
Secure routing for structured peer-to-peer overlay networks
�

Miguel Castro1, Peter Druschel2, Ayalvadi Ganesh1, Antony Rowstron1 and Dan S. Wallach2

1Microsoft Research Ltd., 7 J J Thomson Avenue, Cambridge, CB3 0FB, UK�
mcastro,ajg,antr � @microsoft.com

2Rice University, 6100 Main Street, MS 132, Houston, TX 77005-1892, USA�
druschel,dwallach � @cs.rice.edu

Abstract

Structured peer-to-peer overlay networks provide a sub-
strate for the construction of large-scale, decentralized
applications, including distributed storage, group com-
munication, and content distribution. These overlays are
highly resilient; they can route messages correctly even
when a large fraction of the nodes crash or the network
partitions. But current overlays are not secure; even a
small fraction of malicious nodes can prevent correct
message delivery throughout the overlay. This prob-
lem is particularly serious in open peer-to-peer systems,
where many diverse, autonomous parties without pre-
existing trust relationships wish to pool their resources.
This paper studies attacks aimed at preventing correct
message delivery in structured peer-to-peer overlays and
presents defenses to these attacks. We describe and eval-
uate techniques that allow nodes to join the overlay, to
maintain routing state, and to forward messages securely
in the presence of malicious nodes.

1 Introduction

Structured peer-to-peer (p2p) overlays like CAN [16],
Chord [20], Pastry [17] and Tapestry [21] provide a
self-organizing substrate for large-scale peer-to-peer ap-
plications. These systems provide a powerful platform
for the construction of a variety of decentralized ser-
vices, including network storage, content distribution,
and application-level multicast. Structured overlays al-
low applications to locate any object in a probabilisti-
cally bounded, small number of network hops, while re-
quiring per-node routing tables with only a small num-
ber of entries. Moreover, the systems are scalable, fault-
tolerant and provide effective load balancing.

However, to fully realize the potential of the p2p
paradigm, such overlay networks must be able to support
an open environment where mutually distrusting parties
with conflicting interests are allowed to join. Even in a

�
Appears in Proc. of the 5th Usenix Symposium on Operating Sys-

tems Design and Implementation, Boston, MA, December 2002.

closed system of sufficiently large scale, it may be un-
realistic to assume that none of the participating nodes
have been compromised by attackers. Thus, structured
overlays must be robust to a variety of security attacks,
including the case where a fraction of the participating
nodes act maliciously. Such nodes may mis-route, cor-
rupt, or drop messages and routing information. Addi-
tionally, they may attempt to assume the identity of other
nodes and corrupt or delete objects they are supposed to
store on behalf of the system.

In this paper, we consider security issues in structured
p2p overlay networks. We describe attacks that can be
mounted against such overlays and the applications they
support, and present the design of secure techniques that
can thwart such attacks. In particular, we identify se-
cure routing as a key building block that can be combined
with existing, application-specific security techniques to
construct secure, decentralized applications upon struc-
tured overlays. Secure routing requires (1) a secure as-
signment of node identifiers, (2) secure routing table
maintenance, and (3) secure message forwarding. We
present techniques for each of these problems, and show
how using these techniques, secure routing can be main-
tained efficiently despite up to 25% of malicious partic-
ipating nodes. Moreover, we show that the overhead of
secure routing is acceptable and proportional to the frac-
tion of malicious nodes.

The rest of this paper is organized as follows. Section 2
gives some background on structured p2p overlays, spec-
ifies models and assumptions, and defines secure routing.
Sections 3, 4 and 5 present attacks on and solutions for
assignment of identifiers to nodes, routing table mainte-
nance and message forwarding, respectively. Section 6
explains how the overhead of secure routing can be min-
imized by using self-certifying data. Finally, Section 7
discusses related work and Section 8 provides conclu-
sions.

2 Background, models and solution

In this section, we present some background on struc-
tured p2p overlay protocols like CAN, Chord, Tapestry
and Pastry. Space limitations prevent us from giving a
detailed overview of each protocol. Instead, we describe
an abstract model of structured p2p overlay networks that
we use to keep the discussion independent of any particu-
lar protocol. For concreteness, we also give an overview
of Pastry and point out relevant differences with the other
protocols. Next, we describe models and assumptions
used later in the paper about how faulty nodes may be-
have. Finally, we define secure routing and outline our
solution.

Throughout this paper, most of the analyses and tech-
niques are presented in terms of our abstract model, and
should apply to other structured overlays except when
otherwise noted. However, the security and performance
of our techniques was fully evaluated only in the con-
text of Pastry; a full evaluation of the techniques in other
protocols is future work.

2.1 Routing overlay model

We define an abstract model of a structured p2p routing
overlay, designed to capture the key concepts common to
overlays like CAN, Chord, Tapestry and Pastry.

In our model, participating nodes are assigned uni-
form random identifiers, nodeIds, from a large id space
(e.g., the set of 128-bit unsigned integers). Application-
specific objects are assigned unique identifiers, called
keys, selected from the same id space. Each key is
mapped by the overlay to a unique live node, called the
key’s root. The protocol routes messages with a given
key to its associated root.

To route messages efficiently, each node maintains a
routing table with nodeIds of other nodes and their as-
sociated IP addresses. Moreover, each node maintains a
neighbor set, consisting of some number of nodes with
nodeIds near the current node in the id space. Since
nodeId assignment is random, any neighbor set repre-
sents a random sample of all participating nodes.

For fault tolerance, application objects are stored at more
than one node in the overlay. A replica function maps an
object’s key to a set of replica keys, such that the set of
replica roots associated with the replica keys represents
a random sample of participating nodes in the overlay.
Each replica root stores a copy of the object.

Next, we discuss existing structured p2p overlay proto-
cols and how they relate to our abstract model.

2.2 Pastry

Pastry nodeIds are assigned randomly with uniform dis-
tribution from a circular 128-bit id space. Given a 128-
bit key, Pastry routes an associated message toward the

live node whose nodeId is numerically closest to the key.
Each Pastry node keeps track of its neighbor set and no-
tifies applications of changes in the set.

Node state: For the purpose of routing, nodeIds and
keys are thought of as a sequence of digits in base 2b

(b is a configuration parameter with typical value 4). A
node’s routing table is organized into 128 � 2b rows and 2b

columns. The 2b entries in row r of the routing table con-
tain the IP addresses of nodes whose nodeIds share the
first r digits with the present node’s nodeId; the r � 1th
nodeId digit of the node in column c of row r equals c.
The column in row r that corresponds to the value of the
r � 1th digit of the local node’s nodeId remains empty.
A routing table entry is left empty if no node with the
appropriate nodeId prefix is known. Figure 1 depicts an
example routing table.

Each node also maintains a neighbor set (called a “leaf
set”). The leaf set is the set of l nodes with nodeIds
that are numerically closest to the present node’s nodeId,
with l � 2 larger and l � 2 smaller nodeIds than the cur-
rent node’s id. The value of l is constant for all nodes
in the overlay, with a typical value of approximately�
8 � log2bN � , where N is the number of expected nodes

in the overlay. The leaf set ensures reliable message de-
livery and is used to store replicas of application objects.

Message routing: At each routing step, a node seeks to
forward the message to a node in the routing table whose
nodeId shares with the key a prefix that is at least one
digit (or b bits) longer than the prefix that the key shares
with the present node’s id. If no such node can be found,
the message is forwarded to a node whose nodeId shares
a prefix with the key as long as the current node, but is
numerically closer to the key than the present node’s id.
If no appropriate node exists in either the routing table
or neighbor set, then the current node or its immediate
neighbor is the message’s final destination.

Figure 2 shows the path of an example message. Anal-
ysis shows that the expected number of routing hops is
slightly below log2bN, with a distribution that is tight
around the mean. Moreover, simulation shows that the
routing is highly resilient to crash failures.

To achieve self-organization, Pastry nodes must dynami-
cally maintain their node state, i.e., the routing table and
neighbor set, in the presence of node arrivals and node
failures. A newly arriving node with the new nodeId X
can initialize its state by asking any existing Pastry node
A to route a special message using X as the key. The
message is routed to the existing node Z with nodeId nu-
merically closest to X . X then obtains the neighbor set
from Z and constructs its routing table by copying rows
from the routing tables of the nodes it encountered on the
original route from A to Z. Finally, X announces its pres-
ence to the initial members of its neighbor set, which in
turn update their own neighbor sets and routing tables.

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

Figure 1: Routing table of a Pastry node with
nodeId 65a1x, b � 4. Digits are in base 16, x
represents an arbitrary suffix.

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

O 2128 - 1

Figure 2: Routing a message from node
65a1 f c with key d46a1c. The dots depict live
nodes in Pastry’s circular namespace.

Similarly, the overlay can adapt to abrupt node failure
by exchanging a small number of messages (O

�
log2bN �)

among a small number of nodes.

2.3 CAN, Chord, Tapestry

Next, we briefly describe CAN, Chord and Tapestry, with
an emphasis on the differences relative to Pastry.

