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Abstract

In 1986 Jim Gray published his landmark study of the
causes of failures of Tandem systems and the techniques
Tandem used to prevent such failures [6]. Seventeen
years later, Internet services have replaced fault-toler-
ant servers as the new kid on the 24x7-availability
block. Using data from three large-scale Internet ser-
vices, we analyzed the causes of their failures and the
(potential) effectiveness of various techniques for pre-
venting and mitigating service failure. We find that (1)
operator error is the largest cause of failures in two of
the three services, (2) operator error is the largest con-
tributor to time to repair in two of the three services, (3)
configuration errors are the largest category of opera-
tor errors, (4) failures in custom-written front-end soft-
ware are significant, and (5) more extensive online
testing and more thoroughly exposing and detecting
component failures would reduce failure rates in at least
one service. Qualitatively we find that improvement in
the maintenance tools and systems used by service oper-
ations staff would decrease time to diagnose and repair
problems.

1. Introduction

The number and popularity of large-scale Internet
services such as Google, MSN, and Yahoo! have grown
significantly in recent years. Such services are poised to
increase further in importance as they become the repos-
itory for data in ubiquitous computing systems and the
platform upon which new global-scale services and
applications are built. These services’ large scale and
need for 24x7 operation have led their designers to
incorporate a number of techniques for achieving high
availability. Nonetheless, failures still occur. 

Although the architects and operators of these ser-
vices might see such problems as failures on their part,
these system failures provide important lessons for the
systems community about why large-scale systems fail,
and what techniques could prevent failures. In an
attempt to answer the question “Why do Internet ser-
vices fail, and what can be done about it?” we have stud-
ied over a hundred post-mortem reports of user-visible

failures from three large-scale Internet services. In this
paper we 

• identify which service components are most fail-
ure-prone and have the highest Time to Repair
(TTR), so that service operators and researchers
can know what areas most need improvement; 

• discuss in detail several instructive failure case
studies;

• examine the applicability of a number of failure
mitigation techniques to the actual failures we stud-
ied; and

• highlight the need for improved operator tools and
systems, collection of industry-wide failure data,
and creation of service-level benchmarks.

The remainder of this paper is organized as follows.
In Section 2 we describe the three services we analyzed
and our study’s methodology. Section 3 analyzes the
causes and Times to Repair of the component and ser-
vice failures we examined. Section 4 assesses the appli-
cability of a variety of failure mitigation techniques to
the actual failures observed in one of the services. In
Section 5 we present case studies that highlight interest-
ing failure causes. Section 6 discusses qualitative obser-
vations we make from our data, Section 7 surveys
related work, and in Section 8 we conclude.

2. Survey services and methodology

We studied a mature online service/Internet portal
(Online), a bleeding-edge global content hosting service
(Content), and a mature read-mostly Internet service
(ReadMostly). Physically, all of these services are
housed in geographically distributed colocation facili-
ties and use commodity hardware and networks. Archi-
tecturally, each site is built from a load-balancing tier, a
stateless front-end tier, and a back-end tier that stores
persistent data. Load balancing among geographically
distributed sites for performance and availability is
achieved using DNS redirection in ReadMostly and
using client cooperation in Online and Content. 

Front-end nodes are those initially contacted by cli-
ents, as well as the client proxy nodes used by Content.
Using this definition, front-end nodes do not store per-
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sistent data, although they may cache or temporarily
queue data. Back-end nodes store persistent data. The
“business logic” of traditional three-tier system termi-
nology is part of our definition of front-end, because
these services integrate their service logic with the code
that receives and replies to client requests.

The front-end tier is responsible primarily for locat-
ing data on back-end machine(s) and routing it to and
from clients in Content and ReadMostly, and for provid-
ing online services such as email, newsgroups, and a
web proxy in Online. In Content the “front-end”
includes not only software running at the colocation
sites, but also client proxy software running on hard-
ware provided and operated by Content that is physi-
cally located at customer sites. Thus Content is geo-
graphically distributed not only among the four
colocation centers, but also at about a dozen customer
sites. The front-end software at all three sites is custom-
written, and at ReadMostly and Content the back-end
software is as well. Figure 1, Figure 2, and Figure 3
show the service architectures of Content, Online, and
ReadMostly, respectively.

Operationally, all three services use primarily cus-
tom-written software to administer the service; they
undergo frequent software upgrades and configuration
updates; and they operate their own 24x7 System Oper-
ations Centers staffed by operators who monitor the ser-
vice and respond to problems. Table 1 lists the primary
characteristics that differentiate the services. More
details on the architecture and operational practices of
these services can be found in [17].

Because we are interested in why and how large-
scale Internet services fail, we studied individual prob-
lem reports rather than aggregate availability statistics.
The operations staff of all three services use problem-
tracking databases to record information about compo-
nent and service failures. Two of the services (Online
and Content) gave us access to these databases, and one

of the services (ReadMostly) gave us access to the prob-
lem post-mortem reports written after every major user-
visible service failure. For Online and Content, we
defined a user-visible failure (which we call a service
failure) as one that theoretically prevents an end-user
from accessing the service or a part of the service (even
if the user is given a reasonable error message) or that
significantly degrades a user-visible aspect of system
performance1. Service failures are caused by component
failures that are not masked.

Our base dataset consisted of 296 reports of compo-
nent failures from Online and 205 component failures
from Content. These component failures turned into 40
service failures in Online and 56 service failures in Con-
tent. ReadMostly supplied us with 21 service failures
(and two additional failures that we considered to be
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Figure 1: The architecture of one site of Con-
tent. Stateless metadata servers provide file metadata
and route requests to the appropriate data storage serv-
ers. Persistent state is stored on commodity PC-based
storage servers and is accessed via a custom protocol
over UDP. Each cluster is connected to its twin site via
the Internet.

service characteristic Online ReadMostly Content

hits per day ~100 million ~100 million ~7 million

# of machines ~500, 2 sites > 2000, 4 sites ~500, ~15 sites

front-end node architecture Solaris on SPARC and x86 open-source OS on x86 open-source OS on x86

beck-end node architecture Network Appliance filers open-source OS on x86 open-source OS on x86

period of data studied 7 months 6 months 3 months

component failures 296 N/A 205

 service failures 40 21 56

Table 1: Differentiating characteristics of the services described in this study. 
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below the threshold to be deemed a service failure).
These problems corresponded to 7 months at Online, 6
months at ReadMostly, and 3 months at Content. In clas-
sifying problems, we considered operators to be a com-
ponent of the system; when they fail, their failure may
or may not result in a service failure.

