CSC2231: TCP 101

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu
Department of Computer Science
University of Toronto

Administrivia

e On Thursday:
— Project progress reports due at noon!
— 2 hour lecture:
* 12-1: proper lecture
* 1-2: “mock” PC meeting

— If you ranked a paper high, come prepared to
defend it

— If you ranked a paper low, come prepared to reject it

CSC2231: Internet Systems Stefan Saroiu 2005

Network Congestion

« Why does congestion occur?
— Routers have finite buffers

« Buffer is empty:
— Small queueing delay in router
« Buffer is filling:
— Longer queueing delays in router

« Buffer is full:
— Packet is dropped

* Main idea:
— Equate packet drops with full buffers, and therefore congestion

CSC2231: Internet Systems Stefan Saroiu 2005

Congestion Collapse

10 Mbps

><> 1.5 Mbps

100 Mbps

« Congestion collapse:
1. Senders lose data from congestion
2. Retransmit data
3. More congestion

CSC2231: Internet Systems Stefan Saroiu 2005

Congestion Control and Avoidance

A mechanism for:
— Using network resources efficiently
— Preserving fair network resource allocation
— Preventing and avoiding collapse

 Network collapse can occur frequently in practice

throughput delay
. i

Jii=-
load load

CSC2231: Internet Systems Stefan Saroiu 2005

Congestion vs. Flow Control

* Flow control:
— Avoids overrunning the receiver
e wnd
« Congestion control:
— Avoids overrunning router buffers and network
e cwnd

 Window to send is min(wnd,cwnd)

CSC2231: Internet Systems Stefan Saroiu 2005

Feedback Control Model

Two steps:
— Reduce window when congestion is perceived
— Increase window otherwise

Keep a congestion window, cwnd

Sender’s maximum window:
— Min(advertised window, cwnd)

Sender’s actual window:
— Max_window - unacknowledged segments

CSC2231: Internet Systems Stefan Saroiu 2005

Slow Start

« Confusing name:
— Initialize cwnd=1
— Upon receipt of every ack, cwnd += 1

* Implications:

— Window size doubles in every RTT
— Can overshoot window and cause packet loss

CSC2231: Internet Systems Stefan Saroiu 2005

Example

0R - onhe RTT -

1
-
one pkt time

1R Y
2
3

2 R 2 €)
4 6
] 7

3R @ 5 ® @
8 10 12 14
9 11 13 15

As each ACK arrives, 2 packets are generated

CSC2231: Internet Systems Stefan Saroiu 2005

Slow Start Sequence Plot

Data (KB)
0.3000 —
0.2500 —
Se::l # 02000 —
0.1500 —
0.1000 —
0.0500 —
0.0000 — .

00500
0.0000 1.0000 2.0000

Time

oEm

Slow start

@000, "ENESEENNEngy

CogpENENENyy

al | |
nfal LT

CSC2231: Internet Systems Stefan Saroiu 2005

Ending Slow-Start

 End when the pipe is full
— cwnd > ssthresh
— Start with large ssthresh and then refine it

 On packet loss:
— cwnd=1 and go back to slow-start
— Ssthresh = cwnd/2

» Pipe size between last good window (cwnd/2) and
current window (cwnd)

CSC2231: Internet Systems Stefan Saroiu 2005

Congestion Avoidance

If loss occur when cwnd=W
— Set cwnd=0.5W (multiplicative decrease)

Upon receiving ACK
— Increase cwnd by 1/cwnd (additive increase)

AIMD: additive increase, multiplicative decrease

Why not multiplicative increase?

CSC2231: Internet Systems Stefan Saroiu 2005

« When timeout occurs set ssthresh to 0.5w

CSC2231

Putting everything together

Set ssthresh to cwnd/2

Set cwnd to 1

If cwnd < ssthresh, use slow start
Else use congestion avoidance

. Internet Systems

Stefan Saroiu 2005

TCP without Slow-Start

Figure 3: Startup behavior of TCP without Slow-start

50 80 70
|

40

b i

Padoet Sequenon Numbaer (KE]
-

20

11
—————

CSC2231: Internet Systems

Send Time (sec)

e T

e e ———

Stefan Saroiu 2005

TCP with Slow-Start

Figure 4: Startup behavior of TCP with Slow-start

180
|

2 / ,.-'/
N

8 /
o)
oo
5 - /
g
5 ¢
=
: s e
E’ .ﬂf
¥ .-'"f
B = lf.r
g ra

= .fI|l

- '1'

Vi
g /!
d
; 4
=] ' ' |
1] 2 q 5] =] 10

Send Time (sec)

CSC2231: Internet Systems Stefan Saroiu 2005

Ack Division

Sender Receiver

 Receiver sends
multiple, distinct
acks for the same RT7Y
data

 Max: one for each
byte in payload

e Smart sender can
determine this is
wrong

CSC2231: Internet Systems Stefan Saroiu 2005

Optimistic Acking

* Receiver acks Sender Receiver

data it hasn’t a Data 1
. |
No robust way for 2921

sender to detect 2
this on its own

CSC2231: Internet Systems Stefan Saroiu 2005

Solution: Cumulative Nonce

Sender Receiver
« Sender sends random

number (nonce) with
each packet

« Receiver sends

Dat
. 5 a 1461:2921 62
cumulative sum of atg 2921:4381
nonces - 36
Aok 438112

* jf receiver detects loss,
it sends back thelast [~ Data 435,
nonce it received

CSC2231: Internet Systems Stefan Saroiu 2005

Fast Retransmit

 When duplicate acks occurs
— Loss
— Packet re-ordering

 Assume packet re-ordering is infrequent
— Use receipt of 3+ dup ACKs are indication of loss
— Retransmit that segment before timeout
— Go into slow start when retransmit
— Resume after

CSC2231: Internet Systems Stefan Saroiu 2005

Example

window 1 \

15

]
]

CSC2231: Internet Systems

pu—
—_————

am—

seqnum
0

3-6

7-14

15-28

14\

\: 29.30

——r

Actions after dupacks for pkt 13:

1. On 3rd dupack 13 enter fast rtx

2. Set ssthresh =15/2=7

3. Set cwnd =1, retransmit 14

4. Receiver cached 15-28, acks 28

5. cwnd++ continue with slow start

6. At pkt 35 enter congestion avoidance

Stefan Saroiu 2005

Fast Recovery

* In congestion avoidance mode, if duplicate ACKs
received, reduce cwnd to half

* If n successive duplicate ACKs are received, we
know receiver got n segments after lost segment

— Advance cwnd by that number

CSC2231: Internet Systems Stefan Saroiu 2005

Example

window
ﬁ %

CSC2231: Internet Systems

seqnum

7-14

Action after dupacks for pkt
13:

On 3" dupack 13 enter fast
recovery

Set ssthresh = cwnd = 15/2 =7
Retransmit 14

Receipt of 4" dupack set W =
11

By 14th dupack, W=21, send
29-34

After ack 28, exit fast recovery

Set cwnd =7, continue with
congestion avoidance

Stefan Saroiu 2005

Sting Demo

CSC2231: Internet Systems Stefan Saroiu 2005