Tapestry is very similar to Pastry but differs in its ap-
proach to mapping keys to nodes and in how it manages
replication. In Tapestry, neighboring nodes in the names-
pace are not aware of each other. When a node’s rout-
ing table does not have an entry for a node that matches
a key’s nth digit, the message is forwarded to the node
with the next higher value in the nth digit, modulo 2b,
found in the routing table. This procedure, called surro-
gate routing, maps keys to a unique live node if the node
routing tables are consistent. Tapestry does not have a
direct analog to a neighbor set, although one can think of
the lowest populated level of the Tapestry routing table
as a neighbor set. For fault tolerance, Tapestry’s replica
function produces a set of random keys, yielding a set
of replica roots at random points in the id space. The
expected number of routing hops in Tapestry is log2bN.

Chord uses a 160-bit circular id space. Unlike Pastry,
Chord forwards messages only in clockwise direction in
the circular id space. Instead of the prefix-based routing
table in Pastry, Chord nodes maintain a routing table con-
sisting of up to 160 pointers to other live nodes (called a
“finger table”). The ith entry in the finger table of node n
refers to the live node with the smallest nodeId clockwise
from n � 2i � 1. The first entry points to n’s successor, and
subsequent entries refer to nodes at repeatedly doubling
distances from n. Each node in Chord also maintains
pointers to its predecessor and to its n successors in the
nodeId space (this successor list represents the neighbor

set in our model). Like Pastry, Chord’s replica function
maps an object’s key to the nodeIds in the neighbor set
of the key’s root, i.e., replicas are stored in the neighbor
set of the key’s root for fault tolerance. The expected
number of routing hops in Chord is 1

2 log2N.

CAN routes messages in a d-dimensional space, where
each node maintains a routing table with O

�
d � entries

and any node can be reached in
�
d � 4 � �

N1 � d � routing hops
on average. The entries in a node’s routing table refer to
its neighbors in the d-dimensional space. CAN’s neigh-
bor table duals as both the routing table and the neighbor
set in our model. Like Tapestry, CAN’s replica function
produces random keys for storing replicas at diverse lo-
cations. Unlike Pastry, Tapestry and Chord, CAN’s rout-
ing table does not grow with the network size, but the
number of routing hops grows faster than logN in this
case.

Tapestry and Pastry construct their overlay in a Internet
topology-aware manner to reduce routing delays and net-
work utilization. In these protocols, routing table entries
can be chosen arbitrarily from an entire segment of the
nodeId space without increasing the expected number of
routing hops. The protocols exploit this by initializing
the routing table to refer to nodes that are nearby in the
network topology and have the appropriate nodeId pre-
fix. This greatly facilitates proximity routing [17]. How-
ever, it also makes these systems vulnerable to certain
attacks, as shown in Section 4.

The choice of entries in CAN’s and Chord’s routing ta-
bles is tightly constrained. The CAN routing table en-
tries refer to specific neighboring nodes in each dimen-
sion, while the Chord finger table entries refer to specific
points in the nodeId space. This makes proximity rout-
ing harder but it protects nodes from attacks that exploit
attacking nodes’ proximity to their victims.

2.4 System model

The system runs on a set of N nodes that form an over-
lay using one of the protocols described in the previous
section. We assume a bound f (0 � f � 1) on the frac-
tion of nodes that may be faulty. Faults are modeled
using a constrained-collusion Byzantine failure model,
i.e., faulty nodes can behave arbitrarily and they may not
all necessarily be operating as a single conspiracy. The
set of faulty nodes is partitioned into independent coali-
tions, which are disjoint sets with size bounded by cN
(1 � N � c � f). When c � f , all faulty nodes may collude
with each other to cause the most damage to the system.
We model the case where nodes are grouped into multi-
ple independent coalitions by setting c � f . Members of
a coalition can work together to corrupt the overlay but
are unaware of nodes in other coalitions. We studied the
behavior of the system with c ranging from 1 � N to f to
model different failure scenarios.

We assume that every node in the p2p overlay has a static
IP address at which it can be contacted. In this paper,
we ignore nodes with dynamically assigned IP addresses,
and nodes behind network address translation boxes or
firewalls. While p2p overlays can be extended to address
these concerns, this paper focuses on more traditional
network hosts.

The nodes communicate over normal Internet connec-
tions. We distinguish between two types of communica-
tion: network-level, where nodes communicate directly
without routing through the overlay, and overlay-level,
where messages are routed through the overlay using
one of the protocols discussed in the previous section.
We use cryptographic techniques to prevent adversaries
from observing or modifying network-level communica-
tion between correct nodes. An adversary has complete
control over network-level communication to and from
nodes that it controls. This can compromise overlay-
level communication that is routed through a faulty node.
Adversaries may delay messages between correct nodes
but we assume that any message sent by a correct node to
a correct destination over an overlay route with no faulty
nodes is delivered within time D with probability PD.

2.5 Secure routing

Next, we define a secure routing primitive that can be
combined with existing techniques to construct secure
applications on structured p2p overlays. Subsequent sec-
tions show how to implement the secure routing prim-
itive under the fault and network models that we de-
scribed in the previous section.

The routing primitives implemented by current struc-
tured p2p overlays provide a best-effort service to de-
liver a message to a replica root associated with a given
key. With malicious overlay nodes, the message may be
dropped or corrupted, or it may be delivered to a mali-

cious node instead of a legitimate replica root. Therefore,
these primitives cannot be used to construct secure appli-
cations. For example, when inserting an object, an appli-
cation cannot ensure that the replicas are placed on le-
gitimate, diverse replica roots as opposed to faulty nodes
that impersonate replica roots. Even if applications use
cryptographic methods to authenticate objects, malicious
nodes may still corrupt, delete, deny access to or supply
stale copies of all replicas of an object.

To address this problem, we define a secure routing prim-
itive. The secure routing primitive ensures that when a
non-faulty node sends a message to a key k, the message
reaches all non-faulty members in the set of replica roots
Rk with very high probability. Rk is defined as the set of
nodes that contains, for each member of the set of replica
keys associated with k, a live root node that is responsible
for that replica key. In Pastry, for instance, Rk is simply a
set of live nodes with nodeIds numerically closest to the
key. Secure routing ensures that (1) the message is even-
tually delivered, despite nodes that may corrupt, drop or
misroute the message; and (2) the message is delivered
to all legitimate replica roots for the key, despite nodes
that may attempt to impersonate a replica root.

Secure routing can be combined with existing security
techniques to safely maintain state in a structured p2p
overlay. For instance, self-certifying data can be stored
on the replica roots, or a Byzantine-fault-tolerant repli-
cation algorithm like BFT [4] can be used to maintain
the replicated state. Secure routing guarantees that the
replicas are initially placed on legitimate replica roots,
and that a lookup message reaches a replica if one exists.
Similarly, secure routing can be used to build other se-
cure services, such as maintaining file metadata and user
quotas in a distributed storage utility. The details of such
services are beyond the scope of this paper.

Implementing the secure routing primitive requires the
solution of three problems: securely assigning nodeIds
to nodes, securely maintaining the routing tables, and
securely forwarding messages. Secure nodeId assign-
ment ensures that an attacker cannot choose the value of
nodeIds assigned to the nodes that the attacker controls.
Without it, the attacker could arrange to control all repli-
cas of a given object, or to mediate all traffic to and from
a victim node.

Secure routing table maintenance ensures that the frac-
tion of faulty nodes that appear in the routing tables of
correct nodes does not exceed, on average, the fraction
of faulty nodes in the entire overlay. Without it, an at-
tacker could prevent correct message delivery, given only
a relatively small number of faulty nodes. Finally, secure
message forwarding ensures that at least one copy of a
message sent to a key reaches each correct replica root
for the key with high probability. Sections 3, 4 and 5
describe solutions to each of these problems.

3 Secure nodeId assignment

The performance and security of structured p2p over-
lay networks depend on the fundamental assumption that
there is a uniform random distribution of nodeIds that
cannot be controlled by an attacker. This section dis-
cusses what goes wrong when the attacker violates this
assumption, and how this problem can be addressed.

3.1 Attacks

Attackers who can choose nodeIds can compromise the
integrity of a structured p2p overlay, without needing to
control a particularly large fraction of the nodes. For ex-
ample, an attacker may partition a Pastry or Chord over-
lay if she controls two complete and disjoint neighbor
sets. Such attackers may also target particular victim
nodes by carefully choosing nodeIds. For example, they
may arrange for every entry in a victim’s routing table
and neighbor set to point to a hostile node in a Chord
overlay. At that point, the victim’s access to the overlay
network is completely mediated by the attacker.

Attackers who can choose nodeIds can also control ac-
cess to target objects. The attacker can choose the closest
nodeIds to all replica keys for a particular target object,
thus controlling all replica roots. As a result, the attacker
could delete, corrupt, or deny access to the object. Even
when attackers cannot choose nodeIds, they may still be
able to mount all the attacks above (and more) if they can
obtain a large number of legitimate nodeIds easily. This
is known as a Sybil attack [10].

