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Abstract 

We consider cluster-based network servers in which a 
front-end directs incoming requests to one of a num- 
ber of back-ends. Specifically, we consider content-based 
request distribution: the front-end uses the content re- 
quested, in addition to information about the load on 
the back-end nodes, to choose which back-end will han- 
dle this request. Content-based request distribution can 
improve locality in the back-ends’ main memory caches, 
increase secondary storage scalability by partitioning 
the server’s database, and provide the ability to employ 
back-end nodes that are specialized for certain types of 
requests. 

As a specific policy for content-based request dis- 
tribution, we introduce a simple, practical strategy 
for locality-aware request distribution (LARD). With 
LARD, the front-end distributes incoming requests in 
a manner that achieves high locality in the back-ends’ 
main memory caches as well as load balancing. Local- 
ity is increased by dynamically subdividing the server’s 
working set over the back-ends. Trace-based simulation 
results and measurements on a prototype implemen- 
tation demonstrate substantial performance improve- 
ments over state-of-the-art approaches that use only 
load information to distribute requests. On workloads 
with working sets that do not fit in a single server node’s 
main memory cache, the achieved throughput exceeds 
that of the state-of-the-art approach by a factor of two 
to four. 

With content-based distribution, incoming requests 
must be handed off to a back-end in a manner trans- 
parent to the client, after the front-end has inspected 
the content of the request. To this end, we introduce an 
efficient TCP handoflprotocol that can hand off an es- 
tablished TCP connection in a client-transparent man- 
ner. 
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1 Introduction 

Network servers based on clusters of commodity work- 
stations or PCs connected by high-speed LANs combine 
cutting-edge performance and low cost. A cluster-based 
network server consists of a front-end, responsible for re- 
quest distribution, and a number of back-end nodes, re- 
sponsible for request processing. The use of a front-end 
makes the distributed nature of the server transparent 
to the clients. In most current cluster servers the front- 
end distributes requests to back-end nodes without re- 
gard to the type of service or the content requested. 
That is, all back-end nodes are considered equally capa- 
ble of serving a given request and the only factor guiding 
the request distribution is the current load of the back- 
end nodes. 

With content-based request distribution, the front- 
end takes into account both the service/content re- 
quested and the current load on the back-end nodes 
when deciding which back-end node should serve a given 
request. The potential advantages of content-based re- 
quest distribution are: (1) increased performance due 
to improved hit rates in the back-end’s main memory 
caches, (2) increased secondary storage scalability due 
to the ability to partition the server’s database over the 
different back-end nodes, and (3) the ability to employ 
back-end nodes that are specialized for certain types of 
requests (e.g., audio and video). 

The locality-aware request distribution(LARD) strat- 
egy presented in this paper is a form of content-based 
request distribution, focusing on obtaining the first of 
the advantages cited above, namely improved cache hit 
rates in the back-ends. Secondary storage scalability 
and special-purpose back-end nodes are not discussed 
any further in this paper. 

Figure 1 illustrates the principle of LARD in a simple 
server with two back-ends and three targets’ (A,B,C) in 
the incoming request stream. The front-end directs all 
requests for A to back-end 1, and all requests for B and 
C to back-end 2. By doing so, there is an increased like- 
lihood that the request finds the requested target in the 
cache at the back-end. In contrast, with a round-robin 
distribution of incoming requests, requests of all three 

‘In the following discussion, the term target is being used 
to refer to a specific object requested from a server. For an 
HTTP server, for instance, a target is specified by a URL and 
any applicable arguments to the HTTP GET command. 
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Figure 1: Locality-Aware Request Distribution 

targets will arrive at both back-ends. This increases the 
likelihood of a cache miss, if the sum of the sizes of the 
three targets, or, more generally, if the size of the work- 
ing set exceeds the size of the main memory cache at an 
individual back-end node. 

Of course, by naively distributing incoming requests 
in a content-based manner as suggested in Figure 1, the 
load between different back-ends might become unbal- 
anced, resulting in worse performance. The first ma- 
jor challenge in building a LARD clust,er is therefore to 
design a practical and efficient strategy that simultane- 
ously achieves load balancing and high cache hit rates 
on the back-ends. The second challenge stems from the 
need for a protocol that allows the front-end to hand off 
an established client connection to a back-end node, in 
a manner that is transparent to clients and is efficient 
enough not to render the front-end a bottleneck. This 
requirement results from the front-end’s need to inspect 
the target content of a request prior to assigning the 
request to a back-end node. This paper demonstrates 
t,hat these challenges can be met, and that LARD pro- 
duces substantially higher throughput than the state-of- 
the-art approaches where request distribution is solely 
based on load balancing, for workloads whose working 
set exceeds the size of the individual node caches. 

Increasing a server’s cache effectiveness is an impor- 
tant step towards meeting the demands placed on cur- 
rent and future network servers. Being able to cache the 
working set is critical to achieving high throughput, as 
a state-of-the-art disk device can deliver no more than 
120 block requests/set, while high-end network servers 
will be expected to serve thousands of document re- 
quests per second. Moreover, typical working set sizes 
of web servers can be expected to grow over time, for 
two reasons. First, the amount of content made avail- 
able by a single organization is typically growing over 
time. Second, there is a trend towards centralization 
of web servers within organizations. Issues such as cost 
and ease of administration, availability, security, and 
high-capacity backbone network access cause organiza- 
tions to move towards large, centralized network servers 
that handle all of the organization’s web presence. Such 
servers have to handle the combined working sets of all 
the servers they supersede. 

With round-robin distribution, a cluster does not 
scale well to larger working sets, as each node’s main 
memory cache has to fit the entire working set. With 
LARD, the effective cache size approaches the sum of 
t,he node cache sizes. Thus, adding nodes to a cluster 
can accommodate both increased traffic (due to addi- 
t,ional CPU power) and larger working sets (due to the 
increased effective cache size). 

