CSC2231: Quality of Internet Paths

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu Department of Computer Science University of Toronto

Administrivia

- You've made it so far!
 - Congratulations!
- P2P stuff from next lecture on
- "mock" PC really soon now

Motivation

Routing is a black box

- Label packet with destination
- Put it on the wire
- Here it goes....

Routing path choice subject to:

- Traffic engineering
- ISP peering policies
- Network topology
- Poor routing algorithms

• Question:

– How does path selection affect end-to-end performance?

Anectodal Evidence

CSC2231: Internet Systems

Methodology

Basic metric:

- Let X = performance of default path
- Let Y = performance of best path
- Y-X = cost of using default path

• How to find the best path:

- Measure paths between N nodes
- Generate synthetic full mesh topology (N²)
- Find best path on this graph
- Their best path underestimates "true" best path
- Not many dialup, DSL, cable users in their traces

30-55% of default paths have longer RTTs

75-85% of default paths have higher loss rates

70-80% of default paths have lower bandwidths

Adding it all up

- Plenty of opportunity to improve on quality of routing paths:
 - Why hasn't this been done before?
 - Can we do this?

Slides © David Andersen

• Failures:

-<u>Outages</u>: Configuration/operational errors, backhoes, etc.

-<u>Performance failures</u>: Severe congestion, denial-of-service attacks, etc.

Redundant links

• Multiple paths between all sites

Redundant links

• But many of them are hidden

Resilient overlay networks

- Measure all links between nodes
- Compute path properties
- Determine best route
- Forward traffic over that path

Take home messages

- 1. RON reduced outages by a factor 5 to 10, and routed around all major outages
- 2. RON takes 18s (average) to route around a failure, and can do so in the face of flooding attacks
- 3. Single route indirection delivers the majority RON benefits

Discussion

• Is Internet path selection algorithm optimal?

- Is this the right question to ask?

Discussion

- RON: route around failures
- SOSR: single-hop route around failures
- How about other metrics?
 - Latency:
 - Do we care?
 - Bandwidth
 - Will it make a difference for end-hosts?

M.S. Project Ideas

- How much does swarming helps file downloads?
 And why?
- Can VoIP benefit from routing around congested links (long latencies?)
 - What are the differences in jitter between routing and optimal paths?