Previous approaches to nodeId assignment have ei-
ther assumed nodeIds are chosen randomly by the new
node [5] or compute nodeIds by hashing the IP address
of the node [20]. Neither approach is secure because an
attacker has the opportunity either to choose nodeIds that
are not necessarily random, or to choose an IP address
that hashes to a desired interval in the nodeId space. Par-
ticularly as IPv6 is deployed, even modest attackers will
have more potential IP addresses at their disposal than
there are likely to be nodes in a given p2p network.

3.2 Solution: certified nodeIds

One solution to securing the assignment of nodeIds is
to delegate the problem to a central, trusted authority.
We use a set of trusted certification authorities (CAs) to
assign nodeIds to principals and to sign nodeId certifi-
cates, which bind a random nodeId to the public key that
speaks for its principal and an IP address. The CAs en-
sure that nodeIds are chosen randomly from the id space,
and prevent nodes from forging nodeIds. Furthermore,
these certificates give the overlay a public key infras-
tructure, suitable for establishing encrypted and authen-
ticated channels between nodes.

Like conventional CAs, ours can be offline to reduce the
risk of exposing certificate signing keys. They are not

involved in the regular operation of the overlay. Nodes
with valid nodeId certificates can join the overlay, route
messages, and leave repeatedly without involvement of
the CAs. As with any CA infrastructure, the CA’s public
keys must be well known, and can be installed as part
of the node software itself, as is done with current Web
browsers.

The inclusion of an IP address in the certificate deserves
some explanation. Some p2p protocols, such as Tapestry
and Pastry, measure the network delay between nodes
and choose routing table entries that minimize delay. If
an attacker with multiple legitimate nodeId certificates
could freely swap certificates among nodes it controls, it
might be able to increase the fraction of attacker’s nodes
in a target node’s routing table. By binding the nodeId to
an IP address, it becomes harder for an attacker to move
nodeIds across nodes. We allow multiple nodeId certifi-
cates per IP address because the IP addresses of nodes
may change and because otherwise, attackers could deny
service by hijacking victim’s IP addresses.

A downside of binding nodeIds to IP addresses is that, if
a node’s IP address changes, either as a result of dynamic
address assignment, host mobility, or organizational net-
work changes, then the node’s old certificate and nodeId
become invalid. In p2p systems where IP addresses are
allowed to change dynamically, nodeId swapping attacks
may be unavoidable.

Certified nodeIds work well when nodes have fixed
nodeIds, which is the case in Chord, Pastry, and Tapestry.
However, it might be harder to secure nodeId assign-
ment in CAN. CAN nodeIds represent a zone in a d-
dimensional space that is split in half when a new node
joins [16]. Both the nodeId of the original node and the
nodeId of the joining node change during this process.

3.2.1 Sybil attacks

While nodeId assignment by a CA ensures that nodeIds
are chosen randomly, it is also important to prevent an
attacker from easily obtaining a large number of nodeId
certificates. One solution is to require an attacker to pay
money for certificates, via credit card or any other suit-
able mechanism. With this solution, the cost of an attack
grows naturally with the size of the network. For exam-
ple, if nodeId certificates cost $20, controlling 10% of an
overlay with 1,000 nodes costs $2,000 and the cost rises
to $2,000,000 with 1,000,000 nodes. The cost of targeted
attacks is even higher; it costs an expected $20,000 to ob-
tain the closest nodeId to a particular point in the id space
in an overlay with 1,000 nodes. Apart from making at-
tacks economically expensive, these fees can also fund
the operation of the CAs.

Another solution is to bind nodeIds to real-world iden-
tities instead of charging money. In practice, differ-
ent forms of CAs are suitable in different situations.

The identity-based CA is the preferred solution in “vir-
tual private” overlays run by an organization that al-
ready maintains employment or membership records
with strong identity checks. In an open Internet deploy-
ment, a money-only CA may be more suitable because
it avoids the complexities of authenticating real-world
identities.

None of the known solutions to nodeId assignment are
effective when the overlay network is very small. For
small overlay networks, we must require that all mem-
bers of the network are trusted not to cheat. Only when
a network reaches a critical mass, where it becomes suf-
ficiently hard for an attacker to muster enough resources
to control a significant fraction of the overlay, should un-
trusted nodes be allowed to join.

3.3 Rejected: distributed nodeId generation

The CAs represent points of failure, vulnerable to both
technical and legal attacks. Also, for some p2p net-
works, it may be cumbersome to require users to spend
money or prove their real-world identities. Therefore,
it would be desirable to construct secure p2p overlays
without requiring centralized authorities, fees or iden-
tity checks. Unfortunately, fully decentralized nodeId
assignment appears to have fundamental security limi-
tations [10]. None of the methods we are aware of can
ultimately prevent a determined attacker from acquiring
a large collection of nodeIds.

However, several techniques may be able to, at a mini-
mum, moderate the rate at which an attacker can acquire
nodeIds. One possible solution is to require prospective
nodes to solve crypto puzzles [15] to gain the right to
use a nodeId, an approach that has been taken to address
a number of denial of service attacks [13, 8]. Unfortu-
nately, the cost of solving a crypto puzzle must be accept-
able to the slowest legitimate node, yet the puzzle must
be hard enough to sufficiently slow down an attacker with
access to many fast machines. This conflict limits the ef-
fectiveness of any such technique.

For completeness, we briefly describe here one relatively
simple approach to generate certified nodeIds in a com-
pletely distributed fashion using crypto puzzles. The idea
is to require new nodes to generate a key pair with the
property that the SHA-1 hash of the public key has the
first p bits zero. The expected number of operations re-
quired to generate such a key pair is 2p. The properties
of public-key cryptography allow the nodes to use a se-
cure hash of the public key as their nodeId. This hash
should be computed using SHA-1 with a different ini-
tialization vector or MD5 to avoid reducing the number
of random bits in nodeIds. Nodes can prove that they
performed the required amount of work to use a nodeId
without revealing information that would allow others to
reuse their work. The value of p can be set to achieve the
desired level of security.

It is also possible to bind IP addresses with nodeIds to
avoid attacks on overlays that exploit network locality.
The idea is to require nodes to consume resources in or-
der to be able to use a given nodeId with an IP address.
We do this by requiring nodes to find a string x such
that SHA-1(SHA-1(ipaddr,x),nodeId) has p � bits equal to
zero. Nodes would be required to present such an x for
the pair (nodeId,ipaddr) to be accepted by others.

Finally, it is possible to periodically invalidate nodeIds
by having some trusted entity broadcast to the overlay
a message supplying a different initialization vector for
the hash computations. This makes it harder for an at-
tacker to accumulate many nodeIds over time and to
reuse nodeIds computed for one overlay in another over-
lay. However, it requires legitimate nodes to periodically
spend additional time and communication to maintain
their membership in the overlay.

4 Secure routing table maintenance

We now turn our attention to the problem of secure rout-
ing table maintenance. The routing table maintenance
mechanisms are used to create routing tables and neigh-
bor sets for joining nodes, and to maintain them after cre-
ation. Ideally, each routing table and neighbor set should
have an average fraction of only f random entries that
point to nodes controlled by the attacker (called “bad en-
tries”). But attackers can increase the fraction of bad en-
tries by supplying bad routing updates, which reduces the
probability of routing successfully to replica roots.

Preventing attackers from choosing nodeIds is necessary
to avoid this problem but it is not sufficient as illustrated
by the two attacks discussed next. We also discuss solu-
tions to this problem.

4.1 Attacks

The first attack is aimed at routing algorithms that use
network proximity information to improve routing ef-
ficiency: attackers may fake proximity to increase the
fraction of bad routing table entries. For example, the
network model that we assumed allows an attacker to
control communication to and from faulty nodes that it
controls. When a correct node p sends a probe to es-
timate delay to a faulty node with a certain nodeId, an
attacker can intercept the probe and have the faulty node
closest to p reply to it. If the attacker controls enough
faulty nodes spread over the Internet, it can make nodes
that it controls appear close to correct nodes to increase
the probability that they are used for routing. The at-
tack is harder when c (the maximal fraction of colluding
nodes) is small even if f is large.

This attack can be ruled out by a more restrictive com-
munication model, since nodeId certificates bind IP ad-
dresses to nodeIds (see Section 3.2). For example, if
faulty nodes can only observe messages that are sent to

their own IP address [19], this attack is prevented. But
note that a rogue ISP or corporation with several offices
around the world could easily perform this attack by con-
figuring their routers appropriately. The attack is also
possible if there is any other form of indirection that the
attacker can control, e.g., mobile IPv6.

The second attack does not manipulate proximity infor-
mation. Instead, it exploits the fact that it is hard to de-
termine whether routing updates are legitimate in overlay
protocols like Tapestry and Pastry. Nodes receive routing
updates when they join the overlay and when other nodes
join, and they fetch routing table rows from other nodes
in their routing table periodically to patch holes and re-
duce hop delays. In these systems, attackers can more
easily supply routing updates that always point to faulty
nodes. This simple attack causes the fraction of bad rout-
ing table entries to increase toward one as the bad routing
updates are propagated. More precisely, routing updates
from correct nodes point to a faulty node with probability
at least f whereas this probability can be as high as one
for routing updates from faulty nodes. Correct nodes re-
ceive updates from other correct nodes with probability
at most 1 � f and from faulty nodes with probability at
least f . Therefore, the probability that a routing table en-
try is faulty after an update is at least

�
1 � f � � f � f � 1,

which is greater than f . This effect cascades with each
subsequent update, causing the fraction of faulty entries
to tend towards one.