We attributed the cause of a service failure to the
first component that failed in the chain of events leading
up to the service failure. The cause of the component
failure was categorized as node hardware, network hard-
ware, node software, network software (e.g., router or
switch firmware), environment (e.g., power failure),
operator error, overload, or unknown. The location of
that component was categorized as front-end node,
back-end node, network, or unknown. Note that the

underlying flaw may have remained latent for some
time, only to cause a component to fail when the compo-
nent was used in a particular way for the first time. Due
to inconsistencies across the three services as to how or
whether security incidents (e.g., break-ins and denial of
service attacks) were recorded in the problem tracking

1“Significantly degrades a user-visible aspect of sys-
tem performance” is admittedly a vaguely-defined met-
ric. It would be preferable to correlate failure reports
with degradation in some aspect of user-observed Qual-
ity of Service, such as response time, but we did not
have access to an archive of such metrics for these ser-
vices. Note that even if a service measures and archives
response times, such data is not guaranteed to detect all
user-visible failures, due to the periodicity and place-
ment in the network of the probes. In sum, our definition
of user-visible is problems that were potentially user-
visible, i.e., visible if a user tried to access the service
during the failure.
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Figure 2: The architecture of one site of Online. Depending on the particular feature a user selects, the
request is routed to any one of the web proxy cache servers, any one of 50 servers for stateless services, or any one of
eight servers from a user's “service group” (a partition of one sixth of all users of the service, each with its own back-
end data storage server). Persistent state is stored on Network Appliance servers and is accessed by worker nodes via
NFS over UDP. This site is connected to a second site, at a collocation facility, via a leased network connection. 
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Figure 3: The architecture of one site of Read-
Mostly. A small number of web front-ends direct
requests to the appropriate back-end storage servers.
Persistent state is stored on commodity PC-based stor-
age servers and is accessed via a custom protocol over
TCP. A redundant pair of network switches connects the
cluster to the Internet and to a twin site via a leased net-
work connection.
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databases, we ignored security incidents. 
Most problems were relatively easy to map into this

two-dimensional cause-location space, except for wide-
area network problems. Network problems affected the
links among colocation facilities for all services, and,
for Content, also between client sites and colocation
facilities. Because the root cause of such problems often
lay somewhere in the network of an Internet Service
Provider to whose records we did not have access, the
best we could do with such problems was to label the
location as “network” and the cause as “unknown.”

3. Analysis of failure causes

We analyzed our data on component and service fail-
ure with respect to four properties: how many compo-
nent failures turn into service failures (Section 3.1); the
relative frequency of each component and service fail-
ure root cause (Section 3.2); and the MTTR for service
failures (Section 3.3).

3.1. Component failures to service failures

The services we studied all use redundancy in an
attempt to mask component failures. That is, they try to
prevent component failures from turning into end-user
visible failures. As indicated by Figure 4 and Figure 5,
this technique generally does a good job of preventing
hardware, software, and network component failures
from turning into service failures, but it is much less
effective at masking operator failures. A qualitative
analysis of the failure data suggests that this is because
operator actions tend to be performed on files that affect
the operation of the entire service or of a partition of the
service, e.g., configuration files or content files. Diffi-
culties in masking network failures generally stemmed
from the significantly smaller degree of network redun-
dancy compared to node redundancy. Finally, we also
observed that Online’s non-x86-based servers appeared
to be less reliable than the equivalent, less expensive
x86-based servers. Apparently more expensive hard-
ware isn’t always more reliable.

3.2. Service failure root cause

Next we examine the source and magnitude of ser-
vice failures, categorized by the root cause location and
component type. We augmented the data set presented
in the previous section by examining five more months
of data from Online, yielding 21 additional service fail-
ures, thus bringing our total to 61 for that service. (We
did not analyze the component failures that did not turn
into service failures from these five extra months, hence

their exclusion from Section 3.1.)
Table 2 shows that contrary to conventional wisdom,

front-end machines are a significant source of failure--in
fact, they are responsible for more than half of the ser-
vice failures in Online and Content. This fact was
largely due to operator configuration errors at the appli-
cation or operating system level. Almost all of the prob-
lems in ReadMostly were network-related; we attribute
this to simpler and better-tested application software at
that service, fewer changes made to the service on a
day-to-day basis, and a higher degree of node redun-
dancy than is used at Online and Content.

Table 3 shows that operator error is the leading
cause of service failure in two of the three services.

Figure 4: Number of component failures and
resulting service failures for Content. Only those
categories for which we classified at least six compo-
nent failures (operator error related to node operation,
node hardware failure, node software failure, and net-
work failure of unknown cause) are listed. The vast
majority of network failures in Content were of
unknown cause because most network failures were
problems with Internet connections between colocation
facilities or between customer proxy sites and coloca-
tion facilities. For all but the “node operator” case, 24%
or fewer component failures became service failures.
Fully half of the 36 operator errors resulted in service
failure, suggesting that operator errors are significantly
more difficult to mask using the service’s existing
redundancy mechanisms.
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Operator error in all three services generally took the
form of misconfiguration rather than procedural errors
(e.g., moving a user to the wrong fileserver). Indeed, for
all three services, more than 50% (and in one case
nearly 100%) of the operator errors that led to service

failures were configuration errors. In general, operator
errors arose when operators were making changes to the
system, e.g., scaling or replacing hardware, or deploying
or upgrading software. A few failures were caused by
operator errors during the process of fixing another
problem, but those were in the minority--most operator
errors, at least those recorded in the problem tracking
databases, arose during normal maintenance. 

