
develop congestion control mechanisms that are backward compat-
ible with previous TCP implementations. In retrospect, if the con-
tract between sender and receiver had been defined explicitly these
vulnerabilities would have been obvious.

We are inspired by Abadi and Needham's paper,Prudent En-
gineering Practice for Cryptographic Protocols, which presents
a set of design rules that are surprisingly germane to this prob-
lem [AN96]. In particular we reprint their first three principles be-
low:

Principle 1. Every message should say what it means: the inter-
pretation of the message should depend only on its content.

Principle 2. The conditions for a message to be acted upon should
be clearly set out so that someone reviewing a design may see
whether they are acceptable or not.

Principle 3. If the identity of a principal is essential to the mean-
ing of a message, it is prudent to mention the principal's name
explicitly in the message.

4.2 ACK division

This vulnerability arises from an ambiguity about how ACKs
should be interpreted – a violation of the second principle. TCP's
error-control allows an ACK to specify an arbitrary byte offset in
the sequence space while the congestion control specification as-
sumes that an ACK covers an entire segment.

There are two obvious solutions: either modify the congestion
control mechanisms to operate at byte granularity or guarantee that
segment-level granularity is always respected. The first solution
is virtually identical to the “byte counting” modifications to TCP
discussed in [All98, All99]. Ifcwnd is not incremented by a full
SMSS, but only proportional to the amount of data acknowledged,
then ACK division attacks will have no effect. The second, perhaps
simpler, solution is to only incrementcwnd by one SMSS when
a valid ACK arrives that covers the entire data segment sent. As
mentioned earlier, this technique is employed in the latest versions
of Linux (2.2.x) at the time of this writing.

4.3 DupACK spoofing

During fast recovery and fast retransmit, TCP's design violates the
first principle – the meaning of a duplicate ACK is implicit, depen-
dent on previous context, and consequently difficult to verify.

TCP assumes that all duplicate ACKs are sent in response to
unique and distinct segments. This assumption is unenforceable
without some mechanism for identifying the data segment that led
to the generation of each duplicate ACK. The traditional method for
guaranteeing association is to employ anonce[Sch96]. We present
a simple version of such a nonce protocol below (we will extend it
shortly):

Singular Nonce:
We introduce two new fields into the TCP packet format:
Nonce and Nonce reply. For each segment, the sender
fills the Nonce field with a unique random number gen-
erated when the segment is sent. When a receiver gen-
erates an ACK in response to a data segment, it echoes
the nonce value by writing it into the Nonce Reply field.

The sender can then arrange to only inflatecwnd in response
to duplicate ACKs whose Nonce Reply value corresponds to a data
segment previously sent and not yet acknowledged.

We note that the singular nonce, as we have described it so
far, is similar to the Timestamps option [JBB92], with two impor-
tant differences. First, the Nonce field preserves association for
duplicate ACKs, while the Timestamps option does not (prefer-
ring instead to reuse the previous timestamp value). Second, and
more important, because Timestamps is aoption, a receiver has the
choice to not participate in its use. We cannot rely on misbehaving
clients to voluntarily participate in their own policing. For the same
reason, we cannot rely on other TCP options, such as proposed ex-
tensions to SACK [FMM+99], to eliminate this vulnerability.



ACK Division DupACK Spoofing Optimistic Acks
Solaris 2.6 Y Y Y
Linux 2.0 Y Y (N) Y
Linux 2.2 N Y Y
Windows NT4/95 Y N Y
FreeBSD 3.0 Y Y Y
DIGITAL Unix 4.0 Y Y Y
IRIX 6.x Y Y Y
HP-UX 10.20 Y Y Y
AIX 4.2 Y Y Y

Table 1: For each TCP Daytona attack, we denote with a “Y” those operating systems that we found to be vulnerable. Most operating systems we tested
were vulnerable to all the Daytona attacks.

Unfortunately, our fix requires the modification of clients and
servers and the addition of a TCP field. While it is the only com-
plete solution we have discovered, there are sender-only heuristics
which can mitigate, although not eliminate, the impact of the Du-
pACK spoofing attack in a purely backward compatible manner. In
particular, the sender can maintain a count of outstanding segments
sent above the missing segment. For each duplicate acknowledg-
ment this count is decremented and when it reaches zero any ad-
ditional duplicate acknowledgments are ignored. This simple fix
appears to limit the number of segments wrongly sent to contain no
more thancwnd� SMSS bytes. Unfortunately, a clever receiver
can acknowledge the missing segment and then repeat the process
indefinitely unless other heuristics are employed to penalize this
behavior (e.g. by refusing to enter fast retransmit multiple times in
a single window as suggested in [Flo95]).