Systems without strong constraints on the set of nodeIds
that can fill each routing table slot are more vulnerable to
this attack. Pastry and Tapestry impose very weak con-
straints at the top levels of routing tables. This flexibility
makes it hard to determine if routing updates are unbi-
ased but it allows these systems to effectively exploit net-
work proximity to improve routing performance. CAN
and Chord impose strong constraints on nodeIds in rout-
ing table entries: they need to be the closest nodeIds to
some point in the id space. This makes it hard to ex-
ploit network proximity to improve performance but it is
good for security; if attackers cannot choose the nodeIds
they control, the probability that an attacker controls the
nodeId closest to a point in the id space is f .

4.2 Solution: constrained routing table

To enable secure routing table maintenance, it is impor-
tant to impose strong constraints on the set of nodeIds
that can fill each slot in a routing table. For example,
the entry in each slot can be constrained to be the closest
nodeId to some point in the id space as in Chord. This
constraint can be verified and it is independent of net-
work proximity information, which can be manipulated
by attackers.

The solution that we propose uses two routing tables:
one that exploits network proximity information for ef-
ficient routing (as in Pastry and Tapestry), and one that

constrains routing table entries (as in Chord). In normal
operation, the first routing table is used to forward mes-
sages to achieve good performance. The second one is
used only when the efficient routing technique fails. We
use the test in Section 5.2 to detect when routing fails.

We modified Pastry to use this solution. We use the nor-
mal locality-aware Pastry routing table and an additional
constrained Pastry routing table. In the locality-aware
routing table of a node with identifier i, the slot at level
l and domain d can contain any nodeId that shares the
first l digits with i and has the value d in the l � 1st digit.
In the constrained routing table, the entry is further con-
strained to point to the closest nodeId to a point p in the
domain. We define p as follows: it shares the first l digits
with i, it has the value d in the l � 1st digit, and it has the
same remaining digits as i.

Pastry’s message forwarding works with the constrained
routing table without modifications. The same would be
true with Tapestry. But the algorithms to initialize and
maintain the routing table were modified as follows.

All overlay routing algorithms rely on a bootstrap node
to initialize the routing state of a newly joining node. The
bootstrap node is responsible for routing a message using
the nodeId of the joining node as the key. If the bootstrap
node is faulty, it can completely corrupt the view of the
overlay network as seen by the new node. Therefore, it
is necessary to use a set of diverse bootstrap nodes large
enough to ensure that with very high probability, at least
one of them is correct. The use of nodeId certificates
makes the task of choosing such a set easier because the
attacker cannot forge nodeIds.

A newly joining node, n, picks a set of bootstrap nodes
and asks all of them to route using its nodeId as the key.
Then, non-faulty bootstrap nodes use secure forwarding
techniques (described in Section 5.2) to obtain the neigh-
bor set for the joining node. Node n collects the proposed
neighbor sets from each of the bootstrap nodes, and picks
the “closest” live nodeIds from each proposed set to be
its neighbor set (where the definition of closest is proto-
col specific).

The locality-aware routing table is initialized as before
by collecting rows from the nodes along the route to the
nodeId. The difference is that there are several routes; n
picks the entry with minimal network delay from the set
of candidates it receives for each routing table slot.

Each entry in the constrained routing table can be initial-
ized by using secure forwarding to obtain the live nodeId
closest to the desired point p in the id space. This is
similar to what is done in Chord. The problem is that it
is quite expensive with b � 1 (recall that b controls the
number of columns in the routing table of Tapestry and
Pastry). To reduce the overhead, we can take advantage
of the fact that, by induction, the constrained routing ta-
bles of the nodes in n’s neighbor set point to entries that

are close to the desired point p. Therefore, n can collect
routing tables from the nodes in its neighbor set and use
them to initialize its constrained routing table. From the
set of candidates that it receives for each entry, it picks
the nodeId that is closest to the desired point for that en-
try. As a side effect of this process, n informs the nodes
in its neighbor set of its arrival.

We exploit the symmetry in the constrained routing table
to inform nodes that need to update their routing tables
to reflect n’s arrival: n checks its neighbor set and the set
of candidates for each entry to determine which candi-
dates should update routing table entries to point to n. It
informs those candidates of its arrival.

To ensure neighbor set stabilization in the absence of new
joins and leaves, n informs the members of its neighbor
set whenever it changes and it periodically retransmits
this information until its receipt is acknowledged.

5 Secure message forwarding

The use of certified nodeIds and secure routing table
maintenance ensure that each constrained routing table
(and neighbor set) has an average fraction of only f ran-
dom entries that point to nodes controlled by the attacker.
But routing with the constrained routing table is not suf-
ficient because the attacker can reduce the probability of
successful delivery by simply not forwarding messages
according to the algorithm. The attack is effective even
when f is small, as we will show. This section describes
an efficient solution to this problem.

5.1 Attacks

All structured p2p overlays provide a primitive to send a
message to a key. In the absence of faults, the message is
delivered to the root node for the key after an average of
h routing hops. But routing may fail if any of the h � 1
nodes along the route between the sender and the root are
faulty; faulty nodes may simply drop the message, route
the message to the wrong place, or pretend to be the key’s
root. Therefore, the probability of routing successfully
between two correct nodes when a fraction f of the nodes
is faulty is only:

�
1 � f � h � 1, which is independent of c.

The root node for a key may itself be faulty. As discussed
before, applications can tolerate root faults by replicat-
ing the information associated with the key on several
nodes — the replica roots. Therefore, the probability
of routing successfully to a correct replica root is only:
σ � �

1 � f � h. The value of h depends on the overlay: it is�
d � 4 � �

N1 � d � in CAN, log2
�
N � � 2 in Chord, and log2b

�
N �

in Pastry and Tapestry.

We ran simulations of Pastry to validate this model. The
model predicts a probability of success slightly lower
than the probability that we observed in the simulations
(because the number of Pastry hops is slightly less than

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5
fraction of nodes compromised

p
ro

b
. o

f
su

cc
es

sf
u

l r
o

u
ti

n
g

N=1000
N=10000
N=100000
N=1000000

Figure 3: Probability of routing to a correct replica.

log2b
�
N � on average [3]) but the error was below 2%.

Figure 3 plots the probability of routing to a correct
replica in Pastry (computed using the model) for differ-
ent values of f , N, and b � 4. The probability drops
quite fast when f or N increase. Even with only 10%
of the nodes compromised, the probability of successful
routing is only 65% when there are 100,000 nodes in a
Pastry overlay.

In CAN, Pastry, and Tapestry, applications can reduce
the number of hops by increasing the value of d or b.
Fewer hops increase the probability of routing correctly.
For example, the probability of successful delivery with
f � 0 � 1 and 100,000 nodes is 65% in Pastry when b � 4
and 75% when b � 6. But increasing b also increases the
cost of routing table maintenance; a high probability of
routing success requires an impractically large value of
b. Chord currently uses a fixed b � 1, which results in
a low probability of success, e.g., the probability is only
42% under the same conditions.

5.2 Solution: detect faults, use diverse routes

The results in Figure 3 show that it is important to devise
mechanisms to route securely. We want a secure routing
primitive that takes a message and a destination key and
ensures that with very high probability at least one copy
of the message reaches each correct replica root for the
key. The question is how to do this efficiently.

Our approach is to route a message efficiently and to ap-
ply a failure test to determine if routing worked. We only
use more expensive redundant routing when the failure
test returns positive. In more detail, our secure rout-
ing primitive routes a message efficiently to the root of
the destination key using the locality-aware routing ta-
ble. Then, it collects the prospective set of replica roots
from the prospective root node and applies the failure
test to the set. If the test is negative, the prospective
replica roots are accepted as the correct ones. If it is pos-
itive, message copies are sent over diverse routes toward
the various replica roots such that with high probability
each correct replica root is reached. We start by describ-

ing how to implement the failure test. Then we explain
redundant routing and why we rejected an alternate ap-
proach called iterative routing.

5.2.1 Routing failure test

The failure test takes a key and a set of prospective
replica roots for the key. It returns negative if the set
of roots is likely to be correct for the key. Otherwise, it
returns positive. Of course, routing can fail without the
sender ever receiving a set of prospective replica roots.
The sender detects this by starting a timer when it sends
a message. If it does not receive a response before the
timer expires, the failure test returns positive triggering
the use of redundant routing.

Detecting routing failures is difficult because a coalition
of faulty nodes can pretend to be the legitimate replica
roots for a given key. Since the replica roots are de-
termined by the structure of the overlay, a node whose
nodeId is far from the key must rely on overlay routing
to determine the correct set of replica roots. But if a mes-
sage is routed by a faulty node, the adversary can fabri-
cate a credible route and replica root set that contain only
nodes it controls. Furthermore, it might be the case that
the adversary just happens to legitimately control one of
the actual replica roots. This problem is common to all
structured p2p overlay protocols.

