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Abstract

The Domain Name System (DNS) provides name
service for the DARPA Internet. It is one of the largest
name services in operation today, serves a highly
diverse community of hosts, users, and networks, and
uses a unique combination of hierarchies, caching, and
datagram access.

This paper examines the ideas behind the initial design
of the DNS in 1983, discusses the evolution of these
ideas into the current implementations and usages,
notes conspicuous surprises, successes and
shortcomings, and attempts to predict its future evo-
lution.

1. Introduction

The genesis of the DNS was the observation, circa
1982, that the HOSTS.TXT system for publishing the
mapping between host names and addresses was
encountering or headed for problems. HOSTS.TXT is
the name of a simple text file, which is centrall y
maintained on a host at the SRI Network Information
Center (SRI-NIC) and distributed to all hosts in the
Internet via direct and indirect file transfers.

The problems were that the file, and hence the costs of
its distribution, were becoming too large, and that the
centrali zed control of updating did not fit the trend
toward more distributed management of the Internet.

Simple growth was one cause of these problems; an-
other was the evolution of the community using
HOSTS.TXT from the NCP-based original ARPANET
to the IP/TCP-based Internet. The research
ARPANET’s role had changed from being a single
network connecting large timesharing systems to being
one of the several long-haul backbone networks linking
local networks which were in turn populated with
workstations. The number of hosts changed from the
number of timesharing systems (roughly organizations)
to the number of workstations (roughly users). This
increase was directly reflected in the size of
HOSTS.TXT, the rate of change in HOSTS.TXT, and
the number of transfers of the file, leading to a much
larger than linear increase in total resource use for
distributing the file. Since organizations were being
forced into management of local network addresses,
gateways, etc., by the technology anyway, it was quite
logical to want to partition the database and allow local
control of local name and address spaces. A distributed
naming system seemed in order.

Existing distributed naming systems included the
DARPA Internet’s IEN116 [IEN 116] and the XEROX
Grapevine [Birrell 82] and Clearinghouse systems
[Oppen 83]. The IEN116 services seemed excessively
limited and host specific, and IEN116 did not provide
much benefit to justify the costs of renovation. The
XEROX system was then, and may still be, the most
sophisticated name service in existence, but it was not
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clear that its heavy use of replication, light use of
caching, and fixed number of hierarchy levels were
appropriate for the heterogeneous and often chaotic
style of the DARPA Internet. Importing the XEROX
design would also have meant importing supporting
elements of its protocol architecture. For these reasons,
a new design was begun.

The initial design of the DNS was specified in [RFC
882, RFC 883]. The outward appearance is a
hierarchical name space with typed data at the nodes.
Control of the database is also delegated in a
hierarchical fashion. The intent was that the data types
be extensible, with the addition of new data types
continuing indefinitely as new applications were
added. Although the system has been modified and
refined in several areas [RFC 973, RFC 974], the
current specifications [RFC 1034, RFC 1035] and
usage are quite similar to the original definitions.

Drawing an exact line between experimental use and
production status is difficult, but 1985 saw some hosts
use the DNS as their sole means of accessing naming
information. While the DNS has not replaced the
HOSTS.TXT mechanism in many older hosts, it is the
standard mechanism for hosts, particularly those based
on Berkeley UNIX, that track progress in network and
operating system design.

2. DNS Design

The base design assumptions for the DNS were that it
must:

�
provide at least all of the same information as
HOSTS.TXT.

�
Allow the database to be maintained in a
distributed manner.

�
Have no obvious size limits for names, name
components, data associated with a name, etc.

�
Interoperate across the DARPA Internet and in
as many other environments as possible.

�
Provide tolerable performance.

Derivative constraints included the following:
�

The cost of implementing the system could only
be justified if it provided extensible services. In
particular, the system should be independent of
network topology, and capable of encapsulating
other name spaces.

�
In order to be universall y acceptable, the system
should avoid trying to force a single OS,

architecture, or organizational style onto its
users. This idea applied all the way from
concerns about case sensiti vity to the idea that
the system should be useful for both large
timeshared hosts and isolated PCs. In general,
we wanted to avoid any constraints on the system
due to outside influences and permit as many
different implementation structures as possible.