This paper presents the following contributions: 
1. a practical and efficient LARD strategy that achieves 
high cache hit rates and good load balancing, 

Back-end nodes 

2. a trace-driven simulation that demonstrates the per- 
formance potential of locality-aware request distribu- 
tion, 

3. an efficient TCP ha&o@ protocol, that enables 
content-based request distribution by providing client- 
transparent connection handoff for TCP-based network 
services, and 

4. a performance evaluation of a prototype LARD 
server cluster, incorporating the TCP handoff protocol 
and the LARD strategy. 

The outline of the rest of this paper is as follows: 
In Section 2 we develop our strategy for locality-aware 
request distribution. In Section 3 we describe the model 
used to simulate the performance of LARD in compari- 
son to other request distribution strategies. In Section 4 
we present the results of the simulation. In Section 5 
we move on to the practical implementation of LARD, 
particularly the TCP handoff protocol. We describe the 
experimental environment in which our LARD server 
is implemented and its measured performance in Sec- 
tion 6. We describe related work in Section 7 and we 
conclude in Section 8. 

2 Strategies for Request Distribution 

2.1 Assumptions 

The following assumptions hold for a11 request distribu- 
tion strategies considered in this paper: 
l The front-end is responsible for handing off new con- 
nections and passing incoming data from the client to 
the back-end nodes. As a result, it must keep track of 
open and closed connections, and it can use this infor- 
mation in making load balancing decisions. The front- 
end is not involved in handling outgoing data, which is 
sent directly from the back-ends to the clients. 

l The front-end limits the number of outstanding re- 
quests at the back-ends. This approach allows the front- 
end more flexibility in responding to changing load on 
the back-ends, since waiting requests can be directed to 
back-ends as capacity becomes available. In contrast, 
if we queued requests only on the back-end nodes, a 
slow node could cause many requests to be delayed even 
though other nodes might have free capacity. 
. Any back-end node is capable of serving any target, 
although in certain request distribution strategies, the 
front-end may direct a request only to a subset of the 
back-ends. 

2.2 Aiming for Balanced Load 

In stat,e-of-the-art cluster servers, the front-end uses 
,we%ghled round-robin request distribution [7, 141. The 
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incoming requests are distributed in round-robin fash- 
ion, weighted by some measure of the load on the differ- 
ent back-ends. For instance, the CPU and disk utiliza- 
tion, or the number of open connections in each back- 
end may be used as an estimate of the load. 

This strategy produces good load balancing among 

the back-ends. However, since it does not consider the 
type of service or requested document in choosing a 
back-end node, each back-end node is equally likely to 
receive a given t,ype of request. Therefore, each hack- 
end node receives an approximately identical working 
set of requests, and caches an approximately identical 
set of documents. If this working set exceeds the size of 
main memory available for caching documents, frequent 
cache misses will occur. 

2.3 Aiming for Locality 

In order to improve locality in the back-end’s cache, 
a simple front-end strategy consists of partitioning the 
name space of the database in some way, and assign- 
ing request for all targets in a particular partition to a 
particular back-end. For instance, a hash function can 
be used to perform the partitioning. We will call this 
strategy locakity-based [LB]. 

A good hashing function partitions both the name 
space and the working set more or less evenly among the 
back-ends. If this is the case, the cache in each back-end 
should achieve a much higher hit rate, since it is only 
trying to cache its subset of the working set, rather than 
the entire working set, as with load balancing based 
approaches. What is a good partitioning for locality 
may, however, easily prove a poor choice of partitioning 
for load balancing. For example, if a small set of targets 
in the working set account for a large fraction of the 
incoming requests, the back-ends serving those targets 
will be far more loaded than others. 

2.4 Basic Locality-Aware Request Distribution 

The goal of LARD is to combine good load balancing 
and high locality. We develop our strategy in two steps. 
The basic strategy, described in this subsection, always 
assigns a single back-end node to serve a given target, 
thus making the idealized assumption that a single tar- 
get cannot by itself exceed the capacity of one node. 
This restriction is removed in the next subsection, where 
we present the complete strategy. 

Figure 2 presents pseudo-code for the basic LARD. 
The front-end maintains a one-to-one mapping of tar- 
gets to back-end nodes in the server array. When the 
first request arrives for a given target, it is assigned a 
back-end node by choosing a lightly loaded back-end 
node. Subsequent requests are directed to a target’s as- 
signed back-end node, unless that node is overloaded. 
In the latter case, the target is assigned a new back-end 
node from,the current set of lightly loaded nodes. 

A node’s load is measured as the number of active 
connections, i.e., connections that have been handed off 
to the node, have not yet completed, and are show- 
ing request activity. Observe that an overloaded node 
will fall behind and the resulting queuing of requests 
will cause its number of active connections to increase, 
while the number of active connections at an under- 
loaded node will tend to zero. Monitoring the relative 

while (true) 
fetch next request r; 
if server[r.target] = null then 

n, server[r.target] t {least, loaded node}; 
else 

n C server[r.target]; 
if (n.load > TtLtgh &&. 3 node with load < X,,) 11 

n.load 2 2 * Thzsh then 
n, server[r.target] t {least loaded node}; 

send r to n; 

Figure 2: The Basic LARD Strategy 

number of active connections allows the front-end to es- 
timate the amount of “outstanding work” and thus the 
relative load on a back-end without requiring explicit 
communication with the back-end node. 

The intuition for the basic LARD strategy is as fol- 
lows: The distribution of targets when they are first re- 
quested leads to a partitioning of the name space of the 
database, and indirectly to a partitioning of the working 
set, much in the same way as with the strategy purely 
aiming for locality. It also derives similar locality gains 
from doing so. Only when there is a significant load im- 
balance do we diverge from this strategy and re-assign 
targets. The definition of a “significant load imbalance” 
tries to reconcile two competing goals. On one hand, we 
do not want greatly diverging load values on different 
back-ends. On the other hand, given the cache misses 
and disk activity resulting from re-assignment, we do 
not want to re-assign targets to smooth out only minor 
or temporary load imbalances. It suffices to make sure 
that no node has idle resources while another back-end 
is dropping behind. 