The routing failure test is based on the observation that
the average density of nodeIds per unit of “volume” in
the id space is greater than the average density of faulty
nodeIds. The test works by comparing the density of
nodeIds in the neighbor set of the sender with the den-
sity of nodeIds close to the replica roots of the destina-
tion key. We describe the test in detail only in the context
of Pastry to simplify the presentation; the generalization
to other overlays is straightforward. Overlays that dis-
tribute replica keys for a key uniformly over the id space
can still use this check by comparing the density at the
sender with the average distance between each replica
key and its root’s nodeId.

In Pastry, the set of replica roots for a key is a subset of
the neighbor set of the key’s root node, called the key’s
root neigbor set. Each correct node p computes the aver-
age numerical distance, µp, between consecutive nodeIds
in its neighbor set. The neighbor set of p contains l � 1
live nodes: p, the l � 2 nodes with the closest nodeIds
less than p’s, and the l � 2 nodes with the closest nodeIds
greater than p’s. To test a prospective root neighbor set,
rn � id0 � � � � � idl

�
1, for a key x, p checks that:

1. all nodeIds in rn have a valid nodeId certificate, the
closest nodeId to the key is the middle one, and the
nodeIds satisfy the definition of a neighbor set

2. the average numerical distance, µrn, between con-
secutive nodeIds in rn satisfies: µrn � µp

� γ

If rn satisfies both conditions, the test returns negative;
otherwise, it returns positive. The test can be inaccurate
in one of two ways: it can return a false positive when the
prospective root neighbor set is correct, or it can return a
false negative when the prospective set is incorrect. We
call the probability of false positives α and the proba-
bility of false negatives β. The parameter γ controls the
tradeoff between α and β. Intuitively, increasing γ de-
creases α but it also increases β.

Assuming that there are N live nodes with nodeIds uni-
formly distributed over the id space (which has length
D � 2128), the distances between consecutive nodeIds
are approximately independent exponential random vari-
ables with mean D � N for large N. The same holds for the
distances between consecutive nodeIds of faulty nodes
that can collude together but the mean is D � �

c � N � . It
is interesting to note that α and β are independent of f .
They only depend on the upper bound, c, on the fraction
of colluding nodes because faulty nodes only know the
identities of faulty nodes that they collude with.

Under these assumptions, we have derived the following
expressions to compute α and β (see detailed derivation
in the Appendix):

α � n � k � γ ��� nnkke � n � k� n � 1 � ! � k � 1 � !
	 ∞

0

un � 1e � n
 u � 1 �� n � 1 � !
	 ∞

γu

vk � 1e � k
 v � 1 �� k � 1 � ! dvdu

β � n � k � γ � c ��� α � k � n � 1
γc
�

These expressions can be used to compute α and β nu-
merically. We also computed the following closed-form
upper bounds for α and β:

α
 exp ��� k � � r � 1 � log
r � γ
r � 1

� logγ ���
β
 exp ��� k ��� r � 1 � log

r � γc
r � 1

� log � γc � ���
where n is the number of distance samples used to com-
pute µp, k is the number of distance samples used to com-
pute µrn, and r � n � k. The test above used n � k � l.

The analysis shows that α and β are independent of N
(provided k � N), and that the test’s accuracy can be
improved by increasing the number of distance samples
used to compute the means. It is easy to increase the
number of samples n used to compute µp by augment-
ing the mechanism that is already in place to stabilize
neighbor sets. This mechanism propagates nodeIds that
are added and removed from a neighbor set to the other
members of the set; it can be extended to propagate
nodeIds further but we omit the details due to lack of
space. It is hard to increase the number of samples used
to compute µrn because of some attacks that we describe
below. Therefore, we keep k � l.

We ran several simulations to evaluate the effectiveness
of our routing failure test. The simulations ran in a sys-
tem with 100,000 random nodeIds. Figure 4 plots values
of α and β for different values of γ with f � c � 0 � 3, the

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 1.5 2 2.5 3
gamma

al
p

h
a

an
d

 b
et

a beta upper bound
beta predicted
beta measured
alpha measured
alpha predicted
alpha upper bound

Figure 4: Routing failure test: probability of false pos-
itives (α) and negatives (β). The predicted curves are
almost indistinguishable from the simulation measure-
ments but the upper bounds are not tight.

number of samples at the sender is n � 256, and the num-
ber of root neighbors is k � l � 32. The figure shows pre-
dicted values computed numerically, the upper bounds,
and values measured in the simulations. The predicted
curves match the measured curves almost exactly but the
upper bounds are not very tight. The minimum error
is obtained when α � β, which is equal to 0 � 0008 with
γ � 1 � 72 in this case.

Attacks: There are several attacks that could invalidate
the analysis and weaken our routing failure test. First, the
attacker can collect nodeId certificates of nodes that have
left the overlay, and use them to increase the density of
a prospective root neighbor set. Second, the attacker can
include both nodeIds of nodes it controls and nodeIds of
correct nodes in a prospective root neighbor set. Both
attacks can reduce the probability that messages reach
all correct replica roots. The second attack is harder to
counter in overlays that distribute replica keys over the id
space because replica roots have no detailed knowledge
about the nodeIds close to other replica keys.

These attacks can be avoided by having the sender con-
tact all the prospective root neighbors to determine if
they are live and if they have a nodeId certificate that
was omitted from the prospective root neighbor set. To
implement this efficiently, the prospective root returns to
the sender a message with the list of nodeId certificates,
a list with the secure hashes of the neighbor sets reported
by each of the prospective root neighbors, and the set of
nodeIds (not in the prospective root neighbor set) that are
used to compute the hashes in this list. The sender checks
that the hashes are consistent with the identifiers of the
prospective root neighbors. Then, it sends each prospec-
tive root neigbor the corresponding neighbor set hash for
confirmation.

In the absence of faults, the root neighbors will confirm
the hashes and the sender can perform the density com-

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

percentage of nodes compromised

al
p

h
a

=
b

et
a

32
64
128
256

Figure 5: Routing failure test: minimum error probabil-
ity without nodeId suppression attacks and varying num-
ber of samples.

parison immediately. For a sufficiently large timeout,
this happens with probability τ � binom

�
0;k � f � , where

binom is the binomial distribution [6] and k is the num-
ber of root neighbors. With faulty nodes in the prospec-
tive root neighbor set, the routing failure test may re-
quire more communication before the density check can
be run. We are still studying the best strategy to deal with
this case. Currently, we consider the test failed when the
prospective root neighbors don’t agree and use redundant
routing. But, it may be worthwhile investing some addi-
tional communication before reverting to redundant rout-
ing.

In addition to these attacks, there is a nodeId suppression
attack that seems to be unavoidable and significantly de-
creases the accuracy of this test. The attacker can sup-
press nodeIds close to the sender by leaving the over-
lay, which increases β. Similarly, the attacker can sup-
press nodeIds in the root neighbor set, which increases
α. Furthermore, the attacker can alternate between the
two modes and honest nodes have no way of detecting in
which mode they are operating.

We ran simulations to compute the minimum error prob-
ability (α � β) with and without nodeId suppression at-
tacks for different values of c � f . The probability of
error increases fast with c and it is higher than 0 � 001 for
c � 0 � 35 even with 256 samples at the sender. The nodeId
suppression attack increases the minimum probability of
error for large percentages of compromised nodes, e.g.,
the probability of error is higher than 0.001 for c � 0 � 2
even with 256 samples at the sender. Figures 5 and 6
show the results without and with nodeId suppression at-
tacks, respectively.

These results indicate that our routing failure test is not
very accurate. But, fortunately we can trade off an in-
crease in α to achieve a target β and use redundant rout-
ing to disambiguate false positives. We ran simulations
to determine the minimum α that can be achieved for a
target β � 0 � 001 with different values of c � f , and dif-
ferent numbers of samples at the sender. Figure 7 shows

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

percentage of nodes compromised

al
p

h
a

=
b

et
a

32
64
128
256

Figure 6: Routing failure test: minimum error probabil-
ity with nodeId suppression attacks and varying number
of samples.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

percentage of nodes compromised

al
p

h
a

w
it

h
 b

et
a=

0.
00

1

32
64
128
256

Figure 7: Routing failure test: probability of false posi-
tives for a false negative rate of 0.001 with nodeId sup-
pression attacks and varying number of samples.

the results with nodeId suppression attacks.

The results show that the test is not meaningful for this
target β and c � 0 � 3 with nodeId suppression attacks.
However, setting γ � 1 � 23 with 256 samples at the sender
enables the routing failure test to achieve the target β for
c � 0 � 3. For this value of γ and with c � 0 � 3, nodeId
suppression attacks can increase α to 0.77. But without
nodeId suppression attacks the value of α is only 0.12,
i.e., redundant routing is required 12% of the time.