The HOSTS.TXT emulation requirement was not
particularly severe, but it did cause an early
examination of schemes for storing data other than
name-to-address mappings. A hierarchical name space
seemed the obvious and minimal solution for the
distribution and size requirements. The interoperabilit y
and performance constraints implied that the system
would have to allow database information to be
buffered between the client and the source of the data,
since access to the source might not be possible or
timely.

The initial DNS design assumed the necessity of
striking a balance between a very lean service and a
completely general distributed database. A lean service
was desirable because it would result in more
implementation efforts and early availabilit y. A general
design would amortize the cost of introduction across
more applications, provide greater functionalit y, and
increase the number of environments in which the
DNS would eventually be used. The “leanness”
criterion led to a conscious decision to omit many of
the functions one might expect in a state-of-the-art
database. In particular, dynamic update of the database
with the related atomicity, voting, and backup
considerations was omitted. The intent was to add
these eventually, but it was believed that a system that
included these features would be viewed as too
complex to be accepted by the community.

2.1 The architecture

The active components of the DNS are of two major
types: name servers and resolvers. Name servers are
repositories of information, and answer queries using
whatever information they possess. Resolvers interface
to client programs, and embody the algorithms
necessary to find a name server that has the
information sought by the client.

These functions may be combined or separated to suit
the needs of the environment. In many cases, it is
useful to centrali ze the resolver function in one or more
special name servers for an organization. This
structure shares the use of cached information, and also
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allows less capable hosts, such as PCs, to rely on the
resolving services of special servers without needing a
resolver in the PC.

2.2 The name space

The DNS internal name space is a variable-depth tree
where each node in the tree has an associated label.
The domain name of a node is the concatenation of all
labels on the path from the node to the root of the tree.
Labels are variable-length strings of octets, and each
octet in a label can be any 8-bit value. The zero length
label is reserved for the root. Name space searching
operations (for operations defined at present) are done
in a case-insensiti ve manner (assuming ASCII) . Thus
the labels “Paul” , “paul” , and “PAUL” , would match
each other. This matching rule effectively prohibits the
creation of brother nodes with labels having equivalent
spelli ng but different case. The rational for this system
is that it allows the sources of information to specify its
canonical case, but frees users from having to deal with
case. Labels are limited to 63 octets and names are
restricted to 256 octets total as an aid to
implementation, but this limit could be easil y changed
if the need arose.

The DNS specification avoids defining a standard
printing rule for the internal name format in order to
encourage DNS use to encode existing structured
names. Configuration files in the domain system
represent names as character strings separated by dots,
but applications are free to do otherwise. For example,
host names use the internal DNS rules, so
VENERA.ISI.EDU is a name with four labels (the null
name of the root is usually omitted). Mailbox names,
stated as USER@DOMAIN (or more generall y as
local-part@organization) encode the text to the left of
the “@” in a single label (perhaps including “.” ) and
use the dot-delimiti ng DNS configuration file rule for
the part following the @. Similar encodings could be
developed for file names, etc.

The DNS also decouples the structure of the tree from
any implicit semantics. This is not done to keep names
free of all implicit semantics, but to leave the choices
for these implicit semantics wide open for the
application. Thus the name of a host might have more
or fewer labels than the name of a user, and the tree is
not organized by network or other grouping. Particular
sections of the name space have very strong implicit
semantics associated with a name, particularly when
the DNS encapsulates an existing name space or is
used to provide inverse mappings (e.g. IN-
ADDR.ARPA, the IP addresses to host name section of

the domain space), but the default assumption is that
the only way to tell definitely what a name represents
is to look at the data associated with the name.

The recommended name space structure for hosts,
users, and other typical applications is one that mirrors
the structure of the organization controlli ng the local
domain. This is convenient since the DNS features for
distributing control of the database is most eff icient
when it parallels the tree structure. An administrative
decision [RFC 920] was made to make the top levels
correspond to country codes or broad organization
types (for example EDU for educational, MIL for
military, UK for Great Britain).