We define TL,, as the load (in number of active con- 
nections) below which a back-end is likely to have idle 
resources. We define Thrgh as the load above which a 
node is likely to cause substantial delay in serving re- 
quests. If a situation is detected where a node has a 
load larger than lilg,, while another node has a load 
less than Tl,,, a target is moved from the high-load to 
the low-load back-end. In addition, to limit the delay 
variance among different nodes, once a node reaches a 
load of 2Thrghr a target is moved to a less loaded node, 
even if no node has a load of less than Tt,,. 

If the front-end did not limit the total number of ac- 
tive connections admitted into the cluster, the load on 
all nodes could rise to 2ThEgh, and LARD would then 
behave like WRR. To prevent this, the front-end Iim- 
its the sum total of connections handed to all back-end 
nodes to the value S = (n - 1) * Thrgh + x0, - 1, where 
ra is the number of back-end nodes. Setting S to this 
value ensures that at most n - 2 nodes can have a load 
> Th,sh, while no node has load < T&,. At the same 
time, enough connections are admitted to ensure all n 
nodes can have a load above Tl,, (i.e., be fully utilized) 
and still leave room for a limited amount of load imbal- 
ance between the nodes (to prevent unnecessary target 
reassignments in the interest of locality). 

The two conditions for deciding when to move a tar- 
get attempt to ensure that the cost of moving is incurred 
onlv when the load difference is substantial enough to 
warrant doing so. Whenever a target gets reassigned, 
our two tests combined with the definition of S ensure 
that t#he load difference between the old and new tar- 

207 



gets is at least 7jllgh - Tl,,,. To see this, note that the 
definition of S implies that there must always exist a 
node with a load < Th+. The maximal load imbalance 
that can arise is 2Thtgh - Tl,,. 

The appropriate setting for X,, depends on the 
speed of the back-end nodes. In practice, TL,, should be 
chosen high enough to avoid idle resources on back-end 
nodes, which could cause throughput loss. Given Ti,,, 
choosing Thrgh involves a tradeoff. Thtgh - Tl,, should 
be low enough to limit the delay variance among the 
back-ends to acceptable levels, but high enough to tol- 
erate limited load imbalance and short-term load fluc- 
tuations without destroying locality. 

Simulations to test the sensitivity of our strategy to 
these parameter settings show that the maximal delay 
difference increases approximately linearly with ThEgh - 
X,,. The throughput increases mildly and eventually 
flattens as Thrgh -Ti,, increases. Therefore, Thigh should 
be set to the largest possible value that still satisfies the 
desired bound on the delay difference between back-end 
nodes. Given a desired maximal delay difference of D 
sets and an average request service time of R sets, Thigh 
should be set to (Tl,, + D/R)/2, subject to the obvi- 
ous constraint that Thigh > Tl,,. The setting of Tl,, 
can be conservatively high with no adverse impact on 
throughput and only a mild increase in the average de- 
lay. Furthermore, if desired, the setting of x,, can be 
easily automated by requesting explicit load information 
from the back-end nodes during a “training phase”. In 
our simulations and in the prototype, we have found set- 
tings of Tr,, = 25 and Th,sh = 65 active connections to 
give good performance across all workloads we tested. 

2.5 LARD with Replication 

A potential problem with the basic LARD strategy is 
that a given target is served by only a single node at any 
given time. However, if a single target causes a back-end 
to go into an overload situation, the desirable action is 
to assign several back-end nodes to serve that document, 
and to distribute requests for that target among the 
serving nodes. This leads us to the second version of 
our strategy, which allows replication. 

Pseudo-code for this strategy is shown in Figure 3. 
It differs from the original one as follows: The front-end 
maintains a mapping from targets to a set of nodes that 
serve the target. Requests for a target are assigned to 
the least loaded node in the target’s server set. If a load 
imbalance occurs, the front-end checks if the requested 
document’s server set has changed recently (within 11~ 
seconds). If so, it picks a lightly loaded node and adds 
that node to the server set for the target. On the other 
hand, if a request target has multiple servers and has 
not moved or had a server node added for some time 
(K seconds), the front-end removes one node from the 
target’s server set. This ensures that the degree of repli- 
cation for a target does not remain unnecessarily high 
once it is requested less often. In our experiments, we 
used values of 1~~ = XI sets. 

2.6 Discussion 

As will be seen in Sections 4 and 6, the LARD strate- 
gies result in a good combination of load balancing and 
locality. In addition, the strategies outlined above have 

while (true) 
fetch next request r; 
if serverSet[r.target] = 0 then 

n, serverSet[r.target] t {least loaded node}; 
else 

n t {least loaded node in serverSet[r.target]}; 
m t {most loaded node in serverSet[r.target]}; 
if (n.load > Thtgh && 3 node with load < Ti,,) 11 

nload > 2Thrgh then 
p t {least loaded node}; 
add p to serverSet[r.target]; 
n + P; 

if ]serverSet[r.target]] > 1 && 
time0 - serverSet[r.target].lastMod > K then 

remove m from serverSet[r.target]; 
send r to n 
if serverSet[r.target] changed in this iteration then 

serverSet[r.target].lastMod t time(); 

Figure 3: LARD with Replication 

several desirable features. First, they do not require 
any extra communication between the front-end and the 
back-ends. Second, the front-end need not keep track 
of any frequency of access information or try to model 
the contents of the caches of the back-ends. In particu- 
lar, the strategy is independent of the local replacement 
policy used by the back-ends. Third, the absence of 
elaborate state in the front-end makes it rather straight- 
forward to recover from a back-end node failure. The 
front-end simply re-assigns targets assigned to the failed 
back-end as if they had not been assigned before. For 
all these reasons, we argue that the proposed strategy 
can be implemented without undue complexity. 

In a simple implementation of the two strategies, the 
size of the server or serverset arrays, respectively, can 
grow to the number of targets in the server’s database. 
Despite the low storage overhead per target, this can 
be of concern in servers with very large databases. In 
this case, the mappings can be maintained in an LRU 
cache, where assignments for targets that have not been 
accessed recently are discarded. Discarding mappings 
for such targets is of little consequence, as these targets 
have most likely been evicted from the back-end nodes’ 
caches anyway. 