5.2.2 Redundant routing

The redundant routing technique is invoked when the
routing failure test is positive. The idea is simply to route
copies of the message over multiple routes toward each
of the destination key’s replica roots. If enough copies of
the message are sent along diverse routes to each replica
key, all correct replica roots will receive at least one copy
of the message with high probability.

The issue is how to ensure that routes are diverse. One
approach is to ask the members of the sender’s neighbor
set to forward the copies of the message to the replica
keys. This technique is sufficient in overlays that dis-
tribute the replica keys uniformly over the id space (e.g.,

CAN and Tapestry). But it is not sufficient in overlays
that choose replica roots in the neighbor set of the key’s
root (e.g., Chord and Pastry) because the routes all con-
verge on the key’s root, which might be faulty. For these
overlays, we developed a technique called neighbor set
anycast that sends copies of the message toward the des-
tination key until they reach a node with the key’s root in
its neighbor set. Then it uses the detailed knowledge that
such a node has about the portion of the id space around
the destination key to ensure that all correct replica roots
receive a copy of the message.

To simplify the presentation, we only describe in detail
how redundant routing works in Pastry. If a correct node
p sends a message to a destination key x and the routing
failure test is positive, it does the following:

(1) p sends r messages to the destination key x. Each
message is forwarded via a different member of p’s
neighbor set; this causes the messages to use diverse
routes. All messages are forwarded using the constrained
routing table and they include a nonce.

(2) Any correct node that receives one of the messages
and has x’s root in its neighbor set returns its nodeId cer-
tificate and the nonce, signed with its private key, to p.

(3) p collects in a set N the l � 2 � 1 nodeId certificates
numerically closest to x on the left, and the l � 2 � 1 clos-
est to x on the right. Only certificates with valid signed
nonces are added to N and they are first marked pending.

(4) After a timeout or after all r replies are received, p
sends a list with the nodeIds in N to each node marked
pending in N and marks the nodes done.

(5) Any correct node that receives this list forwards p’s
original message to the nodes in its neighbor set that are
not in the list, or it sends a confirmation to p if there
are no such nodes. This may cause steps 2 to 4 to be
repeated.

(6) Once p has received a confirmation from each of the
nodes in N , or step 4 was executed three times, it com-
putes the set of replica roots for x from N .

If the timeout is sufficiently large and correct nodes have
another correct node in each half of their neighbor set1,
the probability of reaching all correct replica roots of x is
approximately equal to the probability that at least one of
the anycast messages is forwarded over a route with no
faults to a correct node with the key’s root in its neighbor
set. Assuming independent routes, this probability is:

1 � binom
�
0;r � �

1 � f � 1
�

log2bN �
where binom is the binomial distribution [6] with 0 suc-
cessful routes, r trials, and the probability of routing suc-
cessfully in each trial is

�
1 � f � 1

�
log2b N . The � 1 counts

1The neighbor set size l should be chosen to ensure this with high
probability

the extra hop for messages routed through a neighbor set
member. The probability of success for this technique
depends on f and is independent of c.

We also ran simulations to determine the probability of
reaching all correct replica roots with our redundant rout-
ing technique. Figure 8 plots the predicted probabil-
ity and the probability measured in the simulator for
100,000 nodes, b � 4, and l � r � 32. The analytic
model matches the results well for high success proba-
bilities. The results show that the probability of success
is greater than 0.999 for f � 0 � 3. Therefore, this tech-
nique combined with our routing failure test can achieve
a reliability of approximately 0.999 for f � 0 � 3.

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0 20 40 60 80 100

percentage of nodes compromised

p
ro

b
. o

f
su

cc
es

sf
u

l r
o

u
ti

n
g

measured
predicted

Figure 8: Model and simulation results for the probabil-
ity of reaching all correct replica roots using redundant
routing with neighbor set anycast.

We studied several versions of redundant routing that
achieve the same probability of success but perform dif-
ferently. For example, the signed nonces are used to
ensure that the nodeId certificates in N belong to live
nodes. But nodes can avoid signing nonces by peri-
odically signing their clock reading in a system with
loosely synchronized clocks, and no signatures are nec-
essary if the attacker cannot forge IP source addresses.
We are still exploring the design space. For example, it
should be possible to improve performance significantly
by sending the anycast messages one at a time and us-
ing a version of the routing failure test after each one.
This approach would also work well when reading self-
certifying data.

5.2.3 Putting it all together: performance

The performance of Pastry’s secure routing primitive de-
pends on the cost of the routing failure test, the cost of
redundant routing, and on the probability that redundant
routing can be avoided. This section presents an analysis
of these costs and probability. For simplicity, we assume
that all faulty nodes can collude (c � f), the number of
probes used by redundant routing is equal to the neighbor
set size (r � l), the number of samples at the source for
routing failure tests is n � 256, and the number of nodes
in the overlay is N � 100 � 000.

The cost of the routing failure test when it returns nega-
tive is an extra round-trip delay and 2l � 1 messages. The
total number of bytes in all messages is:

l � � IdSize � 2HashSize � � � l � 1 ��� IdCertSize � � 2l � 1 ��� HdrSize

Using PSS-R [1] for signing nodeId certificates with
1024-bit modulus and 512-bit modulus for the node pub-
lic keys, the nodeId certificate size is 128B. Therefore,
the extra bandwidth consumed by the routing failure test
is approximately 5.6 KB with l � 32 and 2.9 KB with
l � 16 (plus the space used up by message headers).
When the test returns positive, it adds the same number
of messages and bytes but the extra delay is the timeout
period.

The cost of redundant routing depends on the value of f .
The best case occurs when all of the root’s neighbor set
is added to N in the first iteration. In this case, redun-
dant routing adds log2b N � 3 extra message delays and
l � �

log2b N � 3 � messages. The total number of bytes in
these messages is:

l � � l � IdSize � IdCertSize � SigSize � � l � � log2b N � 3 ��� HdrSize

Using PSS-R for signing nonces, the signed nonce size
is 64B. Therefore, the extra bandwidth consumed in this
case is 22 KB with l � 32 and 7 KB with l � 16 (plus the
space used up by message headers).

Under attack redundant routing adds a delay of at most
three timeout periods and the expected number of extra
messages is less than l � �

log2b N � 2 � � �
l � g � � �

3 � g � ,
where g � l � �

1 � f � log2b N
�

1 is the expected number of
correct nodes in the root’s neighbor set that is added to N
in the first iteration. The expected number of messages is
less than 451 with l � 32 and f � 0 � 25 and less than 188
with l � 16 and f � 0 � 18. The total number of bytes sent
under attack is similar to the best case value except that
the sender sends an additional l

�
l � g � � IdSize bytes in

nodeId lists and the number of messages increases. This
is an additional 12 KB with l � 32 and f � 0 � 25 and
1 KB with l � 16 and f � 0 � 18 (plus the space used up
by message headers).

The probability of avoiding redundant routing is given
by σ � τ � �

1 � α � , where σ is the probability that the
overlay routes the message to the correct replica root, τ
is the probability that there are no faulty nodes in the
neighbor set of the root, and α is the false positive rate of
the routing failure test. We use σ � �

1 � f � log2b N , which
assumes that routing tables have an average of f random
bad entries. This assumption holds for the locality-aware
routing table in the absence of the attacks discussed in
Section 4 and it holds for the constrained routing table
even with these attacks. We do not have a good model of
the effect of these attacks on the locality aware routing
table but we believe that they are very hard to mount for
small values of f (� 0 � 1).

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1

0 0.02 0.04 0.06 0.08 0.1

fraction of nodes compromised

p
ro

b
. n

o
 r

ed
u

n
d

an
t

ro
u

ti
n

g

scenario 1
scenario 2

Figure 9: Probability of avoiding redundant routing in
two scenarios: (1) f � 0 � 18 � Σ � 0 � 999 with γ � 1 � 8
and l � 16, and (2) f � 0 � 25 � Σ � 0 � 999 with γ � 1 � 58
and l � 32.

The parameters γ and l, should be set based on the de-
sired security level, which can be expressed as the prob-
ability Σ that all correct replica roots receive a copy of
the message. The overlay size and the assignment of val-
ues to the parameters implicitly define a bound on f . If
this bound is exceeded, Σ will drop. For example, we
saw that f � 0 � 3 � Σ � 0 � 999 with γ � 1 � 23 and l � 32.
But redundant routing is invoked 12% of the time for this
value of γ even with no faults.

One can trade off security for improved performance by
increasing γ to reduce α, and by decreasing l to reduce
the cost of the routing failure test and redundant routing
and to increase τ. For example, consider the following
two scenarios: (1) f � 0 � 18 � Σ � 0 � 999 with γ � 1 � 8
and l � 16, and (2) f � 0 � 25 � Σ � 0 � 999 with γ � 1 � 58
and l � 32. Figure 9 plots the probability of avoiding re-
dundant routing in these two scenarios for different val-
ues of f . Without faults, redundant routing is invoked
only 0.5% of the time in scenario (1) and 0.4% in (2).
In the common case when the fraction of faulty nodes is
small, the routing failure test improves performance sig-
nificantly by avoiding the cost of redundant routing.