2.3 Data attached to names

Since the DNS should not constrain the data that
applications can attach to a name, it can’ t fix the data’s
format completely. Yet the DNS did need to specify
some primiti ves for data structuring so that replies to
queries could be limited to relevant information, and so
the DNS could use its own services to keep track of
servers, server addresses, etc. Data for each name in
the DNS is organized as a set of resource records
(RRs); each RR carries a well -known type and class
field, followed by applications data. Multiple values of
the same type are represented as separate RRs.

Types are meant to represent abstract resources or
functions, for example, host addresses and mailboxes.
About 15 are currently defined. The class field is
meant to divide the database orthogonally from type,
and specifies the protocol family or instance. The
DARPA Internet has a class, and we imagined that
classes might be allocated to CHAOS, ISO, XNS or
similar protocol families. We also hoped to try setting
up function-specific classes that would be independent
of protocol (e.g. a universal mail registry). Three
classes are allocated at present: DARPA Internet,
CHAOS, and Hessiod.

The decision to use multiple RRs of a single type rather
than including multiple values in a single RR differed
from that used in the XEROX system, and was not a
clear choice. The space eff iciency of the single RR with
multiple values was attractive, but the multiple RR
option cut down the maximum RR size. This appeared
to promise simpler dynamic update protocols, and also
seemed suited to use in a limited-size datagram
environment (i.e. a response could carry only those
items that fit in a maximum size packet without regard
to partial RR transport).
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2.4 Database distribution

The DNS provides two major mechanisms for
transferring data from its ultimate source to ultimate
destination: zones and caching. Zones are sections of
the system-wide database which are controlled by a
specific organization. The organization controlli ng a
zone is responsible for distributing current copies of
the zones to multiple servers which make the zones
available to clients throughout the Internet. Zone
transfers are typicall y initiated by changes to the data
in the zone. Caching is a mechanism whereby data
acquired in response to a client’s request can be locall y
stored against future requests by the same or other
client.

Note that the intent is that both of these mechanisms be
invisible to the user who should see a single database
without obvious boundaries.

Zones

A zone is a complete description of a contiguous
section of the total tree name space, together with some
“pointer” information to other contiguous zones. Since
zone divisions can be made between any two connected
nodes in the total name space, a zone could be a single
node or the whole tree, but is typicall y a simple
subtree.

From an organization’s point of view, it gets control of
a zone of the name space by persuading a parent
organization to delegate a subzone consisting of a
single node. The parent organization does this by
inserting RRs in its zone which mark a zone division.
The new zone can then be grown to arbitrary size and
further delegated without involving the parent,
although the parent always retains control of the initial
delegation. For example, the ISI.EDU zone was created
by persuading the owner of the EDU domain to mark a
zone boundary between EDU and ISI.EDU.

The responsibiliti es of the organization include the
maintenance of the zone’s data and providing
redundant servers for the zone. The typical zone is
maintained in a text form called a master file by some
system administrator and loaded into one master
server. The redundant servers are either manually
reloaded, or use an automatic zone refresh algorithm
which is part of the DNS protocol. The refresh
algorithm queries a serial number in the master’s zone
data, then copies the zone only if the serial number has
increased. Zone transfers require TCP for reliability.

A particular name server can support any number of
zones which may or may not be contiguous. The name

server for a zone need not be part of that zone. This
scheme allows almost arbitrary distribution, but is most
eff icient when the database is distributed in parallel
with the name hierarchy. When a server answers from
zone data, as opposed to cached data, it marks the
answer as being authoritative.

A goal behind this scheme is that an organization
should be able to have a domain, even if it lacks the
communication or host resources for supporting the
domain’s name service. One method is that
organizations with resources for a single server can
form buddy systems with another organization of
similar means. This can be especiall y desirable to
clients when the organizations are far apart (in
network terms), since it makes the data available from
separated sites. Another way is that servers agree to
provide name service for large communities such as
CSNET and UUCP, and receive master files via mail
or FTP from their subscribers.

Caching

In addition to the planned distribution of data via zone
transfers, the DNS resolvers and combined name
server/resolver programs also cache responses for use
by later queries. The mechanism for controlli ng
caching is a time-to-li ve (TTL) field attached to each
RR. This field, in units of seconds, represents the
length of time that the response can be reused. A zero
TTL suppresses caching. The administrator defines
TTL values for each RR as part of the zone definition;
a low TTL is desirable in that it minimizes periods of
transient inconsistency, while a high TTL minimizes
traff ic and allows caching to mask periods of server
unavailabilit y due to network or host problems.
Software components are required to behave as if they
continuously decremented TTLs of data in caches. The
recommended TTL value for host names is two days.