3 Simulation 

To study various request distribution policies for a range 
of cluster sizes under different assumptions for CPU 
speed, amount of memory, number of disks and other 
parameters, we developed a configurable web server clus- 
ter simulator. We also implemented a prototype of a 
LARD-based cluster, which is described in Section 6. 

3.1 Simulation Model 

The simulation model is depicted in Figure 4. Each 
back-end node consists of a CPU and locally-attached 
disk(s), with separate queues for each. In addition, each 
node maintains its own main memory cache of con- 
figurable size and replacement policy. For simplicity, 
caching is performed on a whole-file basis. 

Processing a request requires the following steps: 
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Figure 4: Cluster Simulation Model 

connection establishment, disk reads (if needed), target 
data transmission, and connection teardown. The as- 
sumption is that front-end and networks are fast enough 
not to limit the cluster’s performance, thus fully expos- 
ing the throughput limits of the back-ends. Therefore, 
the front-end is assumed to have no overhead and all 
networks have infinite capacity in the simulations. 

get being served. Associated with each token is a target 
size in bytes. This tokenized stream can be syntheti- 
cally created, or it can be generated by processing logs 
from existing web servers. 

The individual processing steps for a given request 
must be performed in sequence, but the CPU and disk 
times for differing requests can be overlapped. Also, 
large file reads are blocked, such that the data transmis- 
sion immediately follows the disk read for each block. 
Multiple requests waiting on the same file from disk 
can be satisfied with only one disk read, since all the re- 
quests can access the data once it is cached in memory. 

One of the traces we use was generated by combin- 
ing logs from multiple departmental web servers at Rice 
University. This trace spans a two-month period. An- 
other trace comes from IBM Corporation’s main web 
server (www.ibm.com) and represents server logs for a 
period of 3.5 days starting at midnight, June 1, 1998. 

The costs for the basic request processing steps 
used in our simulations were derived by performing 
measurements on a 300 Mhz Pentium 11 machine run- 
ning FreeBSD 2.2.5 and an aggressive experimental web 
server. Connection establishment and teardown costs 
are set at 145~s of CPU time each, while transmit pro- 
cessing incurs 40~s per 512 bytes. Using these num- 
bers, an 8 KByte document can be served from the 
main memory cache at a rate of approximately 1075 
requests/set. 

If disk access is required, reading a file from disk has 
a latency of 28 ms (2 seeks + rotational latency). The 
disk transfer time is 410~s per 4 KByte (resulting in 
approximately 10 MBytes/set peak transfer rate). For 
hles larger than 44 KBytes, an additional 14 ms (seek 
plus rotational latency) is charged for every 44 KBytes 
of file length in excess of 44 KBytes. 44 KBytes was 
measured as the average disk transfer size between seeks 
in our experimental server. Unless otherwise stated, 
each back-end node has one disk. 

Figures 5 and 6 show the cumulative distributions of 
request frequency and size for the Rice University trace 
and the IBM trace, respectively. Shown on the x-axis 
is the set of target files in the trace, sorted in decreas- 
ing order of request frequency. The y-axis shows the 
cumulative fraction of requests and target sizes, nor- 
malized to the total number of requests and total data 
set size, respectively. The data set for the Rice Univer- 
sity trace consist of 37703 targets covering 1418 MB of 
space, whereas the IBM trace consists of 38527 targets 
and 1029 MB of space. While the data sets in both 
traces are of a comparable size, it is evident from the 
graphs that the Rice trace has much less locality than 
the IBM trace. In the Rice trace, 560/705/927 MB of 
memory is needed to cover 97/98/99% of all requests, 
respectively, while only 51/80/182 MB are needed to 
cover the same fractions of requests in the IBM trace. 

This difference is likely to be caused in part by the 
different time spans that each trace covers. Also, the 
IBM trace is from a single high-traffic server, where the 
content designers have likely spent effort to minimize 
the sizes of high frequency documents in the interest of 
performance. The Rice trace, on the other hand, was 
merged from the logs of several departmental servers. 

The cache replacement policy we chose for all sim- 
ulations is Greedy-Dual-Size (GDS), as it appears to 
be the best known policy for Web workloads [5]. We 
have also performed simulations with LRU, where files 
with a size of more than 500KB are never cached. The 
relative performance of the various distribution strate- 
gies remained largely unaffected. However, the absolute 
throughput results were up to 30% lower with LRU than 
with GDS. 

As with all caching studies, interesting effects can 
only be observed if the size of the working set exceeds 
that of the cache. Since even our larger trace has a rel- 
atively small data set (and thus a small working set), 
and also to anticipate future trends in working set sizes, 
we chose to set the default node cache size in our simu- 
lations to 32 MB. Since in reality, the cache has to share 
main memory with OS kernel and server applications, 
this typically requires at least 64 MB of memory in an 
actual server node. 

3.2 Simulation Inputs 3.3 Simulation Outputs 

The input to the simulator is a stream of tokenized tar- 
get requests, where each token represents a unique tar- 

The simulator calculates overall throughput, hit rate, 
and underutilization time. Throughput is the number 
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of request#s in the trace that were served per second by 
the entire cluster, calculated as the number of requests 
in the trace divided by the simulated time it took to 
finish serving all the requests in the trace. The request 
arrival rate was matched t,o the aggregate throughput 
of the server. 

The cache hit ratio is the number of requests that 
hit in a back-end node’s main memory cache divided 
by the number of requests in the trace. The idle time 
was measured as the fraction of simulated time during 
which a back-end node was underutilized, averaged over 
all back-end nodes. 

Node underutilization is defined as the time that a 
node’s load is less than 40% of Tl,,. This value was 
determined by inspection of the simulator’s disk and 
CPU activity statistics as a point below which a node’s 
disk and CPU both had some idle time in virtually all 
cases. The overall throughput is the best summary met- 
ric, since it is affected by all factors. The cache hit 
rate gives an indication of how well locality is being 
maintained, and the node underutilization times indi- 
cate how well load balancing is maintained. 

4 Simulation Results 

We simulate the four different request distribution strate- 
gies presented in Section 2. 

