CSC2231: Caching + Zipf

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu Department of Computer Science University of Toronto

Administrivia

- No lecture on Monday because of Cascon
- Research reports due next Wednesday
 - In less than 1 week!!

Cache Hit Rates

• Two ways to measure cache hit rates:

- Object hit rate
 - Reduces latency
 - Reflects caching benefits to users
- Byte hit rate -- reduced bandwidth
 - Reduces bandwidth
 - Reflects caching benefits to network

• Typically for the Web:

- Byte HR < Object HR</p>
- What does this mean?

CSC2231: Internet Systems

- Popularity distribution
- Number of clients
- Rate of updates to the documents
- Cacheability of data
- Cache sizes vs. object sizes

Web popularity distribution

Artificial Zipf distribution with α =0.8

CSC2231: Internet Systems

Implications of Object Popularity

• Implications of object popularity to cache hit rates

- Lots of unpopular objects <-- don't cache
- Significant very popular objects <-- cache
- Grey area <--- ?</p>

Popularity distribution

- Number of clients
- Rate of updates to the documents
- Cacheability of data
- Cache sizes vs. object sizes

Hit Rate vs. Population

CSC2231: Internet Systems

Implications of Client Population

- What are the implications of client population size to caching hit rates?
 - Cache location:
 - Trade-off:
 - Closer to the user, higher benefit
 - Closer to the user, fewer clients
 - Place it at the "sweet-spot"
 - Cache hierarchies:
 - Hit rate grows slowly above a few 1000 users
 - Each layer adds latency (and bandwidth)

- Popularity distribution
- Number of clients
- Rate of updates to the documents
- Cacheability of data
- Cache sizes vs. object sizes

Rate of Updates

• Old studies '94 - '00

- Average lifetime of an HTML object: 40-50 days
- Average lifetime of an image: ~100 days
- More popular the object, the more often it is updated
- Hard to predict
 - More popular the object, easier it is to predict

• Implications:

- Content expiration:
 - Hard to get right; unclear if worth doing it

- Popularity distribution
- Number of clients
- Rate of updates to the documents
- Cacheability of data
- Cache sizes vs. object sizes

Active-Caching

- Java CacheApplet cached with each object
- On each request, cache invokes applet to:
 - Generate reply, use cached copy, trigger revalidation
 - Maintains on-cache persistent state
- Problems in practice:
 - Cache monitors applet CPU and storage use
 - Can "evict" applet and revert to "Expires" consistency
 - Does this solve any real problems?
 - Advertising? Commerce? Personalization?

Advertising: Cache-Busting

Advertisers want to track and target

- Per-user cookies
- Per-user, per-pageview ad selection
- Caches defeat these goals
- Caches **help** deliver ad content quickly

Real-world solution:

- Redirect for ad selection/logging
- Cacheable ad image files

Commerce Databases

Selling

Product DB

- Inventory, descriptions, promotions, \$, cross-selling info, ...
- User DB
 - Purchase history, recent browsing, …
- Business rules

Purchasing

- User DB
 - Credit card, shipping address, …

Transaction system

 Credit card clearance, integration to shipping, ...

Distributed databases for this? Privacy, proprietary concerns?

Advertising Databases

• Ad information:

 "Inventory", \$, targeting criteria (eligible content types, desired user types, time of day), ...

Placement information:

 Stats about the traffic to different pages, \$, content topic, expected mix of users with different criteria, ...

• Per-user information:

- Topics of interest, links to registration/marketing profiles, detailed recent ad viewing history, ...
- Business rules for combining the above in real-time
- How to distribute these databases to caches?

Personalized Publishing

• my.yahoo.com, slashdot.org

- Personalized pages from sharable/cacheable components
- Different layouts/subsets/orders/sorts

Seems more tractable

- Per-user preferences database must be distributed
- Active-caching? Other cache-side method? Better done at the client w/XML?

Delta-Coding

• Server sends "diffs" against cached copy of page

- Can reduce bandwidth for dynamic content
- Still requires round-trip latency to server
 - For most WWW objects probably not worth saving bw
- Exploits redundant data already in cache to compress updated object
 - Straight compression (orthogonal)
 - Spring/Wetherall use of Manber fingerprints?

Dynamic Content vs Cache Deployments

	Dynamic:	Dynamic:	Dynamic:	
	Advertising	Commerce	Publishing	Static
Client Cache				
Proxy Cache				
CDN				
Accelerator				

CSC2231: Internet Systems

Dynamic Content vs Cache Deployments

	Dynamic:	Dynamic:	Dynamic:	
	Advertising	Commerce	Publishing	Static
				Delta-
Client Cache	Delta-coding	Delta-coding	Delta-coding	coding
			Active-caching	Delta-
Proxy Cache	Delta-coding	Delta-coding	/ Delta-coding	coding
		Custom	Active-caching,	
		(Amazon?,	Delta-coding,	
	Custom	Yahoo	Custom	Custom
CDN	(DoubleClick)	Merchants)	(Akamai)	(Akamai)
	Webserver /	Webserver /	Webserver /	
Accelerator	DUP	DUP	DUP	Expires

CSC2231: Internet Systems

- Popularity distribution
- Number of clients
- Rate of updates to the documents
- Cacheability of data
- Cache sizes vs. object sizes

Cache Sizes

- Google can cache the entire Internet
- Disks are infinite

• Do we care about Web cache sizes anymore?

Discussion

• RSS feeds:

- Should we cache these?