Our intent is that cached answers be as good as
answers from an authoritative server, excepting
changes made within the TTL period. However, all
components of the DNS prefer authoritative
information to cached information when both are
available locally.

3. Current Implementation Status

The DNS is in use throughout the DARPA Internet.
[RFC 1031] catalogs a dozen implementations or ports,
ranging from the ubiquitous support provided as part of
Berkeley UNIX, through implementations for
IBM-PCs, Macintoshes, LISP machines, and fuzzballs
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[Mill s 88]. Although the HOSTS.TXT mechanism is
still used by older hosts, the DNS is the recommended
mechanism. Hosts available through HOSTS.TXT
form an ever-dwindling subset of all hosts; a recent
measurement [Stahl 87] showed approximately 5,500
host names in the present HOSTS.TXT, while over
20,000 host names were available via the DNS.

The current domain name space is partitioned into
roughly 30 top level domains. Although a top level
domain is reserved for each country (approximately 25
in use, e.g. US, UK), the majority of hosts and
subdomains are named under six top level domains
named for organization types (e.g. educational is EDU,
commercial is COM). Some hosts claim multiple
names in different domains, though usually one name
is primary and others are aliases. The SRI-NIC
manages the zones for all of the non-country, top-level
domains, and delegates lower domains to individual
universities, companies, and other organizations who
wish to manage their own name space.

The delegation of subdomains by the SRI-NIC has
grown steadily. In February of 1987, roughly 300
domains were delegated. As of March 1988, over 650
domains are delegated. Approximately 400 represent
normal name spaces controlled by organizations other
than the SRI-NIC, while 250 of these delegated
domains represent network address spaces (i.e. parts of
IN-ADDR.ARPA) no longer controlled by the NIC.

Two good examples of contemporary DNS use are the
so called “root servers” which are the redundant name
servers that support the top levels of the domain name
space, and the Berkeley subdomain, which is one of the
domains delegated by the SRI-NIC in the EDU
domain.

3.1 Root servers

The basic search algorithm for the DNS allows a
resolver to search “downward” from domains that it
can access already. Resolvers are typicall y configured
with “hints” pointing at servers for the root node and
the top of the local domain. Thus if a resolver can
access any root server it can access all of the domain
space, and if the resolver is in a network partitioned
from the rest of the Internet, it can at least access local
names.

Although a resolver accesses root servers less as the
resolver builds up cached information about servers for
lower domains, the availabilit y of root servers is an
important robustness issue, and root server activity
monitoring provides insights into DNS usage.

Since access to the root and other top level zones is so
important, the root domain, together with other
top-level domains managed by the SRI-NIC, is
supported by seven redundant name servers. These root
servers are scattered across the major long haul
backbone networks of the Internet, and are also
redundant in that three are TOPS-20 systems running
JEEVES and four are UNIX systems running BIND.

The typical traff ic at each root server is on the order of
a query per second, with correspondingly higher rates
when other root servers are down or otherwise
unavailable. While the broad trend in query rate has
generall y been upward, day-to-day and month-to-
month comparisons of load are driven more by changes
in implementation algorithms and timeout tuning than
growth in client population. For example, one bad
release of popular domain software drove averages to
over five times the normal load for extended periods.
At present, we estimate that 50% of all root server
traff ic could be eliminated by improvements in various
resolver implementations to use less aggressive
retransmission and better caching.

The number of clients which access root servers can be
estimated based on measurement tools on the TOPS-20
version. These root servers keep track of the first 200
clients after root server initiali zation, and the first 200
clients typicall y account for 90% or more of all queries
at any single server. Coordinated measurements at the
three TOPS-20 root servers typicall y show
approximately 350 distinct clients in the 600 entries.
The number of clients is falli ng as more organizations
adopt strategies that concentrate queries and caching
for accesses outside of the local organization.