Networking problems were a significant cause of
failure in all three services, and they caused a surprising
76% of all service failures at ReadMostly. As mentioned
in Section 3.1, network failures are less often masked
than are node hardware or software failures. An impor-
tant reason for this fact is that networks are often a sin-
gle point of failure, with services rarely using redundant
network paths and equipment within a single site. Also,
consolidation in the collocation and network provider
industries has increased the likelihood that “redundant”
network links out of a collocation facility will actually
share a physical link fairly close (in terms of Internet
topology) to the data center. A second reason why net-
working problems are difficult to mask is that their fail-
ure modes tend to be complex: networking hardware
and software can fail outright or more gradually, e.g.,
become overloaded and start dropping packets. Com-
bined with the inherent redundancy of the Internet, these

Figure 5: Number of component failures and
resulting service failures for Online. Only those
categories for which we classified at least six compo-
nent failures (operator error related to node operation,
node hardware failure, node software failure, and vari-
ous types of network failure) are listed. As with Con-
tent, operator error was difficult to mask using the ser-
vice’s existing redundancy schemes. Unlike at Content,
a significant percentage of network hardware failures
became service failures. There is no single explanation
for this, as the customer-impacting network hardware
problems affected various pieces of equipment.
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H/W 
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H/W
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S/W 
node

S/W
net

Unknown 
node

Unknown 
net

Environ
ment

Online 31% 2% 10% 15% 25% 2% 7% 3% 0%

Con-
tent 32% 4% 2% 2% 25% 0% 18% 13% 0%

Read-
Mostly 5% 14% 0% 10% 5% 19% 0% 33% 0%

Table 3: Service failure cause by component and type of cause.  The component is described as node or
network, and failure cause is described as operator error, hardware, software, unknown, or environment. We
excluded the “overload” category because of the very small number of failures caused.

Front-
end

Back-
end

Net-
work

Un-
known

Online 77% 3% 18% 2%

Content 66% 11% 18% 4%

Read-
Mostly 0% 10% 81% 9%

Table 2:  Service failure cause by location. Con-
trary to conventional wisdom, most failure root causes
were components in the service front-end.
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failure modes generally lead to increased latency and
decreased throughput, often experienced intermittently--
far from the “fail stop” behavior that high-reliability
hardware and software components aim to achieve [6]. 

Colocation facilities were effective in eliminating
“environmental” problems--no environmental problems,
such as power failure or overheating, led to service fail-
ure (one power failure did occur, but geographic redun-
dancy saved the day). We also observed that overload
(due to non-malicious causes) was insignificant.

Comparing this service failure data to our data on
component failures in Section 3.1, we note that as with
service failures, component failures arise primarily in
the front-end. However, hardware and/or software prob-
lems dominate operator error in terms of component
failure causes. It is therefore not the case that operator
error is more frequent than hardware or software prob-
lems, just that it is less frequently masked and therefore
more often results in a service failure.

Finally, we note that we would have been able to
learn more about the detailed causes of software and
hardware failures if we had been able to examine the
individual component system logs and the services’
software bug tracking databases. For example, we
would have been able to break down software failures
between operating system vs. application and off-the-
shelf vs. custom-written, and to have determined the
specific coding errors that led to software bugs. In many
cases the operations problem tracking database entries
did not provide sufficient detail to make such classifica-
tions, and therefore we did not attempt to do so.

3.3. Service failure time to repair

We next analyze the average Time to Repair (TTR)
for service failures, which we define as the time from
problem detection to restoration of the service to its pre-
failure Quality of Service1. Thus for problems that are
repaired by rebooting or restarting a component, the
TTR is the time from detection of the problem until the
reboot is complete. For problems that are repaired by
replacing a failed component (e.g., a dead network
switch or disk drive), it is the time from detection of the
problem until the component has been replaced with a
functioning one. For problems that “break” a service
functionally and that cannot be solved by rebooting
(e.g., an operator configuration error or a non-transient
software bug), it is the time until the error is corrected,

or until a workaround is put into place, whichever hap-
pens first. Note that our TTR incorporates both the time
needed to diagnose the problem and the time needed to
repair it, but not the time needed to detect the problem
(since by definition a problem did not go into the prob-
lem tracking database until it was detected).

We analyzed a subset of the service failures from
Section 3.2 with respect to TTR. We have categorized
TTR by the problem root cause location and type.
Table 4 is inconclusive with respect whether front-end
failures take longer to repair than do back-end failures.
Table 5 demonstrates that operator errors often take sig-
nificantly longer to repair than do other types of fail-
ures; indeed, operator error contributed approximately
75% of all Time to Repair hours in both Online and
Content.

We note that, unfortunately, TTR values can be mis-
leading because the TTR of a problem that requires
operator intervention partially depends on the priority
the operator places on diagnosing and repairing the
problem. This priority, in turn, depends on the opera-
tor’s judgment of the impact of the problem on the ser-
vice. Some problems are urgent, e.g., a CPU failure in
the machine holding the unreplicated database contain-
ing the mapping of service user IDs to passwords. In
that case repair is likely to be initiated immediately.
Other problems, or even the same problem when it
occurs in a different context, are less urgent, e.g., a CPU
failure in one of a hundred redundant front-end nodes is
likely to be addressed much more casually than is the
database CPU failure. More generally, a problem’s pri-
ority, as judged by an operator, depends on not only
purely technical metrics such as performance degrada-
tion, but also on business-oriented metrics such as the
importance of the customer(s) affected by the problem
or the importance of the part of the service that has
experienced the problem (e.g., a service’s email system
may be considered to be more critical than the system
that generates advertisements, or vice-versa).

1As with our definition of “service failure,” restora-
tion of the service to its pre-failure QoS is based not on
an empirical measurement of system QoS but rather on
inference from the system architecture, the component
that failed, and the operator log of the repair process.