4.4 Optimistic ACKing

The optimistic ACK attack is possible because ACKs do not con-
tain any proof regarding the identity of the data segment(s) that
caused them to be sent. In the context of the third principle de-
scribed earlier, a data segment is a principal and an ACK is the
message of concern.

This problem is also well addressed using a nonce. If a nonce
can' t be guessed by the receiver, than ACKs with valid nonces im-
ply that a full round-trip time has taken place (man-in-the-middle
attacks notwithstanding).

However, the singular nonce we have described is imperfect
because it does not mirror the cumulative nature of TCP. Acknowl-
edgments can be delayed or lost, yet the cumulative property of
TCP's sequence numbers ensures that the most recent ACK can
cover all previous data. In contrast, the singular nonce only pro-
vides evidence that a single segment was received. A misbehaving
sender could still mount a denial of service attack by concealing
lost data, yet still sending back ACKs with valid nonces. To ad-
dress this deficiency we describe acumulative nonceas follows:

Cumulative Nonce:
For each segment, the sender fills the Nonce field with
a unique random number generated when the segment
is sent. Each side maintains a nonce sum represent-
ing the cumulative sum of all in-sequence acknowledged
nonces. When a receiver receives an in-sequence seg-
ment it adds the value contained in its Nonce field to this
sum. When a receiver generates an ACK in response to
a data segment, it either echoes the current value of the
nonce sum (for in-sequence data) or echoes the nonce
value sent by the sender (for out-of-sequence data).

The sender can then efficiently verify that the data acknowl-
edged by the receiver has, in fact, been successfully transferred.

Sender Receiver

ACK 1461 (27)

Data 1:1461 (27)

Data 1461:2921 (62)

ACK 4381 (125)

Data 4381:5841 (19)

Data 2921:4381 (36)

Data 5841:7301 (5)

ACK 7301 (156)

Figure 7: A time line for a transfer using a cumulative nonce. The nonce
values are shown in parenthesis and it is assumed that each side starts with
a nonce sum of zero. The dotted line indicates a data segment that was
dropped. The final ACK, which attempts to conceal the loss of this segment,
will be rejected because its cumulative nonce value is incorrect (156 instead
of the expected value of 149).

An example of this protocol is depicted in Figure 7. The sec-
ond ACK (acknowledging bytes 4380 and below) demonstrates the
cumulative effect of the nonce, proving that the receiver has in fact
seen all three segments (125=27+62+36). The fourth data segment
is lost (indicated by a dotted line) and the third ACK attempts to
conceal this loss by acknowledging a later segment. However, the
ACK will be rejected by the sender, since it cannot provide the
proper nonce sum (149) for the data it purports to acknowledge.

A potential complication can occur if the segment boundaries
differ between the initial transmission and a subsequent retransmis-
sion. Such an occurrence might occur during dynamic path MTU
changes. There are several implementation strategies to address
this situation, but the simplest is to randomly subdivide the orig-
inal nonce value in a way that the sum of the new nonce values
is still consistent with the original transmission. For example, if a
1460 byte segment is initially transmitted with a nonce value of 14,
but subsequent retransmissions are limited to 536 bytes by a path
MTU change, then we might retransmit the data in three packets,
with nonce values of 7, 3 and 4.

While it is difficult to prevent loss concealment without a cu-
mulative nonce, there are interim sender-side modifications that can
approximate a singular nonce and thereby limit the impact of op-



timistic ACKing attacks. If the sending TCP randomly varies the
size of outgoing segments by a small amount (e.g. [SMSS-15 bytes
.. SMSS bytes]), a misbehaving receiver will be unable to correctly
anticipate the segment boundaries. Consequently, the exact seg-
ment boundaries encode a form of nonce and the sending TCP can
filter out optimistic ACKs as those that do not fall on the appropri-
ate sequence numbers (this assumes that receivers acknowledge all
of the data they receive). As an added disincentive, the sender could
send a RST for any ACK that acknowledged data not yet sent. This
strategy does not prevent the receiver from concealing loss, but it
can mitigate the effects of optimistic ACKs (which we believe is a
more attractive attack for the average user).

5 Conclusion

In this paper we have described how a receiver can manipulate the
TCP congestion control function managed by the sender, and how
the sender can prevent these manipulations. Our work highlights
two results that we believe are significant yet not widely appreci-
ated:

� TCP, which was originally designed for a cooperative envi-
ronment, contains several vulnerabilities that an unscrupulous
receiver can exploit to obtain improved service at the expense
of other network clients or to implement a denial-of-service
attack. We have described ACK division, DupACK spoofing
and Optimistic ACK mechanisms and implemented them to
demonstrate that the attacks are both real and widely applica-
ble.