The clients appear to use static priorities for selecting
which root server to use, and failure of a particular root
server results in an immediate increase in traff ic at
other servers. The vast majority of queries are four
types: all i nformation (25 to 40%), host name to
address mappings (30–40%), address to host mappings
(10 to 15%), and new style mail i nformation called
MX (less than 10%). Again, these numbers vary widely
as new software distributions spread. The root servers
refer 10–15% of all queries to servers for lower level
domains.

3.2 Berkeley

UNIX support for the DNS was provided by the
University of Cali fornia, Berkeley, partiall y as research
in distributed systems, and partiall y out of necessity
due to growth in the campus network [Dunlap 86a,
Dunlap 86b]. The result is the Berkeley Internet Name
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Domain (BIND) server. Berkeley serves as an example
of a large delegated domain, though it is certainly more
sophisticated and has more experience than most.

With BIND, Berkeley became the first organization on
the DARPA Internet to bring up machines with all
their network applications solely dependent on DNS
for doing network host and address resolution.
Berkeley started to install machines on campus
dependent on the name server in the spring of 1985. In
the fall of 1985, the two mail gateways to the DARPA
Internet were converted to depend on the DNS, this
meant the entire campus had to adopt domain-style
mail addresses.

Educating even the sophisticated Berkeley user
community on the new form of addressing turned out
to be a major task. The single biggest objection from
the user community was due to mail addresses which
became obsolete, closely followed by the initial lack of
shorthands and search rules in the initial
implementation.

While the DNS transition was painful, the need was
clear, as shown in the following table which gives the
number of hosts, subnets, and finally subdomains in
use at Berkeley over the last three years. For example,
from January 1986 to February 1987, Berkeley added
735 hosts in 250 working days, an average of three
new hosts each working day.

Date Hosts Subnets Subdomains

January 1986 267 14

February 1987 1002 44

March 1988 1991 86 5

Note that Berkeley has recently divided its domain into
multiple zones for administrative convenience.

4. Surprises

Operation of the DNS has revealed several issues that
came as surprises to the developers, but on reflection
seem quite unsurprising.

4.1 Refinement of semantics

The main role of the DNS is to act as a repository for
information, and the initial assumption was that the
form and content of that information was
well-understood. This turned out to be a bad
assumption. Even existing common concepts such as

IP host addresses were sources of problems; we knew
that we would have to support multiple addresses for a
single host, but we were drawn into long discussions of
whether the addresses attached to a host name should
be ordered, and if so, by what metric.

4.2 Performance

The performance of the underlying network was much
worse than the original design expected. Growth in the
number of networks overtaxed gateway mechanisms
for keeping track of connectivity, leading to lost paths
and unidirectional paths. At the same time, growth in
load plus the addition of many lower speed links led to
longer delays. These problems were manifest at the
root servers, where logs reveal many instances of
repeated copies of the same query from the same
source. Even though the TOPS-20 root servers take less
than 100 milliseconds to process the vast majority of
queries, clients typically see response times of 500
milliseconds to 5 seconds, even for the closest root
server, depending on their location in the Internet. The
situation for queries to the delegated domains is often
much worse, both because of network troubles, and
because the name servers for these domains are often
on heavily loaded hosts on less-central networks.
Queries from the ARPANET to delegated domains
typically take 3 to 10 seconds during prime time, with
30 to 60 second times as occasional worst cases. It is
interesting to note that these times to access a remote
name server are similar to those seen for the XEROX
homogeneous name service [Larson 85].

A related surprise was the difficulty in making
reasonable measurements of DNS performance. We
had planned to measure the performance of DNS
components in order to estimate costs for future
enhancement and growth, and to guide tuning of
existing retransmission intervals, but the
measurements were often swamped by unrelated effects
due to gateway changes, new DNS software releases,
and the like. Many of the servers perform better as
their load increases due to fewer page faults, but this is
clearly not a stable situation over the long term,
leading to concerns about behavior should network
performance improve and be able to deliver higher
loads to the servers.

The performance of lookups for queries that did not
need network access was a pleasant surprise. We were
replacing a fairly simple host table lookup with a more
complicated database, so even if cache access worked
very well, we might slow existing applications down a
great deal. However, the new mechanisms are typically
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as good or better than the old, regardless of
implementation. The reason for this is that the old
mechanisms were created for a much smaller database
and were not adjusted as the size of database grew
explosively, while the new software was based on the
assumption of a very large database.