Front-end Back-end Network

Online 9.4 (16) 7.3 (5) 7.8 (4)

Content 2.5 (10) 14 (3) 1.2 (2)

Read-
Mostly N/A (0) 0.2 (1) 1.2 (16)

Table 4:  Average TTR by part of service, in 
hours. The number in parentheses is the number of ser-
vice failures used to compute that average.
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4. Techniques for mitigating failures

Given that user-visible failures are inevitable despite
these services’ attempts to prevent them, how could the
service failures that we observed have been avoided, or
their impact reduced? To answer this question, we ana-
lyzed 40 service failures from Online, asking whether
any of a number of techniques that have been suggested
for improving availability could potentially

• prevent the original component design flaw (fault)
• prevent a component fault from turning into a com-

ponent failure
• reduce the severity of degradation in user-per-

ceived QoS due to a component failure (i.e., reduce
the degree to which a service failure is observed)

• reduce the Time to Detection (TTD): time from
component failure to detection of the failure

• reduce the Time to Repair (TTR): time from com-
ponent failure detection to component repair. (This
interval corresponds to the time during which sys-
tem QoS is degraded.)

Figure 6 shows how these categories can be viewed
as a state machine or timeline, with component fault
leading to component failure, possibly causing a user-
visible service failure; the component failure is eventu-
ally detected, diagnosed, and repaired, returning the sys-
tem to its failure-free QoS.

The techniques we investigate for their potential
effectiveness were

Operator
node

Operator
net

H/W
node

H/W
net

S/W
node

S/W
net

Unknown
node

Unknown
net

Online 8.3 (16) 29 (1) 2.5 (5) 0.5 (1) 4.0 (9) 0.8 (1) 2.0 (1) N/A (0)

Content 1.2 (8) N/A (0) N/A (0) N/A (0) 0.2 (4) N/A (0) N/A (0) 1.2 (2)

Read-
Mostly 0.2 (1) 0.1 (3) N/A (0) 6.0 (2) N/A (0) 1.0 (4) N/A (0) 0.1 (6)

Table 5: Average TTR for failures by component and type of cause, in hours.  The component is described as node or
network, and failure cause is described as operator error, hardware, software, unknown, or environment. The number
in parentheses is the number of service failures used to compute that average. We have excluded the “overload” cate-
gory because of the very small number of failures due to that cause.

Figure 6: Timeline of a failure. The system starts out in normal operation. A component fault, such as a soft-
ware bug, an alpha particle flipping a memory bit, or an operator misunderstanding the configuration of the system he
or she is about to modify, may or may not eventually lead the affected component to fail. A component failure may or
may not significantly impact the service’s QoS. In the case of a simple component failure, such as an operating sys-
tem bug leading to a kernel panic, the component failure may be automatically detected and diagnosed (e.g., the oper-
ating system notices an attempt to twice free a block of kernel memory), and the repair (initiating a reboot) will be
automatically initiated. A more complex component failure may require operator intervention for detection, diagno-
sis, and/or repair. In either case, the system eventually returns to normal operation. In our study, we use TTR to
denote the time between “failure detected” and “repair completed.”
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• correctness testing: testing the system and its
components for correct behavior before deploy-
ment or in production. Pre-deployment testing pre-
vents component faults in the deployed system, and
online testing detects faulty components before
they fail during normal operation. Online testing
will catch those failures that are unlikely to be cre-
ated in a test situation, for example those that are
scale- or configuration-dependent.

• redundancy: replicating data, computational func-
tionality, and/or networking functionality [5].
Using sufficient redundancy often prevents compo-
nent failures from turning into service failures.

• fault injection and load testing: testing error-han-
dling code and system response to overload by arti-
ficially introducing failure and overload, before
deployment or in the production system [18]. Pre-
deployment, this aims to prevent components that
are faulty in their error-handling or load-handling
capabilities from being deployed; online, this
detects components that are faulty in their error-
handling or load-handling capabilities before they
fail to properly handle anticipated faults and loads.

• configuration checking: using tools to check that
low-level (e.g., per-component) configuration files
meet constraints expressed in terms of the desired
high-level service behavior [13]. Such tools could
prevent faulty configurations in deployed systems. 

• component isolation: increasing isolation between
software components [5]. Isolation can prevent a
component failure from turning into a service fail-
ure by preventing cascading failures.

• proactive restart: periodic prophylactic rebooting
of hardware and restarting of software [7]. This can
prevent faulty components with latent errors due to
resource leaks from failing.

• exposing/monitoring failures: better exposing
software and hardware component failures to other
modules and/or to a monitoring system, or using
better tools to diagnose problems. This technique
can reduce time to detect, diagnose, and repair
component failures, and it is especially important
in systems with built-in redundancy that masks
component failures.

Of course, in implementing online testing, online
fault injection, and proactive restart, care must be taken
to avoid interfering with the operational system. A ser-
vice’s existing partitioning and redundancy may be
exploited to prevent these operations from interfering
with the service delivered to end-users, or additional
isolation might be necessary.

Table 6 shows the number of problems from
Online’s problem tracking database for which use, or
more use, of each technique could potentially have pre-
vented the problem that directly caused the system to
enter the corresponding failure state. A given technique
generally addresses only one or a few system failure
states; we have listed only those failure states we con-
sider feasibly addressed by the corresponding technique.
Because our analysis is made in retrospect, we tried to
be particularly careful to assume a reasonable applica-
tion of each technique. For example, using a trace of
past failed and successful user requests as input to an
online regression testing mechanism would be consid-
ered reasonable after a software change, whereas creat-
ing a bizarre combination of inputs that seemingly
incomprehensibly triggers a failure would not.

Note that if a technique prevents a problem from
causing the system to enter some failure state, it also
necessarily prevents the problem from causing the sys-
tem to enter a subsequent failure state. For example,

Technique

System state or 
transition 
avoided/
mitigated

instances 
potentially 
avoided/
mitigated

Online correctness 
testing

component 
failure 26

Expose/monitor 
failures

component 
being repaired 12

Expose/monitor 
failures

problem being 
diagnosed 11

Redundancy service failure 9

Config. checking component fault 9

Online fault/load 
injection

component 
failure 6

Component isolation service failure 5

Pre-deployment 
fault/load injection component fault 3

Proactive restart component fail 3

Pre-deployment 
correctness testing component fault 2

Table 6: Potential benefit from using in Online 
various proposed techniques for avoiding or 
mitigating failures.  40 service failures were exam-
ined, taken from the same time period as those analyzed
in Section 3.3. Those techniques that Online is already
using are indicated in italics; in those cases we evaluate
the benefit from using the technique more extensively.
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preventing a component fault prevents the fault from
turning into a failure, a degradation in QoS, and a need
to detect, diagnose, and repair the failure. Note that
techniques that reduce time to detect, diagnose, or repair
component failure reduce overall service loss experi-
enced (i.e., the amount of QoS lost during the failure
multiplied by the length of the failure).

