CSC2231: Making clusters fault-tolerant

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au

Stefan Saroiu
Department of Computer Science
University of Toronto
Administrivia

- **Project proposals due in 1 week (noon Thursday)**
 - Create Web page with brief project proposal (HTML,TXT)
 - What is the problem you are solving?
 - Why is the problem interesting?
 - Why is the problem hard?
 - How are you planning to solve the problem?
 - What is the related work?
What’s all about these 9’s?

- two 9’s ~ 3.5 days per year
- three 9’s ~ 10 hours per year
- four 9’s ~ 1 hour per year
- five 9’s ~ 5 mins per year
- six 9’s ~ 30 secs per year
- seven 9’s ~ 3 secs per year
What’s all about these 9’s?

- two 9’s ~ 3.5 days per year
- three 9’s ~ 10 hours per year
- four 9’s ~ 1 hour per year
- five 9’s ~ 5 mins per year nuclear reactor monitoring
- six 9’s ~ 30 secs per year
- seven 9’s ~ 3 secs per year
What’s all about these 9’s?

- two 9’s ~ 3.5 days per year
- three 9’s ~ 10 hours per year
- four 9’s ~ 1 hour per year
- five 9’s ~ 5 mins per year nuclear reactor monitoring
- six 9’s ~ 30 secs per year telephone switches
- seven 9’s ~ 3 secs per year
What’s all about these 9’s?

- two 9’s ~ 3.5 days per year
- three 9’s ~ 10 hours per year
- four 9’s ~ 1 hour per year
- five 9’s ~ 5 mins per year nuclear reactor monitoring
- six 9’s ~ 30 secs per year telephone switches
- seven 9’s ~ 3 secs per year
- ..
- nine 9’s ~ 30 ms per year in-flight computers
What’s our target?

• How available should (Amazon|Google|eBay)’s clusters be?
What’s our target?

- How available should (Amazon|Google|eBay)’s clusters be?
 - Not more available than the availability of Internet paths
 - Not less available than Internet users' timeout
 * “reload consistency” == O(2-3s)
 * Not less available than the competitors’ availability
Cost of Downtime

• **It is easy to translate availability to lost $$$**
 – Cost of 1 hour downtime = average revenue per hour + employee costs per hour
 – Hidden costs:
 • Customers’ retention rates
 • Comparative costs relative to the rest of the industry

• **Internet service availability is a function of:**
 – Internet routing availability
 • BGP routing layer is known for slow fail-over
 • Little is known about ISPs failures
 – Cluster’s availability
PlanetLab is…

Goal of 1,000 widely-distributed machines
- today: 350 machines, 140 sites, 20 countries
- at edge sites and network cross-roads
Internet Path Availability
The Availability of the Internet

• **Hard to quantify:**
 – What is a “representative” measurement?
 – How should degraded service be treated?

• **Wisdom says:**
 – Two-three 9’s
 – Hasn’t changed for almost a decade
 – Intra-domain routing is more reliable than inter-domain
Categories of Internet failure locations

From Gummadi et al. OSDI 2004
Where do Internet paths fail?

- Server path failures occur throughout the network
 - very few (16%) last_hop failures

From Gummadi et al. OSDI 2004
Where do Internet paths fail?

- Most of the broadband failures happen on last_hop.
- Excluding last_hop, server and broadband paths see similar number of failures.

CSC2231: Internet Systems

From Gummadi et al. OSDI 2004

Stefan Saroiu 2005
How long do Internet failures last?

• Failure durations are highly skewed

• Majority of failures are short
 – median failure duration: 1-2 min for all paths
 – median path availability: 99.9% for all paths

• A non-negligible fraction of paths see long failures
 – tend to occur on last_hop
 – mean path availability: 99.6% (servers) + 94.4% (broadband)
Internet Servers Availability
Comparing the three services

<table>
<thead>
<tr>
<th>characteristic</th>
<th>Online</th>
<th>ReadMostly</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>hits per day</td>
<td>~100 million</td>
<td>~100 million</td>
<td>~7 million</td>
</tr>
<tr>
<td># of machines</td>
<td>~500 @ 2 sites</td>
<td>> 2000 @ 4 sites</td>
<td>~500 @ ~15 sites</td>
</tr>
<tr>
<td>front-end node architecture</td>
<td>custom s/w; Solaris on SPARC, x86</td>
<td>custom s/w; open-source OS on x86</td>
<td>custom s/w; open-source OS on x86;</td>
</tr>
<tr>
<td>back-end node architecture</td>
<td>Network Appliance filers</td>
<td>custom s/w; open-source OS on x86</td>
<td>custom s/w; open-source OS on x86;</td>
</tr>
<tr>
<td>period studied</td>
<td>7 months</td>
<td>6 months</td>
<td>3 months</td>
</tr>
<tr>
<td># component failures</td>
<td>296</td>
<td>N/A</td>
<td>205</td>
</tr>
<tr>
<td># service failures</td>
<td>40</td>
<td>21</td>
<td>56</td>
</tr>
</tbody>
</table>

From Oppenheimer et al. USITS 2003
Failure cause by % of service failures

Online
- Unknown: 12%
- Hardware: 10%
- Software: 25%
- Network: 20%
- Operator: 33%

Content
- Unknown: 22%
- Hardware: 2%
- Software: 25%
- Network: 15%
- Operator: 36%

ReadMostly
- Unknown: 14%
- Software: 5%
- Operator: 19%
- Network: 62%

From Oppenheimer et al. USITS 2003

Stefan Saroiu 2005
Failure cause by % of TTR

Online
- unknown: 1%
- hardware: 6%
- software: 17%
- network: 1%

Content
- software: 6%
- network: 19%
- operator: 75%

ReadMostly
- operator: 3%
- network: 97%
Most important failure root cause?

- **Operator error generally the largest cause of service failure**
 - Even more significant as fraction of total “downtime”
 - Configuration errors > 50% of operator errors
 - Generally happened when making changes, not repairs

- **Network problems significant cause of failures**
Wide-area systems’ availability
Does Higher Availability \Rightarrow Lower MTTR?

- PlanetLab

From Yalagandula et al. Worlds 2004
Result?

• [...] there is a general trend toward better MTTR and MTTF (especially for MTTR) when availability increases.
Does Higher Availability \Rightarrow Lower MTTR?

- PlanetLab

From Yalagandula et al. Worlds 2004
Discussion

- Operator error largest cause of service failures
 - Is this good or bad news?
Discussion

• Operator error largest cause of service failures
 – Is this good or bad news?
 • Good news: software reliability is not the problem
 • Bad news: software manageability is the problem
Discussion

• How much does it cost to add an additional 9 to a service?
Discussion

- Should we build fault-tolerance into our clusters:
 - Vertically?
 - Redundant hardware
 - More sophisticated FT schemes?
 - Horizontally?
 - Wide-area distributed servers (e.g., Akamai)