4.3 Negative caching

The DNS provides two negative responses to queries.
One says that the name in question does not exist,
while the other says that while the name in question
exists, the requested data does not. The first might be
expected if a name were misspelled, while the second
might result i f a query asked for the host type of a
mailbox or the maili ng li st members of a host. These
responses were expected to be rare.

Initial monitoring of root server activity showed a very
high percentage (20 to 60%) of these responses. Logs
revealed that many of these queries were generated by
programs using old-style host names, or names from
other mail i nternets (e.g. UUCP). In the latter case,
mailers would often use a call to the name to address
conversion routines to test whether an address was
valid in the DARPA Internet, even though this might
be easil y determined by other means. Since few UUCP
mail addresses are valid domain names, this resulted in
a negative response from a root server, coupled with a
delay for the non-local query.

We expected that the negative responses would
decrease, and perhaps vanish, as hosts converted their
names to domain-name format and as we asked mail
software maintainers to modify their programs. Even
though these steps were taken, negative responses
stayed in the 10–50% range, with a typical percentage
of 25%.

The reason is that the corrective measures were offset
by the spread of programs which provided shorthand
names through a search li st mechanism. The search
li sts produce a steady stream of bad names as they try
alternatives; a mistyped name may now lead to several
name errors rather than one. Our conclusion is that any
naming system that relies on caching for performance
may need caching for negative results as well . Such a
mechanism has been added to the DNS as an optional
feature, with impressive performance gains in cases
where it is supported in both the involved name servers
and resolvers. This feature will probably become
standard in the future.

5. Successes

5.1 Variable depth hierarchy

The variable-depth hierarchy is used a great deal and
was the right choice for several reasons:

�
The spread of workstation and local network
technology meant that organizations
participating in the Internet were finding a need
to organize within themselves.

�
The organizations were of vastly different size,
and hence needed different numbers of
organizational levels. For example, both large
international companies and small startups are
registered in the domain system.

�
The variable depth hierarchy makes it possible to
encapsulate any fixed level or variable level
system. For example, the UK’s own name
service (NRS) and the DNS mutually encapsulate
each other’s name space. This scheme may also
be used in the future to interoperate with the
directory service under development by the ISO
and CCITT.

Many networks that do not use the DNS protocols and
datatypes have standardized on the DNS hierarchical
name syntax for mail addressing [Quarterman 86].

5.2 Organizational structuring of names

While the particular top-level organizational structure
used by the current DNS is quite controversial, the
principle that names are independent of network,
topology, etc. is quite popular. The future structure of
the top levels is li kely to continue to be a subject of
debate. Most proposals generate a roughly equivalent
amount of support and condemnation. In the authors’
opinion, the only real possibilit y for wholesale change
is a politi cal decision to change the structure of the
domain name space to resemble the name space
proposed for the ISO/CCITT directory service. This is
not a technical issue as the DNS is flexible enough to
accommodate almost any political choice.

5.3 Datagram access

The use of datagrams as the preferred method for
accessing name servers was successful and probably
was essential, given the unexpectedly bad performance
of the DARPA Internet. The restriction to
approximately 512 bytes of data turns out not to be a
problem, performance is much better than that
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achieved by TCP circuits, and OS resources are not
tied up.

The only obvious drawback to datagram access is the
need to develop and refine retransmission strategies
that are already quite well developed for TCP. Much
unnecessary traff ic is generated by resolvers that were
developed to the point of working, but whose authors
lost interest before tuning, or by systems that imported
well known versions of code but do not track tuning
updates.

5.4 Additional section processing

When a name server answers a query, in addition to
whatever information it uses to answer the question, it
is free to include in the response any other information
it sees fit, as long as the data fits in a single datagram.
The idea was to allow the responding server to
anticipate the next logical request and answer it before
it was asked without significant added communication
cost. For example, whenever the root servers pass back
the name of a host, they include its address (if
available), on the assumption that the host address is
needed to use other information. Experiments show
that this feature cuts query traffic in half.