From Table 6 we observe that online testing would
have helped the most, mitigating 26 service failures.
The second most helpful technique, more thoroughly
exposing and monitoring for software and hardware
failures, would have decreased TTR and/or TTD in
more than 10 instances. Simply increasing redundancy
would have mitigated 9 failures. Automatic sanity
checking of configuration files, and online fault and
load injection, also appear to offer significant potential
benefit. Note that of the techniques, Online already uses
some redundancy, monitoring, isolation, proactive
restart, and pre-deployment and online testing, so
Table 6 underestimates the effectiveness of adding those
techniques to a system that does not already use them.

Naturally, all of the failure mitigation techniques
described in this section have not only benefits, but also
costs. These costs may be financial or technical. Techni-
cal costs may come in the form of a performance degra-
dation (e.g., by increasing service response time or
reducing throughput) or reduced reliability (if the com-
plexity of the technique means bugs are likely in the
technique’s implementation). Table 7 analyzes the pro-
posed failure mitigation techniques with respect to their
costs. With this cost tradeoff in mind, we observe that
the techniques of adding additional redundancy and bet-
ter exposing and monitoring for failures offer the most
significant “bang for the buck,” in the sense that they
help mitigate a relatively large number of failure scenar-
ios while incurring relatively low cost. 

Clearly, better online correctness testing could have
mitigated a large number of system failures in Online by
exposing latent component faults before they turned into
failures. The kind of online testing that would have
helped is fairly high-level self-tests that require applica-
tion semantic information (e.g., posting a news article
and checking to see that it showed up in the newsgroup,
or sending email and checking to see that it is received
correctly and in a timely fashion). Unfortunately these
kinds of tests are hard to write and need to be changed
every time the service functionality or interface
changes. But, qualitatively we can say that this kind of
testing would have helped the other services we exam-
ined as well, so it seems a useful technique.

Online fault injection and load testing would like-
wise have helped Online and other services. This obser-
vation goes hand-in-hand with the need for better expos-

ing failures and monitoring for those failures--online
fault injection and load testing are ways to ensure that
component failure monitoring mechanisms are correct
and sufficient. Choosing a set of representative faults
and error conditions, instrumenting code to inject them,
and then monitoring the response, requires potentially
even more work than does online correctness testing.
Moreover, online fault injection and load testing require
a performance- and reliability-isolated subset of the pro-
duction service to be used, because of the threat they
pose to the performance and reliability of the production
system. But we found that, despite the best intentions,
offline test clusters tend to be set up slightly differently
than the production cluster, so the online approach
appears to offer more potential benefit than does the
offline version.

5. Failure case studies

In this section we examine in detail a few of the
more instructive service failures from Online, and one
failure from Content related to a service provided to the
operations staff (as opposed to end-users).

Our first case study illustrates an operator error
affecting front-end machines. In that problem, an opera-
tor at Online accidentally brought down half of the
front-end servers for one service group (partition of
users) using the same administrative shutdown com-

Technique
Imple-

mentation 
cost

Potential 
reliabil- 
ity cost

Perform
ance 

impact

Online-
correct

medium to 
high

low to 
moderate

low to 
moderate

Expose/
monitor medium low (false 

alarms) low

Redundancy low low very low

Online- 
fault/load high high moderate 

to high

Config medium zero zero

Isolation moderate low moderate

Pre-fault/
load  high zero zero

Restart low low low

Pre-correct medium to 
high zero zero

Table 7: Costs of implementing failure mitiga-
tion techniques described in this section. 
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mand issued separately to three of the six servers. Only
one technique, redundancy, could have mitigated this
failure: because the service had neither a remote console
nor remote power supply control to those servers, an
operator had to physically travel to the colocation site
and reboot the machines, leading to 37 minutes during
which users in the affected service group experienced
50% performance degradation when using “stateful”
services. Remote console and remote power supply con-
trol are a redundant control path, and hence a form of
redundancy. The lesson to be learned here is that
improving the redundancy of a service sometimes can-
not be accomplished by further replicating or partition-
ing existing data or service code. Sometimes redun-
dancy must come in the form of orthogonal redundancy,
such as a backup control path.

A second interesting case study is a software error
affecting the service front-end; it provides a good exam-
ple of a cascading failure. In that problem, a software
upgrade to the front-end daemon that handles username
and alias lookups for email delivery incorrectly changed
the format of the string used by that daemon to query the
back-end database that stores usernames and aliases.
The daemon continually retried all lookups because
those looks were failing, eventually overloading the
back-end database, and thus bringing down all services
that used the database. The email servers became over-
loaded because they could not perform the necessary
username/alias lookups. The problem was finally fixed
by rolling back the software upgrade and rebooting the
database and front-end nodes, thus relieving the data-
base overload problem and preventing it from recurring. 

Online testing could have caught this problem, but
pre-deployment component testing did not, because the
failure scenario was dependent on the interaction
between the new software module and the unchanged
back-end database. Throttling back username/alias look-
ups when they started failing repeatedly during a short
period of time would also have mitigated this failure.
Such a use of isolation would have prevented the data-
base from becoming overloaded and hence unusable for
providing services other than username/alias lookups.

A third interesting case study is an operator error
affecting front-end machines. In this situation, users
noticed that their news postings were sometimes not
showing up on the service’s newsgroups. News postings
to local moderated newsgroups are received from users
by the front-end news daemon, converted to email, and
then sent to a special email server. Delivery of the email
on that server triggers execution of a script that verifies
the validity of the user posting the message. If the
sender is not a valid Online user, or the verification oth-
erwise fails, the server silently drops the message. A

service operator at some point had configured that email
server not to run the daemon that looks up usernames
and aliases, so the server was silently dropping all news-
postings-converted-into-email-messages that it was
receiving. The operator accidentally configured that
email server not to run the lookup daemon because he or
she did not realize that proper operation of that mail
server depended on its running that daemon. 