1. weighted round-robin [WRR], 

2. locality-based [LB], 

3. basic LARD [LARD], and 

4. LARD with replication [LARD/R]. 
In addition, observing the large amount of interest gen- 
erated by global memory systems (GMS) and coopera- 
tive caching to improve hit rates in cluster main mem- 
ory caches [8, 11, 171, we simulate a weighted round- 
robin strategy in the presence of a global memory sys- 
tem on the back-end nodes. We refer to this system as 
WRR/GMS. The GMS in WRR/GMS is loosely based 
on the GMS described in Feeley et al. [ll]. 

We also simulate an idealized locality-based strategy, 
termed LB/GC, where the front-end keeps track of each 
back-end’s cache state to achieve the effect of a global 
cache. On a cache hit,, the front-end sends the request,s 
to the back-end that caches the target. On a miss, the 
front-end sends the request to the back-end that caches 
the globally “oldest” target, thus causing eviction of 
that target. 

: 1029 MB total 

“0 0.2 0.4 0.6 0.8 I 
Files by request frequency (normalized) 

Figure 6: IBM Trace 
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Figure 7: Throughput 
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Figure 8: Cache Miss Ratio 

Figures 7, 8, and 9 show the aggregate throughput, 
cache miss ratio, and idle time as a function of the num- 
ber of back-end nodes for the combined Rice University 
trace. WRR achieves the lowest throughput, the highest 
cache miss ratio, but also the lowest idle time (i.e., the 
highest back-end node utilization) of all strategies. This 
confirms our reasoning that the weighted round-robin 
scheme achieves good load balancing (thus minimizing 
idle time). However, since it ignores locality, it suffers 
many cache misses. This latter effect dominates, and 
the net effect is that the server’s throughput is limited 
by disk accesses. With WRR, the effective size of the 
server cache remains at the size of the individual node 
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Figure 9: Idle Time 

cache, independent of the number of nodes. This can be 
clearly seen in the flat cache miss ratio curve for WRR. 

As expected, both LB schemes achieve a decrease in 
cache miss ratio as the number of nodes increases. This 
reflects the aggregation of effective cache size. However, 
this advantage is largely offset by a loss in load balancing 
(as evidenced by the increased idle time), resulting in 
only a modest throughput advantage over WRR. 

An interesting result is that LB/GC, despite its 
greater complexity and sophistication, does not yield 
a significant advantage over the much simpler LB. This 
suggests that the hashing scheme used in LB achieves a 
fairly even partitioning of the server’s working set, and 
that maintaining cache state in the front-end may not 
be necessary lo achieve good cache hit ratios across the 
back-end nodes. This partly validates t)he approach we 
took in the design of LARD, which does not attempt to 
model the state of the back-end caches. 

The throughput achieved with LARD/R exceeds that 
of the state-of-the-art WRR on this trace by a factor of 
3.9 for a cluster size of eight nodes, and by about 4.5 
for sixteen nodes. The Rice trace requires the combined 
cache size of eight to ten nodes to hold the working set. 
Since WRR cannot aggregate the cache size, the server 
remains disk bound for all cluster sizes. LARD and 
LARD/R, on the other hand, cause the system to be- 
come increasingly CPU bound for eight or more nodes, 
resulting in superlinear speedup in the l-10 node re- 
gion, with linear, but steeper speedup for more than 
ten nodes. Another way to read this result is that with 
WRR, it would take a ten times larger cache in each 
node to match the performance of LARD on this par- 
ticular trace. We have verified this fact by simulating 
WRR with a tenfold node cache size. 

The reason for the increased throughput and speedup 
can also be clearly seen in the graphs for idle time and 
cache miss ratio. LARD and LARD/R achieve average 
idle times around I%, while achieving cache miss ratios 
that decrease with increasing cluster size and reach val- 
ues below 4% for eight and more nodes in the case of 
LARD, going down to 2% at sixteen nodes in the case 
of LARD/R. Thus, LARD and LARD/R come close to 
WRR in terms of load balancing while simultaneously 
achieving cache miss ratios close to those obtained with 
LB/GC. Thus, LARD and LARD/R are able to trans- 
late most of the locality advantages of LB/GC into ad- 
ditional server throughput. 

The throughput achieved with LARD/R exceeds that 

of LARD slightly for seven or more nodes, while achiev- 
ing lower cache miss ratio and lower idle time. While 
WRR/GMS achieves a substantial performance advan- 
tage over WRR, its throughput remains below 50% of 
LARD and LARD/R’s throughput for all cluster sizes. 

4.2 Other Workloads 

0 5 IO 15 
# nodes in cluster 

Figure 10: Throughput on IBM Trace 

Figure 10 shows the throughput results obtained for the 
various strategies on the IBM trace (www.ibm.com). In 
this trace, the average file size is smaller than in the 
Rice trace, resulting in much larger throughput num- 
bers for all strategies. The higher locality of the IBM 
trace demands a smaller effective cache size to cache the 
working set. Thus, LARD and LARD/R achieve super- 
linear speedup only up to 4 nodes in this trace, resulting 
in a throughput that is slighly more than twice that of 
WRR for 4 nodes and above. 

WRR/GMS achieves much better relative perfor- 
mance on this trace than on the Rice trace and comes 
within 15% of LARD/R’s throughput at 16 nodes. How- 
ever, t,his result has to be seen in light of the very gen- 
erous assumptions made in the simulations about the 
performance of the WRR/GMS system. It was assumed 
that maintaining the global cache directory and imple- 
menting global cache replacement has no cost. 

The performance of LARD/R only slightly exceeds 
that of LARD on the Rice trace and matches that of 
LARD on the IBM trace. The reason is that neither 
trace contains high-frequency targets that can benefit 
from replication. The highest frequency files in the Rice 
and IBM traces account for only 2% and 5%, respec- 
tively, of all requests in the traces. However, it is clear 
that real workloads exist that contain targets with much 
higher request frequency (e.g. www.netscape.com). To 
evaluate LARD and LARD/R on such workloads, we 
modified the Rice trace to include a small number of 
artifical high-frequency targets and varied their request 
rate between 5 and 75% of the total number of re- 
quests in the trace. With this workload, the throughput 
achieved with LARD/R exceeds that of LARD by O- 
15%. The most significant increase occurs when the size 
of the “hot” targets is larger than 20 KBytes and the 
combined access frequency of all hot targets accounts 
for lo-60% of the total number of requests. 