5.5 Caching

The caching discipline of the DNS works well , and
given the unexpectedly bad performance of the
Internet, was essential to the success of the system.

The only problems with caching relate to databases and
query strategies that make it less reliable or useful. For
example, RRs of the same type at a particular node
should have the same TTL so that they will tim e out
simultaneously, but administrators sometimes assign
TTLs in the mistaken idea that they are assigning some
sort of priority. Administrators also are very fond of
picking short TTLs so that their changes take effect
rapidly, even if changes are very rare and do not need
the timeliness.

A related concern is the security and reliabilit y
problems caused by indiscriminate caching. Several
existing resolvers cache all i nformation in responses
without regard to its reasonableness. This has resulted
in numerous instances where bad information has
circulated and caused problems. Similar diff iculties
were encountered when one administrator reversed the
TTL and data values, resulting in the distribution of
bad data with a TTL of several years. While various
measures have reduced the vulnerabilit y to error, the
security of the present system does depend on the

integrity of the network addressing mechanism, and
this is questionable in an era of local networks and
PCs.

5.6 Mail address cooperation

Agreement between representatives of the CSNET,
BITNET, UUCP, and DARPA Internet communities
led to an agreement to use organizationally structured
domain names for mail addressing and routing. While
the transition from the messy multiply-encoded mail
addresses of the past is far from complete, the
possibilit y of cleaning up mail addresses has been
clearly demonstrated.

6. Shortcomings

6.1 Type and class growth

When the draft DNS specifications were made
available in 1983, the one nearly unanimous criti cism
was that the type and class data specifiers, which were
8 bits in the draft, should be expanded to 16, or even
32 bits, to allow for new definitions. Over the first five
years of DNS use, two new types have been adopted,
two types have been dropped, and two new classes have
been allocated. Clearly, either the demand for new
types and classes was completely misunderstood, or the
current DNS makes new definitions too difficult.

While one problem is that almost all existing software
regards types and classes as compile-time constants,
and hence requires recompilation to deal with changes,
a less tractable problem is that new data types and
classes are useless until their semantics are carefull y
designed and published, applications created to use
them, and a consensus is reached to use the new system
across the Internet. This means that new types face a
series of technical and political hurdles.

A methodology or guidelines to aid in the design of
new types of information is needed. This is more
complicated than just listing the values of interest for
an application, since it often involves the design of
special name space sections, TTL selections to produce
acceptable performance and semantics, and decisions
whether to produce a desired binding through one
lookup or a sequence of smaller bindings. The single
lookup method often seems overwhelmingly attractive
to a particular application designer despite the fact that
it may overlap or confli ct with another application’s
data. Another factor is that members of the Internet
have different views on the proper assumptions or
approach for a particular problem.
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Mail i s an example. After much debate, the MX data
type and system [RFC 974] defined a standard method
for routing mail , based on the DOMAIN part or a
LOCAL-PART@DOMAIN mail address. MX
represented a simple addition to the DNS itself, but
required changes to all mail servers, and its benefits
required a “criti cal mass” of mailers. Numerous
suggestions have been made to extend the DNS to
provide mail destination registry down to the
individual user level, and the basics of such a service
are within our understanding, but consensus for a
single plan remains elusive. Part of the constituency
demands that user level mail binding be an option on
top of MX, while others advocate a fresh start, with
lots of features for mail forwarding, li st maintenance,
etc. The best choice seems to be one in which agent
binding is always a choice, but that a mailer which
chooses to map to the mailbox level can do so if the
mailbox data is also available.

6.2 Easy upgrading of applications

Converting network applications to use the DNS is not
a simple task. It would be ideal i f all the applications
converting from HOSTS.TXT could be recompiled to
use the DNS and have everything work, but this is
rarely the case.

Part of the problem is transient failure. A distributed
naming system, by its very nature, has periods that it
can not access particular information. Applications
must handle this condition appropriately. Mailers
looking up mail destinations should not discard mail
due to these transient failures, and can not afford to
wait indefinitely. Even if such failures are anticipated
to be quite rare once the DNS stabili zes, we face a
chicken-and-egg problem in converting mailers to use
the new software.