The lessons to be learned here are that software
should never silently drop messages or other data in
response to an error condition, and perhaps more impor-
tantly that operators need to understand the high-level
dependencies and interactions among the software mod-
ules that comprise a service. Online testing would have
detected this problem, while better exposing failures,
and improved techniques for diagnosing failures, would
have decreased the time needed to detect and localize
this problem. Online regression testing should take
place not only after changes to software components,
but also after changes to system configuration.

A fourth failure we studied arose from a problem at
the interface between Online and an external service.
Online uses an external provider for one of its services.
That external provider made a configuration change to
its service to restrict the IP addresses from which users
could connect. In the process, they accidentally blocked
clients of Online. This problem was difficult to diagnose
because of a lack of thorough error reporting in Online’s
software, and poor communication between Online and
the external service during problem diagnosis and when
the external service made the change. Online testing of
the security change would have detected this problem. 

Problems at the interface between providers is likely
to become increasingly common as composed network
services become more common. Indeed, techniques that
could have prevented several failures described in this
section--orthogonal redundancy, isolation, and under-
standing the high-level dependencies among software
modules--are likely to become more difficult, and yet
essential to reliability, in a world of planetary-scale
ecologies of networked services.

As we have mentioned, we did not collect statistics
on problem reports pertaining to systems whose failure
could not directly affect the end-user experience. In par-
ticular, we did not consider problem reports pertaining
to hardware and software used to support system admin-
istration and operational activities. But one incident
merits special mention as it provides an excellent exam-
ple of multiple related, but non-cascading, component
failures contributing to a single failure. Ironically, this
problem led to the destruction of Online’s entire prob-
lem tracking database while we were conducting our
research.
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Content’s problem tracking database was stored in a
commercial database. The data was supposed to be
backed up regularly to tape. Additionally, the data was
remotely mirrored each night to a second machine, just
as the service data itself was remotely mirrored each
night to a backup datacenter. Unfortunately, the database
backup program had not been running for a year and a
half because of a configuration problem related to how
the database host connects to the host with the tape
drive. This was considered a low-priority issue because
the remote mirroring still ensured the existence of one
backup copy of the data. One night, the disk holding the
primary copy of the problem tracking database failed,
leaving the backup copy as the only copy of the data-
base. In a most unfortunate coincidence, an operator re-
imaged the host holding the backup (and now only)
copy of the database later that evening, before it was
realized that the primary copy of the problem tracking
database had been destroyed, and that the re-imaging
would therefore destroy the last remaining copy.

We can learn several lessons from this failure. First,
lightning does sometimes strike twice--completely unre-
lated component failures can happen simultaneously,
leading a system with one level of redundancy to fail.
Second, categorizing failures, particularly operator
error, can be tricky. For example, was reimaging the
backup machine after the primary had failed really an
operator error, if the operator was unaware that the pri-
mary had failed? Was intentionally leaving the tape
backup broken an operator error? (We do consider both
to be operator errors, but arguably understandable ones.)
Third, it is vital that operators understand the current
configuration and state of the system and the architec-
tural dependencies and relationships among compo-
nents. Many systems are designed to mask failures--but
this can prevent operators from knowing when a sys-
tem’s margin of safety has been reduced. The correct
operator behavior in the previous problem was to repli-
cate the backup copy of the database before reimaging
the machine holding it. But in order to know to do this,
the operator needed to know that the primary copy of
the problem tracking database had been destroyed, and
that the machine he or she was about to reimage held the
backup copy of that database. Understanding how a sys-
tem will be affected by a change is particularly impor-
tant before embarking on destructive operations that are
impossible to undo, such as reimaging a machine.

6. Discussion

In this section we describe three areas currently
receiving little research attention that we believe could
help substantially to improve the availability of Internet

services: better operator tools and systems; creation of
an industry-wide failure repository; and adoption of
standardized service-level benchmarks. We also com-
ment on the representativeness of the data we have pre-
sented.

6.1. Operators as first-class users

Despite the huge contribution of operator error to
service failure, operator error is almost completely over-
looked in designing high-dependability systems and the
tools used to monitor and control them. This oversight is
particularly problematic because as our data shows,
operator error is the most difficult component failure to
mask through traditional techniques. Industry has paid a
great deal of attention to the end-user experience, but
has neglected tools and systems used by operators for
configuration, monitoring, diagnosis, and repair.

As previously mentioned, the majority of operator
errors leading to service failure were misconfigurations.
Several techniques could improve this situation. One is
improved operator interfaces. This does not mean a sim-
ple GUI wrapper around existing per-component com-
mand-line configuration mechanisms--we need funda-
mental advances in tools to help operators understand
existing system configuration and component dependen-
cies, and how their changes to one component’s config-
uration will affect the service as a whole. Tools to help
visualize existing system configuration and dependen-
cies would have averted some operator errors (configu-
ration-related and otherwise) by ensuring that an opera-
tor’s mental model of the existing system configuration
matched the true configuration.

Another approach is to build tools that do for config-
uration files what lint [8] does for C programs: to check
configuration files against known constraints. Such
tools can be built incrementally, with support for addi-
tional types of configuration files and constraints added
over time. This idea can be extended in two ways. First,
support can be added for user-defined constraints, tak-
ing the form of a high-level specification of desired sys-
tem configuration and behavior, much as [3] can be
viewed as a user-extensible version of lint. Second, a
high-level specification can be used to automatically
generate per-component configuration files. A high-
level specification of operator intent is a form of seman-
tic redundancy, a technique that is useful for catching
errors in other contexts (types in programming lan-
guages, data structure invariants, and so on). Unfortu-
nately there are no widely used generic tools to allow an
operator to specify in a high-level way the desired ser-
vice architecture and behavior, such that the specifica-
tion could be checked against the existing configuration,
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or per-component configurations could be generated.
Thus the very wide configuration interface remains
error-prone.