We also ran simulations on a trace from the IBM web 
server hosting the Deep Blue/Kasparov Chess match in 
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May 1997. This trace is characterized by large numbers 
of requests to a small set of targets. The working set 
of this trace is very small and achieves a low miss ratio 
with a main memory cache of a single node (32 MB). 
This trace presents a best-case scenario for WRR and 
a worst-case scenario for LARD, as there is nothing to 
be gained from an aggregation of cache size, but there 
is the potential to lose performance due to imperfect 
load balancing. Our results show that both LARD and 
LARD/R closely match the performance of WRR on 
this trace. This is reassuring, as it demonstrates that 
our strategy can match the performance of WRR even 
under conditions that are favorable to WRR. 

In our final set of simulations, we explore the impact 
of using multiple disks in each back-end node on the rel- 
ative performance of LARD/R versus WRR. Figures 13 
and 14, respectively, show the throughput results for 
WRR and LARD/R on the combined Rice University 
trace with different numbers of disks per back-end node. 
With LARD/R, a second disk per node yields a mild 
throughput gain, but additional disks do not achieve 
any further benefit. This can be expected, as the in- 
creased cache effectiveness of LARD/R causes a reduced 
dependence on disk speed. 

WRR, on the other hand, greatly benefits from mul- 
tiple disks as its throughput is mainly bound by the 
performance of the disk subsystem. In fact, with four 
disks per node and 16 nodes, WRR comes within 15% of 
LARD/R’s throughput. However, the are several things 
to note about this result. First, the assumptions made 
in the simulations about the performance of multiple 
disks are generous. It is assumed that both seek and 
disk transfer operations can be fully overlapped among 
all disks. In practice, this would require that each disk 
is attached through a separate SCSI bus/controller. 

4.3 Sensitivity to CPU and Disk Speed 

In our next set of simulations, we explore the impact of 
CPU speed on the relative performance of LARD versus 
the state-of-the-art WRR. We performed simulations on 
the Rice trace with the default CPU speed setting ex- 
plained in Section 3, and with twice, three and four 
times the default speed setting. The [lx] speed setting 
represents a state-of-the-art inexpensive high-end PC 
(300 MHz Pentium II), and the higher speed settings 
project the speed of high-end PCs likely to be available 
in the the next few years. As the CPU speed increases 
while disk speed remains constant, higher cache hit rates 
are necessary to remain CPU bound at a given cluster 
size, requiring larger per-node caches. We made this 
adjustment by setting the node memory size to 1.5, 2, 
and 3 times the base amount (32 MB) for the [2x], [3x] 
and [4x] CPU speed settings, respectively. 

As CPU speeds are expected to improve at a much 
faster rate than disk speeds, one would expect that the 
importance of caching and locality increases. Indeed, 
our simulations confirm this. Figures 11 and 12, re- 
spectively, show the throughput results for WRR and 
LARD/R on the combined Rice University trace with 
different CPU speed assumptions. It is clear that WRR 
cannot benefit from added CPU at all, since it is disk- 
bound on this trace. LARD and LARD/R, on the other 
hand, can capitalize on the added CPU power, because 
their cache aggregation makes the system increasingly 
CPU bound as nodes are added to the system. In ad- 
dition, the results indicate the throughput advantage of 
LARD/R over LARD increases with CPU speed, even 
on a workload that presents little opportunity for repli- 
cation. 

0 4x cpu, 3x mem 
X 3x cpu, 2x mem 
+2x cpu, 1.5x mem 

Second, it is assumed that the database is striped 
across the multiple disks in a manner that achieves good 
load balancing among the disks with respect to the work- 
load (trace). In our simulations, the files were dis- 
tributed across the disks in round-robin fashion based 
on decreasing order of request frequency in the trace2. 

Finally, WRR has the same scalability problems with 
respect to disks as it has with memory. To upgrade a 
cluster with WRR, it is not sufficient to add nodes as 
with LARD/R. Additional disks (and memory) have to 
be added to all nodes to achieve higher performance. 

4.4 Delay 

While most of our simulations focus on the server’s 
throughput limits, we also monitored request delay in 
our simulations for both the Rice University trace as 
well as the IBM trace. On the Rice University trace, 
the average request delay for LARD/R is less than 25% 
that of WRR. With the IBM trace, LARD/R’s average 
delay is one half that of WRR. 

‘Note that replicating the entire database on each disk as an 
approach to achieving disk load balancing would require special 
OS support to avoid double buffering and caching of replicated 
files and to assign requests to disks dynamically based on load. 
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5 TCP Connection Handoff 

In this section, we briefly discuss our TCP handoff pro- 
tocol and present some performance results with a pro- 
totype implementation. A full description of the proto- 
col is beyond the scope of this paper. The TCP handoff 
protocol is used to hand off established client TCP [23] 
connections between the front-end and the back-end of 
a cluster server that, employs content-based request dis- 
tribution. 

A handoff protocol is necessary to enable content- 
based request distribution in a client-transparent man- 
ner. This is true for any service (like HTTP) that 
relies on a connection-oriented transport protocol like 
TCP. The front-end must establish a connection with 
the client to inspect the target content of a request prior 
to assigning the connection to a back-end node. The 
established connection must then be handed to the cho- 
sen back-end node. State-of-the-art commercial clus- 
ter front-ends (e.g., [7, 141) assign requests without re- 
gard to the requested content and can therefore forward 
client requests to a back-end node prior to establishing 
a connection with the client. 

Our handoff protocol is transparent to clients and 
also to the server applications running on the back-end 
nodes. That, is, no changes are needed on the client side, 
and server applications can run unmodified on the back- 
end nodes. Figure 15 depicts the protocol stacks on 
the clients, front-end, and back-ends, respectively. The 
handoff protocol is layered on top of TCP and runs on 
the front-end and back-end nodes. Once a connection 
is handed off to a back-end node, incoming traffic on 
that connection (principally acknowledgment packets) 
is forwarded by an efficient. forwarding module at the 
bottom of the front-end’s protocol stack. 