Another part of the problem is that access to the
naming system needs to be integrated into the
operating system to a much greater degree than
providing system call to the resolver. Users need to be
able to access these services at the shell l evel and
specify search li sts and defaults in a manner consistent
with other system operations.

6.3 Distribution of control vs. distribution of expertise

or responsibility

Distributing authority for a database does not distribute
a corresponding amount of expertise. Maintainers fix
things until they work, rather than until they work
well , and want to use, not understand, the systems they

are provided. Systems designers should anticipate this,
and try to compensate by technical means. The DNS
furnishes several examples of this principle:

�
The initial poli cy was that we would delegate a
domain to any organization which fill ed out a
form listing its redundant servers and other
essentials. Instead we should have required that
the organization demonstrate redundant servers
with real data in them before we delegated the
domain, and probably should have insisted that
they be on different networks, rather than
trusting assurances that the servers did not
represent a single point of failure.

�
The documentation for the system used examples
which were easil y explained in the narration.
Sample TTL values which mapped to an hour
were always copied; text that said the values
should be a few days was ignored.
Documentation should always be written with
the assumption that only the examples are read.

�
Debugging of the system was hampered by
questions about software versions and
parameters. These values should be accessible
via the protocol.

7. Conclusions

Just as the classification of many of the previous issues
into “successes” , “surprises” , and “shortcomings” is
open to debate based on the perspective of the reader,
so too is the question “Was the DNS a good idea?”

Modifications to the HOSTS.TXT scheme could have
postponed the need for a new system, and reduced the
quantitative arguments for the DNS. The DNS has
probably not yet reduced the community-wide
administrative, communication, or support load.
However, the need to distribute functionalit y was, we
believe, inexorable. This need, together with the new
functionalit y and opportunities for future services must
be the key criteria for judgment. From the authors’
perspective, they justify the DNS.

There are a lot of choices we might make differently if
we were starting over, but the main pieces of advice
which would have been valuable when we were
starting are:

�
Caching can work in a heterogeneous
environment, but should include features for
caching negative responses as well.

�
It is often more diff icult to remove functions
from systems than it is to get a new function
added. All of a community would not convert to
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a new service; instead some will stay with the
old, some will convert to the new, and some will
support both. This has the unfortunate effect of
making all functions more complex as new
features are added.

�
The most capable implementors lose interest
once a new system delivers the level of
performance they expect; they are not easil y
motivated to optimize their use of others’
resources or provide easil y used guidelines for
the administrators that use the systems.
Distributed software should include a version
number and table of parameters which can be
interrogated. If possible, systems should include
technical means for transferring tuning
parameters, or at least defaults, to all
installations without requiring the attention of
system maintainers.

�
Allowing variations in the implementation
structure used to provide service is a great idea;
allowing variation in the provided service causes
problems.

8. Directions for future work

Although the DNS is in production use and hence
diff icult to change, other research in naming systems,
particularly the emerging ISO X.500 directory services,
may provide the impetus for additions:

�
Support for X.500 style addresses for mail , etc.
could be constructed as a layer on top of the
DNS, albeit without the sophisticated protection,
update, and structuring rules of X.500. Use of
the data description techniques from the ISO
standards might provide a better mechanism for
adding data types than the present data
structuring rules, while the proven DNS
infrastructure could speed prototyping of ISO
applications.

�
The value of a ubiquitous name service and
consistent name space at all l evels of the protocol
suite and operating system seems obvious, but it
is equally obvious that tradeoffs between
performance, generalit y, and distribution require
at least different styles of use at different levels.
For example, a system suitable for managing file
names on a local disk would be substantiall y
different from a system for maintaining an
internet wide maili ng li st. The challenge here is
to develop an approach which, at least
conceptually, structures the total task into layers
or some other coherent organization.

�
Research in naming systems has typicall y
resulted in proposals for systems which could
replace or encapsulate all other systems, or
systems which allow translations between
separate name spaces, data formats, etc. Both
approaches have advantages and drawbacks. The
present DNS and efforts to unify its name space
without special domains for specific networks,
etc. place the DNS in the first category.
However, its success is universal enough to be
encouraging while not enough to solve the user’s
diff iculty with obscure encodings from other
systems. Technical and/or politi cal solutions to
the growing complexity of naming will be a
growing need.
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