An overarching difficulty related to diagnosing and
repairing problems relates to collaborative problem
solving. Internet services require coordinated activity by
multiple administrative entities, and multiple individu-
als within each of those organizations, for diagnosing
and solving some problems. These entities include the
operations staff of the service, the service's software
developers, the operators of the collocation facilities
that the service uses, the network providers between the
service and its collocation facilities, and sometimes the
customers. Today, this coordination is handled almost
entirely manually, via telephone calls to contacts at the
various points. The process could be greatly improved
by sharing a unified problem tracking/bug database
among all of these entities and deploying collaboration
tools for cooperative work. 

Besides allowing for collaboration, one of the most
useful properties of a problem tracking database is that
it gives operators a history of all the actions that were
performed on the system and an indication of why the
actions were performed. Unfortunately this history is
human-generated in the form of operator annotations to
a problem report as they walk through the steps of diag-
nosing and repairing a problem. A tool that, in a struc-
tured way, expresses the history of a system--including
configuration and system state before and after each
change, who or what made the change, why they made
the change, and exactly what changes they made--would
help operators understand how a problem evolved,
thereby aiding diagnosis and repair.

Tools for determining the root cause of problems
across administrative domains, e.g., traceroute, are rudi-
mentary, and these tools generally cannot distinguish
between certain types of problems, such as end-host
failures and network problems on the network segment
where a node is located. Moreover, tools for fixing a
problem once its source is located are controlled by the
administrative entity that owns the broken hardware or
software, not by the site that determines that the prob-
lem exists. These difficulties lead to increased diagnosis
and repair times. The need for tools and techniques for
problem diagnosis and repair that work effectively
across administrative boundaries, and that correlate sys-
tem observations from multiple network vantage points,
is likely to become even greater in the age of composed
network services built on top of emerging platforms
such as Microsoft's .NET and Sun's SunONE.

Finally, the systems and tools operators use to
administer services are not just primitive and difficult to
use, they are also brittle. Although we did not collect

detailed statistics about failures in systems used for ser-
vice operations, we observed many reports of failures of
such components. At Content, more than 15% of the
reports in the problem tracking database related to
administrative machines and services. A qualitative
analysis of these problems across the services reveals
that organizations do not build the operational side of
their services with as much redundancy or pre-deploy-
ment quality control as they do the parts of the service
used by end-users. The philosophy seems to be that
operators can work around problems with administra-
tive tools and machines if something goes wrong, while
end-users are powerless in the face of service problems.
Unfortunately the result of this philosophy is increased
time to detect, diagnose, and repair problems due to
fragile administrative systems.

6.2. A worldwide failure data repository

Although analyzing failure data seems at first
straightforward, our initial expectation turned out to be
far from the truth. Because the Internet services we stud-
ied recorded component failures in a database, we
expected to be able to simply write a few database que-
ries to collect the quantitative data we have presented in
this paper. Unfortunately, we found that operators fre-
quently filled out the database forms incorrectly--for
example, fields such as problem starting time, problem
ending time, root cause, and whether a problem was
customer impacting (i.e., a “service failure” as opposed
to just a “component failure”), often contradicted the
timestamped operator narrative of events that accompa-
nied the problem reports. The data presented in this
paper was therefore gathered by reading the operator
narrative for each problem report, rather than accepting
the pre-analyzed database data on blind faith. Likewise,
insufficiently detailed problem reports sometimes led to
difficulty in determining the actual root cause of a prob-
lem or its time to repair. Finally, the lack of historical
end-user-perceived service QoS measurements pre-
vented us from rigorously defining a “service failure” or
even calculating end-user-perceived service availability
during the time period corresponding to the problem
reports we examined. 

We believe that Internet services should follow the
lead of other fields, such as aviation, in collecting and
publishing detailed industry-wide failure-cause data in a
standardized format. Only by knowing why real systems
fail, and what impact those failures have, can research-
ers and practitioners know where to target their efforts.
Many services, such as the ones we studied, already use
databases to store their problem tracking information. It
should be possible to establish a standard schema, per-
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haps extensible, for Internet services, network provid-
ers, colocation facilities, and related entities, to use for
recording problems, their impact, and their resolutions.
We have proposed one possible failure cause and loca-
tion taxonomy for such a schema in this paper. A stan-
dard schema would benefit not only researchers, but
also these services themselves, as establishing and shar-
ing such databases would help to address the coordina-
tion problem described in Section 6.1. Finally, we note
that services that release such data are likely to want the
publicly-available version of the database to be anony-
mized; automating the necessary anonymization is non-
trivial, and is a research question unto itself.

6.3. Performability and recovery benchmarks

In addition to focusing dependability research on
real-world problem spots, the failure data we have col-
lected can be used to create a fault model (or, to use our
terminology, component failure model) for service-level
performability benchmarks. Recent benchmarking
efforts have focused on component-level dependability
by observing single-node application or OS response to
misbehaving disks, system calls, and the like. But
because we found a significant contribution to service
failure of human error (particularly multi-node configu-
ration problems) and network (including WAN) prob-
lems, we suggest a more holisitc approach. In service-
level performability benchmarks, a small-scale replica
(or a physically or virtually isolated partition) of a ser-
vice is created, and QoS for a representative service
workload mix is measured while representative compo-
nent failures (e.g., those described in this paper) are
injected. To simplify this process, one might measure
the QoS impact of individual component failures or
multiple simultaneous failures, and then weight the
degraded QoS response to these events by either the rel-
ative frequency with which the different classes of com-
ponent failure occur in the service being benchmarked,
or using the proportions we found in our survey. Impor-
tant metrics to measure in addition to QoS impact of
injected failures, are time to detect, diagnose, and repair
the component failure(s), be it automatically or by a
human. As suggested in [2], the workload should
include standard service administrative tasks. A recent
step towards this type of benchmark is described in [16].