The TCP implementation running on the front-end 
and back-ends needs a small amount of additional sup- 
port for handoff. In particular, the protocol module 
needs t,o support an operat,ion that allows the TCP 
handoff protocol to create a TCP connection at the 
back-end without going through the TCP three-way 
handshake. Likewise, an operation is required that re- 
trieves the state of an established connection and de- 
stroys the connection state without going through the 
normal message handshake required to close a TCP con- 
nection. 

Figure 15 depicts a typical scenario: (1) a client con- 
nects to the front-end, (2) the dispatcher at the front- 
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Figure 15: TCP connection handoff 

end accepts the connection and hands it off to a back- 
end using the handoff protocol, (3) the back-end takes 
over the established connection received by the hand- 
off protocols, (4) the server at the back-end accepts the 
created connection, and (5) the server at the back-end 
sends replies directly to the client. The dispatcher is a 
software module that implements the distribution pol- 
icy, e.g. LARD. 

Once a connection is handed off to a back-end node, 
the front-end must forward packets from the client to 
the appropriate back-end node. A single back-end node 
that fully utilizes a 100 Mb/s network sending data to 
clients will receive at least 4128 acknowledgments per 
second (assuming an IP packet size of 1500 and delayed 
TCP ACKs). Therefore, it is crucial that this packet 
forwarding is fast. 

The forwarding module is designed to allow very fast 
forwarding of acknowledgment packets. The module op- 
erates directly above the network interface and executes 
in the context of the network interface interrupt han- 
dler. A simple hash table lookup is required to deter- 
mine whether a packet should be forwarded. If so, the 
packet’s header is updated and it is directly transmit- 
ted on the appropriate interface. Otherwise, the packet 
traverses the normal protocol stack. 

Results of performance measurements with an im- 
plementation of the handoff protocol are presented in 
Section 6.2. 

The design of our TCP handoff protocol includes 
provisions for HTTP 1.1 persistent connections, which 
allow a client to issue multiple requests. The protocol 
allows the front-end to either let one back-end serve all 
of the requests on a persistent connection, or to hand off 
a connection multiple times, so that different requests 
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on the same connection can he served by different back- 
ends. However, further research is needed to determine 
the appropriate policy for handling persistent connec- 
tions in a cluster with LARD. We have not yet experi- 
mented with HTTP 1. I connections as part of this work. 

6 Prototype Cluster Performance 

In this section, we present performance results obtained 
with a prototype cluster that uses locality-aware request 
distribution. We describe the experimental setup used 
in the experiments, and then present the results. 

6.1 Experimental Environment 

Our testbed consists of 7 client machines connected to 
a cluster server. The configuration is shown in Fig- 
ure 16. Traffic from the clients flows to the front-end 
(I) and is forwarded to the back-ends (2). Data pack- 
ets t,ransmitted from the back-ends to the clients bypass 
the front-end (3). 

The front-end of the server cluster is a 3OOMHz In- 
tel Pentium I1 based PC with 128MB of memory. The 
cluster back-end consists of six PCs of the same type 
and configurat,ion as the front-end. All machines run 
FreeBSD 2.2.5. A loadable kernel module was added to 
the OS of the front-end and back-end nodes that im- 
plements the TCP handoff protocol, and, in the case 
of the fron,-end, the forwarding module. The clients 
are 166MHz lntel Pentium Pro PCs, each with 64MB of 
memory. 

The clients and back-end nodes in the cluster are 
connected using switched Fast Ethernet (1OOMbps). The 
front-end is equipped with two network interfaces, one 
for communication with the clients, one for commu- 
nication with the back-ends. Clients, front-end, and 
back-end are connected through a single 24-port switch. 
All network int#erfaces are Intel EtherExpress Pro/lOOB 
running in full-duplex mode. 

The Apache-1.2.4 [2] server was used on the back-end 
nodes. Our client software is an event-driven program 
that simulates multiple HTTP clients. Each simulated 
HTTP client makes HTTP requests as fast as the server 
cluster can handle them. 

BACKEND 
SERVERS 

CLUSTER SERVER I 

SWITCH 1 1 

CLIENTS 

6.2 Front-end Performance Results 

Measurements were performed to evaluate the perfor- 
mance and overhead of the TCP handoff protocol and 
packet forwarding in the front-end. Handoff latency is 
the added latency a client experiences as a result of 
TCP handoff. Handoff throughput is the maximal rate 
at which the front-end can accept, handoff, and close 
connections. Forwarding throughput refers to the max- 
imal aggregate rate of data transfers from all back-end 
nodes to clients. Since this data bypasses the front-end, 
this figure is limited only by the front-end’s ability to 
forward acknowledgments from the clients to the back- 
ends. 

The measured handoff latency is 194 psecs and the 
maximal handoff throughput is approximately 5000 con- 
Ilect,ions per second. Note that the added handoff la- 
tency is insignificant, given the connection establish- 
ment delay over a wide-area network. The measured 
ACK forwarding overhead is 9 psecs, resulting in a 
theoretical maximal forwarding throughput of over 2.5 
Gbits/s. We have not been able to measure such high 
throughput directly due to lack of network resources, 
but the measured remaining CPU idle time in the front- 
end at lower throughput is consistent with this figure. 
Further measurements indicate that with the Rice Uni- 
versity trace as the workload, the handoff throughput 
and forwarding throughput are sufficient to support 10 
back-end nodes of the same CPU speed as the front-end. 

Moreover, the front-end can be relatively easily scaled 
to larger clusters either by upgrading to a faster CPU, 
or by employing an SMP machine. Connection estab- 
lishment, handoff, and forwarding are independent for 
different connections, and can be easily parallelized [24]. 
The dispatcher, on the other hand, requires shared state 
and thus synchronization among the CPUs. However, 
with a simple policy such as LARD/R, the time spent 
in the dispatcher amounts to only a small fraction of the 
handoff overhead (lo-20%). Therefore, we fully expect 
that the front-end performance can be scaled to larger 
clusters effectively using an inexpensive SMP platform 
equipped with multiple network interfaces. 