5.2.4 Rejected: checked iterative routing

An alternative to redundant routing is iterative routing,
as suggested in Sit and Morris [19]: the sender starts by
looking up the next hop in its routing table and setting
a variable n to point to this node; then, the sender asks
n for the next hop and updates n to point to the returned
value. The process is repeated until this value is the root
of the destination key.

Iterative routing doubles the cost relative to the more tra-
ditional recursive solution but it may increase the proba-
bility of routing successfully because it allows the sender
to pick an alternative next hop when it fails to receive an
entry from a node. This is not a strong defense against an
attacker who can provide a faulty node as the next hop.
However, iterative routing can be augmented with hop

tests to check whether the next hop in a route is correct.

Hop tests are effective in systems like Chord or Pastry
with the constrained routing table because each routing
table entry should contain the nodeId closest to a specific
point p in the id space. One can use a mechanism iden-
tical to the nodeId density checking that we used for the
routing failure test. The only difference is that the av-
erage distance between consecutive nodeIds close to the
sender is compared to the distance between the nodeId
in the routing table entry and the desired point p. We
ran simulations to compute the false positive and false
negative rates for this approach with different values of c
(these rates are independent of f). For example, the min-
imum error for this hop test (α � β) is equal to approx-
imately 0.35 with c � 0 � 3 and 256 samples to compute
the mean at the sender.

The error is high because there is a single sample at the
destination hop. However, our simulations indicate that
iterative lookups using Pastry’s constrained routing table
with this hop check improve the probability of routing
successfully. For example, the probability of routing suc-
cessfully with c � 0 � 3, N � 100 � 000, b � 4, l � 32, and
256 samples to compute the mean at the sender, improves
from below 0.3 to 0.4. But it adds an extra 2.7 hops to
each route on average because of false positives.

We tried to increase the number of samples by having
the sender fetch an entire routing table row during each
iterative routing step without revealing the index of the
required slot. Unfortunately, this performs worse than
obtaining a single sample because the attacker can com-
bine good and bad routing table entries to obtain a high
average density.

We also tried to combine checked iterative routing with
the redundant routing technique that we described be-
fore. We used checked iterative routing for the neigh-
bor set anycast messages in the hope that the improved
success probability for the iterative routes would result
in an improvement over redundant routing with recur-
sive routes. But there was no visible improvement, most
likely because the iterative routes are less independent
than the recursive routes. We conclude that the routing
failure test combined with redundant routing is the most
effective solution for implementing secure routing.

6 Self-certifying data

The secure routing primitive adds significant overhead
over conventional routing. In this section, we describe
how the use of secure routing can be minimized by using
self-certifying data.

The reliance on secure routing can be reduced by stor-
ing self-certifying data in the overlay, i.e., data whose
integrity can be verified by the client. This allows clients
to use efficient routing to request a copy of an object.

If a client receives a copy of the object, it can check
its integrity and resort to secure routing only when the
integrity check fails or there was no response within a
timeout period.

Self-certifying data does not help when inserting new ob-
jects in the overlay or when verifying that an object is not
stored in the overlay. In these cases, we use the secure
routing primitive to ensure that all correct replica roots
are reached. Similarly, node joining requires secure rout-
ing. Nevertheless, self-certifying data can eliminate the
overhead of secure routing in common cases.

Self-certifying data has been used in several systems. For
example, CFS [7] uses a cryptographic hash of a file’s
contents as the key during insertion and lookup of the
file, and PAST [18] inserts signed files into the overlay.

The technique can be extended to support mutable ob-
jects with strong consistency guarantees. One can use a
system like PAST to store self-certifying group descrip-
tors that identify the set of hosts responsible for replicat-
ing the object. Group descriptors can be used as follows.
At object creation time, the owner of the object uses se-
cure routing to insert a group descriptor into the over-
lay under a key that identifies the object. The descriptor
contains the public keys and IP addresses of the object’s
replica holders and it is signed by the owner.

The replica group can run a Byzantine-fault-tolerant
replication algorithm like BFT [4] and the initial group
membership is the set of replica roots associated with
the key. In this setting, read and write operations can be
performed as follows: the client uses efficient routing to
retrieve a group descriptor from the overlay and checks
the descriptor’s signature; if correct, it uses the informa-
tion in the descriptor to authenticate the replica holders
and to invoke a replicated operation. If the client fails
to retrieve a valid descriptor or if it fails to authenticate
the replica holders, it uses the secure routing primitive to
obtain a correct group descriptor or to assert that the ob-
ject does not exist. This procedure provides strong con-
sistency guarantees (linearizability [11]) for reads and
writes while avoiding the routing failure test in the com-
mon case.

Changing the membership of the group that is respon-
sible for replicating an object is not trivial; it requires
securely inserting a new group descriptor in the overlay
and ensuring that clients can reliably detect stale group
descriptors. The following technique allows groups to
change membership while retaining strong consistency
guarantees. Each group of hosts that stores replicas of
a given object maintains a private/public key pair as-
sociated with the group. When the group membership
changes, each host in the new membership generates a
new key pair for the group, the hosts in the old mem-
bership use their old keys to sign a new group descriptor
containing the new keys, and then delete the old keys.

If this operation is performed by a quorum of replica
holders before the bound on the number of faulty group
members is exceeded [4], old replica holders that fail
will not be able to collude to pretend they are the current
group because they cannot form the quorum necessary to
authenticate themselves to a client.

Group descriptors can be authenticated by following a
signature chain that starts with an owner signature and
has signatures of a quorum of replicas for each subse-
quent membership change. The chain can be shortened
by a new signature from the owner or, alternatively, repli-
cas can use proactive signature sharing [12] to avoid the
need for chaining signatures.

7 Related work

Sit and Morris [19] present a framework for perform-
ing security analyses of p2p networks. Their adversarial
model allows for nodes to generate packets with arbi-
trary contents, but assumes that nodes cannot intercept
arbitrary traffic. They then present a taxonomy of pos-
sible attacks. At the routing layer, they identify node
lookup, routing table maintenance, and network parti-
tioning / virtualization as security risks. They also dis-
cuss issues in higher-level protocols, such as file storage,
where nodes may not necessarily maintain the necessary
invariants, such as storage replication. Finally, they dis-
cuss various classes of denial-of-service attacks, includ-
ing rapidly joining and leaving the network, or arranging
for other nodes to send bulk volumes of data to overload
a victim’s network connection (i.e., distributed denial of
service attacks).

Dingledine et al. [9] and Douceur [10] discuss address
spoofing attacks. With a large number of potentially ma-
licious nodes in the system and without a trusted central
authority to certify node identities, it becomes very dif-
ficult to know whether you can trust the claimed identity
of somebody to whom you have never before commu-
nicated. Dingledine proposes to address this with vari-
ous schemes, including the use of micro-cash, that allow
nodes to build up reputations.

Bellovin [2] identifies a number of issues with Napster
and Gnutella. He discusses how difficult it might be to
limit Napster and Gnutella use via firewalls, and how
they can leak information that users might consider pri-
vate, such as the search queries they issue to the network.
Bellovin also expresses concern over Gnutella’s “push”
feature, intended to work around firewalls, which might
be useful for distributed denial of service attacks. He
considers Napster’s centralized architecture to be more
secure against such attacks, although it requires all users
to trust the central server.

It is worthwhile mentioning a very elegant alternative so-
lution for secure routing table maintenance and forward-
ing that we rejected. This solution replaces each node

by a group of diverse replicas as suggested by Lynch et
al. [14]. The replicas are coordinated using a state ma-
chine replication algorithm like BFT [4] that can tolerate
Byzantine faults. BFT can replicate arbitrary state ma-
chines and, therefore, it can replicate Pastry’s routing ta-
ble maintenance and forwarding protocols. Additionally,
the algorithm in [14] provides strong consistency guar-
antees for overlay routing and maintenance.

However, there are two disadvantages: the solution is ex-
pensive even without faults, and it is less resilient than
the solution that we propose. Each routing step is expen-
sive because it requires an agreement protocol between
the replicas. Since the replicas should be geographically
dispersed to reduce the probability of correlated faults,
agreement latency will be high. Additionally, each group
of replicas must have less than 1 � 3 of its nodes faulty.
This bound on the number of faulty replicas per group re-
sults in a relatively low probability of successful routing.
The probability that a replica group with r replicas is cor-
rect when a fraction f of the nodes in the Pastry overlay

is compromised is ∑
�
r � 3 �

i � 0 binom
�
i;r � f � , where binom de-

notes the binomial distribution with i successes, r trials,
and probability of success f . For example, the probabil-
ity that a replica group is correct with 20% of the nodes
compromised and 32 replicas is less than 93%. In this ex-
ample, the probability of routing correctly with 100,000
nodes in the overlay is only 72%.

