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Administrivia

e On Thursday:
— Project progress reports due at noon!
— 2 hour lecture:
* 12-1: proper lecture
* 1-2: “mock” PC meeting

— If you ranked a paper high, come prepared to
defend it

— If you ranked a paper low, come prepared to reject it
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Network Congestion

« Why does congestion occur?
— Routers have finite buffers

« Buffer is empty:
— Small queueing delay in router
« Buffer is filling:
— Longer queueing delays in router

« Buffer is full:
— Packet is dropped

* Main idea:
— Equate packet drops with full buffers, and therefore congestion
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Congestion Collapse

10 Mbps

><> 1.5 Mbps

100 Mbps

« Congestion collapse:
1. Senders lose data from congestion
2. Retransmit data
3. More congestion
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Congestion Control and Avoidance

A mechanism for:
— Using network resources efficiently
— Preserving fair network resource allocation
— Preventing and avoiding collapse

 Network collapse can occur frequently in practice

throughput delay
. i

Jii=-
load load
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Congestion vs. Flow Control

* Flow control:
— Avoids overrunning the receiver
e wnd
« Congestion control:
— Avoids overrunning router buffers and network
e cwnd

 Window to send is min(wnd,cwnd)
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Feedback Control Model

Two steps:
— Reduce window when congestion is perceived
— Increase window otherwise

Keep a congestion window, cwnd

Sender’s maximum window:
— Min(advertised window, cwnd)

Sender’s actual window:
— Max_window - unacknowledged segments
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Slow Start

« Confusing name:
— Initialize cwnd=1
— Upon receipt of every ack, cwnd += 1

* Implications:

— Window size doubles in every RTT
— Can overshoot window and cause packet loss
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Example
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As each ACK arrives, 2 packets are generated
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Slow Start Sequence Plot
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Ending Slow-Start

 End when the pipe is full
— cwnd > ssthresh
— Start with large ssthresh and then refine it

 On packet loss:
— cwnd=1 and go back to slow-start
— Ssthresh = cwnd/2

» Pipe size between last good window (cwnd/2) and
current window (cwnd)
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Congestion Avoidance

If loss occur when cwnd=W
— Set cwnd=0.5W (multiplicative decrease)

Upon receiving ACK
— Increase cwnd by 1/cwnd (additive increase)

AIMD: additive increase, multiplicative decrease

Why not multiplicative increase?
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« When timeout occurs set ssthresh to 0.5w

CSC2231

Putting everything together

Set ssthresh to cwnd/2

Set cwnd to 1

If cwnd < ssthresh, use slow start
Else use congestion avoidance

. Internet Systems
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TCP without Slow-Start

Figure 3: Startup behavior of TCP without Slow-start
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TCP with Slow-Start

Figure 4: Startup behavior of TCP with Slow-start
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Ack Division

Sender Receiver

 Receiver sends
multiple, distinct
acks for the same  RT7Y
data

 Max: one for each
byte in payload

e Smart sender can
determine this is
wrong
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Optimistic Acking

* Receiver acks Sender Receiver

data it hasn’t a Data 1
. |
No robust way for 2921

sender to detect 2
this on its own
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Solution: Cumulative Nonce

Sender Receiver
« Sender sends random

number (nonce) with
each packet

« Receiver sends

Dat
. 5 a 1461:2921 62
cumulative sum of atg 2921:4381
nonces - 36
Aok 438112

* jf receiver detects loss,
it sends back thelast [~ Data 435,
nonce it received
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Fast Retransmit

 When duplicate acks occurs
— Loss
— Packet re-ordering

 Assume packet re-ordering is infrequent
— Use receipt of 3+ dup ACKs are indication of loss
— Retransmit that segment before timeout
— Go into slow start when retransmit
— Resume after
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Example

window 1 \
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Actions after dupacks for pkt 13:

1. On 3rd dupack 13 enter fast rtx

2. Set ssthresh =15/2=7

3. Set cwnd =1, retransmit 14

4. Receiver cached 15-28, acks 28

5. cwnd++ continue with slow start

6. At pkt 35 enter congestion avoidance
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Fast Recovery

* In congestion avoidance mode, if duplicate ACKs
received, reduce cwnd to half

* If n successive duplicate ACKs are received, we
know receiver got n segments after lost segment

— Advance cwnd by that number
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Example

window
ﬁ %

CSC2231: Internet Systems

seqnum

7-14

Action after dupacks for pkt
13:

On 3" dupack 13 enter fast
recovery

Set ssthresh = cwnd = 15/2 =7
Retransmit 14

Receipt of 4" dupack set W =
11

By 14th dupack, W=21, send
29-34

After ack 28, exit fast recovery

Set cwnd =7, continue with
congestion avoidance
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Sting Demo
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