6.3 Cluster Performance Results 

A segment of the Rice University trace was used to drive 
the prototype cluster. A single back-end node running 
Apache can deliver about 167 req/sec on this trace. On 
cached, small files (less than 8 I(B), an Apache back-end 
can complete about 800 req/sec. 

The Apache Web server relies on the file caching 
services of the underlying operating system. FreeBSD 
uses a unified buffer cache, where cached files are com- 
peting with user processes for physical memory pages. 
All page replacement is controlled by FreeBSD’s page- 
out daemon, which implements a variant of the clock 
algorithm [20]. The cache size is variable and depends 
on main memory pressure from user applications. In 
our 128 MB back-ends, memory demands from kernel 
and Apache server processes leave about 100 MB of free 
memory. In practice, we observed fle cache sizes be- 
tween 70 and 97 MB. 

We measure the total HTTP throughput of the 
server cluster with increasing numbers of back-end 
nodes and with the front-end implementing either WRR 

Figure 16: Experimental Testbed 
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or LARD/R. The results are shown in Figure 17 and 
confirm the predictions of the simulator. The through- 
put achieved with LARD/R exceeds that of WRR by 
a factor of 2.5 for six nodes. Running LARD/R on a 
cluster with six nodes at maximal throughput and an 
aggregate server bandwidth of over 280 Mb/s, the front,- 
end CPU was 60% utilized. This is consistent with our 
earlier projection that a single CPU front-end can sup- 
port 10 back-ends of equal CPU speed. 

7 Related Work 

Much current research addresses the scalability prob- 
lems posed by the Web. The work includes cooperative 
caching proxies inside the network, push-based docu- 
ment distribution, and other innovative techniques [3, 
6, 10, 16, 19, 221. Our proposal addresses the com- 
plementary issue of providing support for cost-effective, 
scalable network servers. 

Network servers based on clusters of workstations 
are starting to be widely used [la]. Several products 
are available or have been announced for use as front- 
end nodes in such cluster servers [7, 141. To the best of 
our knowledge, the request distribution strategies used 
in the cluster front-ends are all variations of weighted 
round-robin, and do not take into account a request’s 
target content. An exception is the Dispatch product 
by Resonate, Inc., which supports content-based request 
distribution [21]. The product does not appear to use 
any dynamic distribution policies based on content and 
no attempt is made to achieve cache aggregation via 
content-based request distribution. 

Hunt et al. proposed a TCP option designed to 
enable content-based load distribution in a cluster 
server [13]. The design has not been implemented and 
the performance potential of content-based distribution 
has not been evaluated as part of that work. Also, no 
policies for content-based load distribution were pro- 
posed. Our TCP handoff protocol design was informed 
by Hunt et al.‘s design, but chooses the different ap- 
proach of layering a separate handoff protocol on top of 
TCP. 

Fox et al. [12] report on the cluster server technology 
used in the Inkt,omi search engine. ‘I’he work focuses on 
the reliability and scalability aspects of the system and 
is complementary to our work. The request distribution 
policy used in their systems is based on weighted round- 

robin. 
Loosely-coupled distributed servers are widely de- 

ployed on the Internet. Such servers use various tech- 
niques for load balancing including DNS round-robin [4], 
HTTP client re-direction [I], Smart clients [25], source- 
based forwarding [9] and hardware translation of net- 
work addresses [7]. Some of these schemes have proh- 
lems related to the quality of the load balance achieved 
and the increased request latency. A detailed discussion 
of these issues can be found in Goldszmidt and Hunt [14] 
and Damani et al. [9]. None of these schemes support 
content-based request distribution. 

IBM’s Lava project [18] loses the concept, of a “hit 
server”. The hit server is a specially configured server 
node responsible for serving cached content. Its spe- 
cialized OS and client-server protocols give it superior 
performance for handling HTTP requests of cached doc- 
uments, but limits it to private lntranets. Requests 
for uncached documents and dynamic content are dele- 
gat,ed t,o a separate, conventional HTTP server node. 
Our work shares some of the same goals, but main- 
tains standard client-server protocols, maintains sup- 
port for dynamic content generation, and focuses on 
cluster servers. 

8 Conclusion 

We present and evaluate a practical and efficient 
locality-aware request distribution (LARD) strategy 
that achieves high cache hit rates and good load balanc- 
ing in a cluster server. Trace-driven simulations show 
that the performance of our strategy exceeds that of 
the state-of-the-art weighted round-robin (WRR) strat- 
egy substantially. On workloads with a working set that 
does not fit in a single server node’s main memory cache, 
the achieved throughput exceeds that of WRR by a fac- 
tor of two to four. 

Additional simulations show that the performance 
advantages of LARD over WRR increase with the dis- 
parity between CPU and disk speeds. Also, our results 
indicate that the performance of a hypothetical cluster 
with WRR distribution and a global memory system 
(GMS) falls short of LARD under all workloads con- 
sidered, despite generous assumptions about the perfor- 
mance of a GMS system. 

We also propose and evaluate an efficient TCP hand- 
off protocol that enables LARD and other content- 
based request distribution strategies by providing client- 
transparent connection handoff for TCP-based network 
services, like HTTP. Performance results indicate that 
in our prototype cluster environment and on our work- 
loads, a single CPU front-end can support 10 back-end 
nodes with equal CPU speed as the front-end. More- 
over, the design of the handoff protocols is expected 
to yield scalable performance on SMP-based front-ends, 
thus supporting larger clusters. 

Finally, we present performance results from a pro- 
totype LARD server cluster that incorporates the TCP 
handoff protocol and the LARD strategy. The measured 
results confirm the simulation results with respect to the 
relative performance of LARD and WRR. 

In this paper, we have focused on studying HTTP 
servers that serve static content. However, caching cau 
also be effective for dynamically generated content [15]. 
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Moreover, resources required for dynamic content gen- 
eration like server processes, executables, and primary 
data files are also cacheable. While further research is 
required, we expect that increased locality can benefit 
dynamic content serving, and that therefore the advan- 
t-ages of LARD also apply to dynamic content. 
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