8 Conclusions

Structured peer-to-peer overlay networks have previ-
ously assumed a fail-stop model for nodes; any node ac-
cessible in the network was assumed to correctly follow
the protocol. However, if nodes are malicious and con-
spire with each other, it is possible for a small number
of nodes to compromise the overlay and the applications
built upon it. This paper has presented the design and
analysis of techniques for secure node joining, routing
table maintenance, and message forwarding in structured
p2p overlays. These techniques provide secure routing,
which can be combined with existing techniques to con-
struct applications that are robust in the presence of ma-
licious participants. A routing failure test allows the
use of efficient proximity-aware routing in the common
case, resorting to the more costly redundant routing tech-
nique only when the test indicates possible interference
by an attacker. Moreover, we show how the use of secure
routing can be reduced by using self-certifying applica-
tion data. These techniques allow us to tolerate up to
25% malicious nodes while providing good performance
when the fraction of compromised nodes is small.

Acknowledgments

We wish to thank Robert Morris, Rodrigo Rodrigues, Fa-
bien Petitcolas, our shepherd David Wetherall and the

anonymous referees for their helpful comments. We also
wish to thank Adam Stubblefield for many discussions
on the nodeId assignment problem. This work was sup-
ported in part by grants from Texas ATP (003604-0079-
2001) and NSF (CCR-9985332).

References
[1] M. Bellare and P. Rogaway. The exact security of digital

signatures- How to sign with RSA and Rabin. In Advances in
Cryptology - EUROCRYPT 96, Lecture Notes in Computer Sci-
ence, Vol. 1070. Springer-Verlag, 1996.

[2] Steve Bellovin. Security aspects of Napster and Gnutella. In 2001
Usenix Annual Technical Conference, Boston, Massachusetts,
June 2001. Invited talk.

[3] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Row-
stron. Exploiting network proximity in peer-to-peer overlay net-
works. Technical Report MSR-TR-2002-82, Microsoft Research,
May 2002.

[4] Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI’99), New Orleans,
Louisiana, February 1999.

[5] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A distributed anonymous information storage
and retrieval system. In Workshop on Design Issues in Anonymity
and Unobservability, pages 311–320, July 2000. ICSI, Berkeley,
California.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Electrical Engineering and
Computer Science Series. MIT Press, 1990.

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Wide-area cooperative storage with CFS. In Proc.
ACM SOSP’01, Banff, Canada, October 2001.

[8] Drew Dean and Adam Stubblefield. Using client puzzles to pro-
tect TLS. In 10th Usenix Security Symposium, pages 1–8, Wash-
ington, D.C., August 2001.

[9] Roger Dingledine, Michael J. Freedman, and David Molnar. Ac-
countability measures for peer-to-peer systems. In Peer-to-Peer:
Harnessing the Power of Disruptive Technologies. O’Reilly and
Associates, November 2000.

[10] John R. Douceur. The Sybil attack. In Proceedings for the 1st
International Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, Massachusetts, March 2002.

[11] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In
Proceedings of 14th ACM Symposium on Principles of Program-
ming Languages, pages 13–26, January 1987.

[12] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive public key and signature systems. In Proc.
of the 1997 ACM Conference on Computers and Communication
Security, 1997.

[13] Ari Juels and John Brainard. Client puzzles: A cryptographic
defense against connection depletion attacks. In Internet Society
Symposium on Network and Distributed System Security (NDSS
’99), pages 151–165, San Diego, California, February 1999.

[14] Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic data
access in content addressable networks. In Proceedings for the
1st International Workshop on Peer-to-Peer Systems (IPTPS ’02),
Cambridge, Massachusetts, March 2002.

[15] Ralph C. Merkle. Secure communications over insecure chan-
nels. Communications of the ACM, 21(4):294–299, April 1978.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM’01, San Diego, California, August 2001.

[17] Antony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, November 2001.

[18] Antony Rowstron and Peter Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility. In Proc. ACM SOSP’01, Banff, Canada, October 2001.

[19] Emil Sit and Robert Morris. Security considerations for peer-
to-peer distributed hash tables. In Proceedings for the 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’02), Cam-
bridge, Massachusetts, March 2002.

[20] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. ACM SIGCOMM’01,
San Diego, California, August 2001.

[21] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph.
Tapestry: An infrastructure for fault-resilient wide-area location
and routing. Technical Report UCB//CSD-01-1141, U. C. Berke-
ley, April 2001.

Appendix

This appendix describes an analytic model for the probability
of false positives and negatives in the routing failure test.

We assume that there exist N nodeIds distributed uniformly at
random on an interval of length D � 2128. If N is large and
we look at the K nodeIds closest to an arbitrarily chosen loca-
tion on this interval (for some K

�
N), the location of these

K nodeIds is well approximated in distribution by a Poisson
process of rate N � D. In particular, the inter-point distances are
approximately independent exponential random variables with
mean D � N.

Let F1 denote the exponential distribution with mean µ1 � D � N
and F2 the exponential distribution with mean µ2 � D � N f ,
where f is the fraction of faulty nodes. Suppose y1 ��������� yk
are independent identically distributed (iid) and are drawn from
one of these two distributions and we are required to identify
which distribution they are drawn from, e.g., y1 ��������� yk can be
a prospective set of replica roots in Pastry and we are trying to
determine if the set is correct or if it contains only faulty nodes.
An optimal hypothesis test is based on comparing the likeli-
hood ratio to a threshold; by writing down the likelihood ratio,
we see that this is equivalent to comparing the sample mean,
denoted µy, to a threshold T .

We are in a situation where N is unknown but we have samples
x1 ��������� xn from F1 (i.e., the samples that we collect from the
nodeIds close to the sender in the id space). We propose the
following hypothesis test: choose a threshold of the form γµx,
for some constant γ ��� 1 � 1 � f 	 , and accept/reject the hypothesis
that Yi are iid F1 by comparing µy to this threshold. We now
compute the false positive probability, α, and the false negative
probability, β, for this test.

Denote n � k by r and assume without loss of generality that r is
an integer. For i � 1 ��������� k, define

Zi � Yi
 γ
r
� X � i � 1
 r � 1 � ����� � Xir 	 �

and note that the Zi are iid random variables. Let S j denote
the sum of j iid exponential random variables with mean µ1 �
D � N. The event that µY � γµX is then the event that ∑k

i � 1 Zi � 0.

Thus,

α � n � k � γ 	�� P1 � k

∑
i � 1

Zi � 0 	�� P � 1
k

Sk � γ
n

Sn 	 � (1)

where we write P1 to denote probabilities when the Yi have dis-
tribution F1. Recalling that S j has the gamma distribution with
shape parameter j and scale parameter 1 � µ1, we can rewrite the
above as

α � n � k � γ 	���� ∞

0

� x � µ1 	 n � 1

µ1 � n
 1 	 ! e � µ1x � ∞

γk
n

� x � µ1 	 k � 1

µ1 � k
 1 	 ! e � µ1ydydx

� nnkke � n � k� n
 1 	 ! � k
 1 	 ! � ∞

0

un � 1e � n � u � 1
� n
 1 	 ! � ∞

γu

vk � 1e � k � v � 1
� k
 1 	 ! dvdu

where we used the change of variables u � x ��� nµ1 	 and v �
y ��� kµ1 	 to obtain the last equality. This expression can be used
to compute α numerically.

We now derive a simple closed-form expression for an upper
bound on α. The bound shows that α decays exponentially
in the sample size, k, and in fact captures the exact exponential
rate of decay. For arbitrary θ � 0, we have by Chernoff’s bound
that

α � E � exp � θ k

∑
i � 1

Zi 	������ E � eθY1 � � k �
E � exp �
 γθ

r
X1 	�� � rk

Now, if X has an exponential distribution with mean µ, then
E � eθX � is 1 ��� 1
 θµ 	 for θ 1 � µ and � ∞ for θ � 1 � µ. Thus,
for all θ �!� 0 � 1 � µ1 	 , we have

logα �
 k log � 1
 θµ1 	
 rk log � 1 � γθµ1

r
	

The tightest upper bound is obtained by minimising the expres-
sion on the right over θ �"� 0 � 1 � µ1 	 . The minimum is attained
at θ � r

r � 1
γ � 1
γµ1

. Substituting this above yields the bound,

α � exp #
 k $%� r � 1 	 log
r � γ
r � 1
 logγ &(' (2)

We can derive an expression for the false negative probability,
β, along similar lines. Now, the Yi are iid with distribution F2,
i.e., they are exponentially distributed with mean µ2 � µ1 � f ,
and we are interested in the event that µY � γµX . If this hap-
pens, then we fail to reject the hypothesis that the Yi have dis-
tribution F1. Thus

β � n � k � γ � f 	�� P2 � k

∑
i � 1

Zi � 0 	 �
where we write P2 to denote probabilities when the Yi are

exponential with mean µ1 � f . In this case, Y1 has the same
distribution as X1 � f , so ∑k

i � 1 Yi has the same distribution as� ∑k
i � 1 Xi 	�� f , and we obtain using (1) that

β � n � k � γ � f)� P � 1
k

S1
k

f
 γ

n
S2

n 	*� P � 1
n

S2
n � 1

γ f
1
k

S1
k 	*� α � k � n � 1

γ f
	

This allows us to compute β numerically and by combining
this with (2), we obtain the following closed-form upper bound

β � exp #
 k $ � r � 1 	 log
r � γ f
r � 1
 log � γ f 	 & '

