CSC2231: DNS with DHTs

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu
Department of Computer Science
University of Toronto
Administrivia

• **Next lecture:**
 - P2P churn
Limitations of current DNS

- **DNS problems:**
 - Every org must have DNS server:
 - 24/7 machine running with sysadmin
 - Hierarchical:
 - Poorly configured machine could affect entire sub-tree
 - Root DNS servers failures could be catastrophic
 - Root DNS servers are well-defined targets for attacks
 - Cache problems
 - Hard to propagate updates -- coherence problems
 - Short TTLs reduces hit rate
DHT-based DNS

- **DHTs:**
 - Scalable, self-organizing
 - Lack of hierarchy
 - Hard to attack a set of domain names
 - Handle flash-crowd effects well
 - No central points of failure
 - Network routes around failures
 - DNS servers --- mostly homogeneous
 - Can design backward-compatible DHT-based DNS
How would DHT-DNS work?
Where Beehive Improves

- Uses controlled proactive caching
- Ex. Looking for 2101
 - Takes 3 hops normally
- Places copies of object at all nodes one prior to the home node.
 - Reduces hops by one
 - Object is replicated on node 21
- Can reduce to 1 hop by replicating it on node 2
More Beehive

- Important part is choosing what levels to replicate at
- Can set a constant to set average lookup performance (defined as C)
- Uses a function over Zipf-like distributions (similar to DNS traffic) to find C
 - Must know the popularity distribution a priori
Security

• **Attack:** Prevent spoofing of bindings
• **Idea:** use signatures
 – www.cnn.com, A is signed with key K
 – www.cnn.com, K is signed with key K’
 – cnn.com, K’ is signed with key K”
 – .com, K” is signed with master key M
• **If you trust M**
 – You trust K”, then K’, then K, then A
• **This signature-based idea is orthogonal to whether DNS architecture is hierarchical or DHT-based**
Are we done?
Problems

- Network outages are poorly handled
- Certain functionality is lost
- Solving the wrong problem
- Performance improvements are not due to DHTs
 - But rather to heavy replication
Network Outages

- **Scenario:** organization disconnects from the Internet
 - Very common scenario in practice

- **Old DNS:**
 - Can still resolve local names
 - Can’t resolve global names
 - External hosts can’t resolve local names

- **P2P DNS:**
 - Cannot resolve local names
 - Can resolve some global names (but not connect)
 - External hosts can resolve local names (but not connect)
Functionality

- Hard to support dynamically-generated records
- No support for “ANY” queries
- No server-side load balancing/proximity routing
 - Akamai?

Possible solutions:
- Peers assume client-side functionality
 - Bad idea (+ ugly!)
Administration

• **Common problem:**
 – Implementation errors
 – 9 out of 13 problems with DNS listed in O’Reilly are software deficiencies

• **Fixing software/configurations**
 – Sounds like an important problem

• **Changing system’s architecture solves the wrong problem**
Administration (2)

• **Don’t have to run 24/7 servers**
 - But need to trust others for my own names
 - Where will we point the finger when something goes wrong?
Performance

[Graph showing distribution of latency with different labels: codons, codons+dns, legacy dns]
Performance
Performance

![Diagram showing performance metrics with arrows indicating different curves for codons, codons+dns, and legacy dns.]
Alternate Design

- Replication seems to have helped a lot!
 - the case for pushing DNS!
Using the back of the envelope

- **There are 76.9 million domains registered**
 - Including generic TLDs and country-code TLDs
 - Compressed file with all info -- 7.5GB
- **About 20,000 AS’s in the world**
 - Suppose each NS serves other 3 NS’s (23 GB pushed)
 - Build delivery tree of depth 10 roughly
- **Push updates daily**
 - About 760 KBytes / hour
 - About 850 Kbps upload to three peers
- **A lot of changes are for the same bindings**
 - 87% of domains do not change at all
Advantages of pushing DNS

• Great latency performance!
• Akamai still works
• Backward-compatible with old DNS

• We are only adding prefetching to DNS
 – Improve performance with affecting the systems’ architecture

• Idea for M.Sc. project:
 – build push-based DNS!
Discussion

• Does it make sense to have so many different name systems?
 – DNS names (DNS: names to IP addresses)
 – Peer IDs for P2P and DHTs (P2P system)
 – File names (FS: file names to i-nodes)
 – E-mail addresses (LDAP)
 – Chat Names (Chat Directory)
 • Dialing Skype names
Discussion

• What if we had one large address space?
 – \(10^{81}\) atoms in the universe
 – 800 bits can identify any atom in the universe

• Design name service to bind names to 1024 bit addresses
 – Should we make it hierarchical?
 • e.g., decompose 1024 bits into:
 – IP address + disk # + partition # + block ID + …