� The design of TCP can be modified, without changing the
nature of the congestion control function, to eliminate these
vulnerabilities. We have described the workings of a new Cu-
mulative Nonce approach that accomplishes this in a simple
yet effective manner. We have also identified and described
sender-only modifications that can be deployed immediately
to reduce the scope of the vulnerabilities without receiver-side
modifications.

Our work can readily be extended to other protocols. While
the Cumulative Nonce was defined in the context of TCP, it could
be adapted to any sender-based congestion control scheme. This
might prove fruitful for unreliable transports, for example, either
those that are explicitly TCP-friendly, such as RAP [RHE99], or
other rate adaptive mechanisms, like those employed by RealAu-
dio. A Cumulative Nonce could also be used more widely to aid
in the design of other kinds of protocols. This is because it effec-
tively defines a sequencing mechanism between untrusted parties
that, because it is lightweight, idempotent and cumulative, is well
suited to network environments.

Beyond these immediate results, our work raises more specula-
tive protocol design issues. TCP was originally designed for a co-
operative environment, and its evolution through the years has built
on this base. Given this, it is perhaps not so surprising that we were
able to find the vulnerabilities we did, because they naturally arise
when the sender and receiver represent different interests. With the
growth of the Internet, however, it is arguable that “separate in-
terests” should be assumed by default. Protocol functions that are
managed by one party would then be designed to minimize the trust
they place in other parties. We observe that this kind of “separation
of interests” will require new mechanisms, such as a Cumulative
Nonce, to guarantee that different parties respect a common behav-
ioral contract.

Acknowledgments

This paper has benefited from conversations with many different
people. In particular, we'd like to thank Sally Floyd, Vern Pax-
son, Jeff Mogul, Greg Minshall, Venkat Padmanabhan and Robert
Grimm for their careful reading and thoughtful comments. In ad-
dition, Roch Guerin and the anonymous CCR reviewers provided
valuable feedback on the submitted version of this paper.

References

[All98] Mark Allman. On the generation and use of TCP ac-
knowledgments.Computer Communications Review,
28(5), October 1998.

[All99] Mark Allman. TCP byte counting refinements.Com-
puter Communications Review, 29(3), July 1999.

[AN96] Martin Abadi and Roger Needham. Prudent engi-
neering practice for cryptographic protocols.IEEE
Transactions on Software Engineering, 22(1), January
1996.

[APS99] M. Allman, V. Paxson, and W. Stevens. TCP conges-
tion control. RFC 2581, April 1999.

[FF99] Sally Floyd and Kevin Fall. Promoting the use of end-
to-end congestion control in the Internet.IEEE/ACM
Transactions on Networking, August 1999.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1. RFC 2616, June 1999.

[Flo95] Sally Floyd. TCP and successive fast re-
transmits. http://www.aciri.org/floyd/
papers/fastretrans.ps , May 1995.

[FMM+99] Sally Floyd, Jamshid Mahdavi, Matt Mathis, Matthew
Podolsky, and Allyn Romanow. An extension to the
selective acknowledgment (SACK) option for TCP.
Internet Draft, August 1999.

[Jac88] Van Jacobson. Congestion avoidance and control.
SIGCOMM '88, August 1988.

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP exten-
sions for high performance. RFC 1323, May 1992.

[KA98] S. Kent and R. Atkinson. Security architecture for the
internet protocol. RFC 2401, November 1998.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Al-
lyn Romanow. TCP Selective Acknowledgement op-
tions. RFC 2018, April 1996.

[PAD+99] V. Paxson, M. Allman, S. Dawson, W. Fenner,
J. Griner, I. Heavens, K. Lahey, J. Semke, and B. Volz.
Known TCP implementation problems. RFC 2525,
March 1999.

[RHE99] Reza Rejaie, Mark Handley, and Deborah Estrin.
RAP: An end-to-end rate-based congestion control
mechanism for realtime streams in the Internet. In
INFOCOM '99, March 1999.

[Sch96] Bruce Schneier.Applied Cryptography. John Wiley
& Sons, 2nd edition, 1996.



[She94] Scott Shenker. Making greed work in networks: A
game-theoretic analysis of switch service disciplines.
In SIGCOMM '94, pages 47–57, August 1994.

[Ste94] W. Richard Stevens.TCP/IP Illustrated, volume 1.
Addison Wesley, 1994.

[Vas] Fyodor Vaskovich. nmap. http://www.
insecure.org/nmap/ .

[VRC98] L. Vivisano, L. Rizzo, and J. Crowcroft. TCP-like
congestion control for layered multicast data transfer.
In INFOCOM '98, April 1998.

[ZDE+93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and
D. Zappala. RSVP: A New Resource ReSerVation
Protocol. IEEE Network, pages 8–18, September
1993.