6.4. Representativeness

While our data was taken from just three services,
we feel that it is representative of large-scale Internet
services that use custom-written software to provide
their service. Most of the “giant scale” services we
informally surveyed use custom-written software, at

least for the front-end, for scalability and performance
reasons. Based on this information, we feel that our
results do apply to many Internet services. 

On the other hand, our data is somewhat skewed by
the fact that two of our three sites (Content and Read-
Mostly) are what we would call “content-intensive,”
meaning that the time spent transferring data from the
back-end media to the front-end node is large compared
to the amount of time the front-end node spends pro-
cessing the request and response. Sites that are less
“content intensive” are less likely to use custom-written
back-end software (as was the case for Online). Addi-
tionally, at all three services we studied, user requests do
not require transactional semantics. Sites that require
transactional semantics (e.g., e-commerce sites) are
more likely to use database back-ends rather than cus-
tom-written back-end software. In theory both of these
factors should tend to decrease the failure rate of back-
end software, and indeed Online, the one site that used
off-the-shelf back-end software, was also the site with
the lowest fraction of back-end service failures. 

7. Related work

Our work adds to a small body of existing studies of,
and suggestions for, Internet service architectures [1]
[14]. We are not aware of any studies of failure causes
of such services.

A number of studies have been published on the
causes of failure in various types of computer systems
that are not commonly used for running Internet sites,
and in operational environments unlike those of Internet
services. Gray is responsible for the most widely cited
studies of computer system failure data [5] [6]. In 1986
he found that operator error was the largest single cause
of failure in deployed Tandem systems, accounting for
42% of failures, with software the runner-up at 25%. We
found strikingly similar percentages at Online and Con-
tent. In 1989, however, Gray found that software had
become the major source of outages (55%), swamping
the second largest contributor, system operations (15%).
We note that Gray attributed a failure to the last compo-
nent in a failure chain rather than the root cause, making
his statistics not directly comparable to ours, although
this fact only matters for cascading failures, of which we
found few. Though we did not quantitatively analyze the
length of failure chains, Gray found longer chains than
we did: 20% of failure chains were of length three or
more in Gray’s study, with only 20% of length one,
whereas we found that almost all were of length one or
two.

Kuhn examined two years of data on failures in the
Public Switched Telephone Network as reported to the
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FCC by telephone companies [10]. He concluded that
human error was responsible for more than 50% of fail-
ure incidents, and about 30% of customer minutes, i.e.,
number of customers impacted multiplied by number of
minutes the failure lasted. Enriquez extended this study
by examining a year’s worth of more recent data and by
examining the “blocked calls” metric collected on the
outage reports [4]. She came to a similar conclusion--
human error was responsible for more than 50% of out-
ages, customer-minutes, and blocked calls. 

Several studies have examined failures in networks
of workstations. Thakur examined failures in a network
of 69 SunOS workstations but divided problem root
cause coarsely into network, non-disk machine prob-
lems, and disk-related machine problems [21]. Kaly-
anakrishnam studied six months of event logs from a
LAN of Windows NT workstations used for mail deliv-
ery, to determine the causes of machines rebooting [9].
He found that most problems were software-related, and
that average downtime was two hours. In a closely
related study, Xu examined a network of Windows NT
workstations used for 24x7 enterprise infrastructure ser-
vices, again by studying the Windows NT event log
entries related to system reboots [22]. Unlike the Thakur
or Kalyanakrishnam studies, this one allowed operators
to annotate the event log to indicate the reason for
reboot; thus the authors were able to draw conclusions
about the contribution of operator failure to system out-
ages. They found that planned maintenance and soft-
ware installation and configuration caused the largest
number of outages, and that system software and
planned maintenance caused the largest amount of total
downtime. They were unable to classify a large percent-
age of the problems (58%). We note that they counted
reboots after installation or patching of software as a
“failure.” Their software installation/configuration cate-
gory therefore is not comparable to our operator failure
category, despite its being named somewhat similarly.

A number of researchers have examined the causes
of failures in enterprise-class server environments. Sul-
livan and Chillarege examined software defects in
MVS, DB2, and IMS [19]. Tang and Iyer conducted a
similar study for the VAX/VMS operating system in two
VAXclusters [20]. Lee and Iyer categorized software
faults in the Tandem GUARDIAN operating system
[12]. Murphy and Gent examined causes of system
crashes in VAX systems between 1985 and 1993; in
1993 they found that hardware caused about 10% of
failures, software about 20%, and system management a
bit over 50% [15].

Our study is similar in spirit to two studies of net-
work failure causes: Mahajan examined the causes of
BGP misconfigurations [13], and Labovitz conducted an
earlier study of the general causes of failure in IP back-
bones [11].

8. Conclusion

From a study of more than 500 component failures
and dozens of user-visible failures in three large-scale
Internet services, we observe that (1) operator error is
the leading cause of failure in two of the three services
studied, (2) operator error is the largest contributor to
time to repair in two of the three services, (3) configura-
tion errors are the largest category of operator errors, (4)
failures in custom-written front-end software are signifi-
cant, and (5) more extensive online testing and more
thoroughly exposing and detecting component failures
would reduce failure rates in at least one service.

While 100% availability is almost certainly unattain-
able, our observations suggest that Internet service
availability could be significantly enhanced with proac-
tive online testing; thoroughly exposing and monitoring
for component failures; sanity checking configuration
files; logging operator actions; and improving operator
tools for distributed, collaborative diagnosis and prob-
lem tracking. To the extent that tools for these tasks
already exist, they are generally ad hoc and are retrofit-
ted onto existing systems. We believe it is important that
service software be built from the ground up with con-
cern for testing, monitoring, diagnosis, and maintain-
ability in mind--in essence, treating operators as first-
class users. To accomplish this, APIs for emerging ser-
vices should allow for easy online testing, fault injec-
tion, automatic propagation of errors to code modules
and/or operators that can handle them, and distributed
data-flow tracing to help detect, diagnose, and debug
performance and reliability failures. Finally, we believe
that research into system reliability would benefit
greatly from an industry-wide, publicly-accessible fail-
ure database, and from service-level performability and
recovery benchmarks that can objectively evaluate
designs for improved system availability and maintain-
ability.
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