#### CSC2231: DHTs

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu

Department of Computer Science
University of Toronto

## **DHTs** today

- Active area of research for over 3 years now
- Ongoing work at almost every major university and lab.
  - over 20 DHT proposals; as many for DHT applications
  - IRIS
    - DHT-based, robust infrastructure for Internet-scale systems.
    - 5 year, \$12M, NSF-funded project
- Large, and growing, research community
  - theoreticians, networks and systems researchers
- Good research topic to stay away from!
  - I'm working on a paper on DHTs!

CSC2231: Internet Systems

## Today's Discussion

- How do DHTs work?
- What properties do DHTs have?
- What are P2P systems (as opposed to DHTs)?
  - Why are DHTs appealing to P2P designs

#### What is a DHT?

#### Hash Table

- data structure that maps "keys" to "values"
- essential building block in software systems

#### Distributed Hash Table (DHT)

similar, but spread across many hosts

#### Interface

- insert(key, value)
- lookup(key)

#### How do DHTs work?

#### **Every DHT node supports a single operation:**

- Given key as input; route messages to node holding key
  - DHTs are content-addressable





Neighboring nodes are "connected" at the application-level



Operation: take *key* as input; route messages to node holding *key* 

CSC2231: Internet Systems



Operation: take *key* as input; route messages to node holding *key* 

CSC2231: Internet Systems



Operation: take *key* as input; route messages to node holding *key* 

CSC2231: Internet Systems



Operation: take  $\overline{key}$  as input; route messages to node holding  $\underline{key}$ 

CSC2231: Internet Systems



## How to design a DHT?

#### State Assignment:

– what "(key, value) tables" does a node store?

#### Network Topology:

– how does a node select its neighbors?

#### Routing Algorithm:

– which neighbor to pick while routing to a destination?

#### Various DHT algorithms make different choices

Chord, Pastry, CAN, Tapestry, Plaxton, Viceroy, Kademlia, SkipNet,
 Symphony, Koorde, Apocrypha, Land, ORDI ...

## State Assignment in Chord DHT



- Nodes randomly chosen points on a Ring of values
- Each node stores the values between itself and predecessor

CSC2231: Internet Systems

#### Chord Topology and Route Selection



- Neighbor selection: i<sup>th</sup> neighbor at 2<sup>i</sup> distance
- Route selection: pick neighbor closest to destination

CSC2231: Internet Systems

#### State + Neighbor Assignment in Pastry



- Nodes are leaves in a tree
- logN neighbors in sub-trees of varying heights

CSC2231: Internet Systems

## Routing in Pastry



Route to the sub-tree with the destination

CSC2231: Internet Systems

#### Today's Discussion

- How do DHTs work?
- What properties do DHTs have?
- What are P2P systems (as opposed to DHTs)?
  - Why are DHTs appealing to P2P designs

## Properties of DHTs

- Scalable
  - each node has O(logN) neighbors
- Efficient
  - lookup takes O(logN) time
- Completely decentralized and self-organizing
  - hence highly available
- Load balanced
  - all nodes are equal

**Are DHTs panacea for building Scalable Distributed Systems?** 

## DHT's Achilles Heel: Heterogeneity

- DHTs great building blocks for large scale homogeneous systems
  - Each node has the same role
- Building heterogeneous systems over DHTs is hard
  - it often requires careful engineering of the DHT

## Today's Discussion

- How do DHTs work?
- What properties to DHT have?
- What are P2P systems (as opposed to DHTs)?
  - Why are DHTs appealing to P2P designs

## What are P2P systems?

- Peer-to-Peer as opposed to Client-Server
- All participants in a system have uniform roles
  - they act as clients, servers and routers
  - popular P2P apps: Seti@home, Kazaa, Napster
- Technological trends favoring P2P
  - client desktops have more storage, computation power and bandwidth
  - millions of clients connected to the Internet
- P2P systems leverage the power of these clients
  - Seti@home leverage computation power
  - Kazaa, Napster leverage bandwidth

# Why are DHTs appealing to P2P System Designers?

- Scalable, Load-balanced and Decentralized, Self-organizing
- Content-Addressable
  - Querying is the same as routing (getting to the content)
    - Query does not specify host
  - Internet is host-addressable



 $\mathsf{HASH}(xyz.mp3) = \mathsf{K}_1$ 

CSC2231: Internet Systems



 $HASH(xyz.mp3) = K_1$ 

CSC2231: Internet Systems



HASH(xyz.mp3) = K<sub>1</sub> Stefan Saroiu 20<del>0</del>5



## Content-addressability: key insight

 Content-addressability provides a level of indirection between consumers and providers of content/service

"Any computer systems problem can be solved by adding a level of indirection"

- Eliminates need for consumers to know providers & vice-versa
  - allows a new raft of applications like anycast, multicast, service composition etc.,

#### Discussion

 When facing new distributed system design, how do we determine whether DHTs are suitable?

#### When should we use DHT?

- Does system need to scale?
- Does system have heterogeneous nodes?
- Does system need self-organization?
- Does system need fully decentralized solution?
- Can system tolerate security risks due to decentralization?
- Does system need content addressability?

# The Good, The Bad and The Ugly Application of DHTs

#### The Good

- corporation wide file-systems
  - Farsite, GFS, LOCKSS
- sensor networks and queries over them
  - Pier
- corporate multicast, video-conferencing
  - · Akamai, Scribe

#### The Bad

- Wide-area file-sharing
  - · Overnet, DHT based Napster

#### The Ugly

- Internet wide file-systems, backups
  - CFS, Past, Ivy
- collaborative spam filtering