CSC2231: Availability in P2Ps

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu Department of Computer Science University of Toronto

Methodology

Two stages:

- 1. Periodically crawl Gnutella
 - Obtain periodical snapshots of the network
 - Discover peers and their metadata
- 2. Probe discovered peers
 - Measure bottleneck bandwidth [SProbe]
 - Measure peer availability

Packet-Pair Model

From local host To remote host

From local host To remote host

No cooperation needed

Local

- SYN packet
- RST packet

From remote To local

Involuntary cooperation of application layer

From remote To local

Involuntary cooperation of application layer

Peer Characteristics

• P2P systems premises:

- Non-greedy behavior, voluntary cooperation
- Single & uniform roles, no client/server demarcation

• Question:

- Is this true in practice?
- 1. In practice, how uniform are peers ? Or... are some server-like, are some client-like?
- 2. In practice, how well behaved are peers?

Higher Downstream Bandwidths

22% of peers have upstream bw <= 100Kbps 8% of peers have upstream bw > 100Mbps

CSC2231: Internet Systems

Closest 20% are 50X Closer than Furthest 20%

20% of peers have latencies of at most 70ms 7% of peers have latencies of at least 1 sec

Median Session is about One Hour

50% of sessions last at most 1 hour 11% of sessions last at least 4 hours

CSC2231: Internet Systems

Huge Degree of Heterogeneity

• Heterogeneity:

- 3 orders of magnitude of bandwidth
 - 50Kbps-100Mbps
- 4 orders of magnitude of latency
 - 10us-10s
- 4+ orders of magnitude in availability
 - 1%-99.99%
- Lesson:
 - Delegate responsibilities across peers in a P2P system

Implications

Data Maintenance Model

- S = total amount of storage
- Storage per node = S/N
- rate of joins = rate of leaves = α joins per time
 - Node lifetime = N/ α
- Bandwidth per time:
 - α S/N for joining
 - α S/N for leaving
 - -2α S/N total
- Bandwidth per node per time:
 - 2 S/(N * Lifetime)

Model's Results

1 million peers must have 1 month lifetimes to maintain 1 PB 1 million peers only contribute 1 GB of unique data (20 GB of total)

CSC2231: Internet Systems

Are Peers Well-Behaved in Practice?

- Will peers lie if there is an incentive to do so?
 - Should we design incentive compatible systems?

Methodology

- In Gnutella:
 - Each peer voluntarily reports Internet connection type
 - Dialup, cable modem, DSL, T1, T3, Unknown
 - Well-connected peers have incentive to report lower bandwidths in order to shed load
- But... we also measure each peer's bandwidth
- Experiment:
 - Compare reported and measured bandwidths

Peers Reporting Dialup Bandwidths

Peers lie if there is an incentive to lie

Conclusions – Characterizing Peers

- Delegate responsibilities across peers in a P2P system
 - Significant amount of heterogeneity across peers
- Build incentive in P2P designs
- Incorporate direct measurement techniques
 - Peers deliberately misreport information if there is an incentive to do so

Problems

- DHCP/Aliasing effects
- Lack of metrics:
 - We have one project attempting to fix this problem!

Figure 1: Percentage of hosts that have more than one IP address across different periods of time.

CSC2231: Internet Systems

Figure 2: Host availability derived using unique host ID probes vs. IP address probes.

CSC2231: Internet Systems

Implications of aliasing

The use of IP address-based probing ...

would thus underestimate availability by a factor of 4!

My take on it

- It's unclear whether "Understanding Availability" understands availability
- We don't have the right metrics to measure availability
 - MTTF and MTTR do not capture a sys's availability
- Peer's uptime is useful only when it's considered relative to other peers

Availability vs. Number of 9s

- 1. Once request made, request is pending for 3 seconds before time-out
- 2. A request takes 1 second to complete
- A system with zero 9s has perfect availability
 - Up 1 sec, down 2 secs (zero 9s)

MTTR < time_out && MTTF > service_time

CSC2231: Internet Systems

My take on it

• We don't have the right metrics to measure availability

– MTTF and MTTR do not capture a sys's availability

Peer's uptime is useful only when it's considered relative to other peers

Is System 1 more available than System 2?

- Number of nines is the same in both systems 1 and 2
- A system is perfectly available iff every request is served

Thesis Topics

- Ph.D. Thesis topic:
 - Understand what availability means in the context of distributed systems:
 - Huge open problem
- M.Sc. Thesis topic:
 - Almost all measurement projects are subject to aliasing effects (DHCP, NATs, multiple NICs)
 - Both active and passive measurements
 - Understand how DHCP servers allocate IP addreses
 - Propose heuristics to differentiate multiple clients behind NAT
 - Validate them and propose a model