
CSC2231: Making clusters faster

Stefan Saroiu
Department of Computer Science

University of Toronto

http://www.cs.toronto.edu/~stefan/courses/csc2231/05au



CSC2231: Internet Systems Stefan Saroiu 2005

Administrivia

• Next lecture: failures
– There are two papers assigned for reading

• Oppenheimer’s study on causes of failures for Internet
clusters

• Intel Pittsburgh’s paper on failures on the wide-area
• Read both!!!
• Submit review for first paper only (Oppenheimer)



CSC2231: Internet Systems Stefan Saroiu 2005

How to optimize performance



CSC2231: Internet Systems Stefan Saroiu 2005

How to optimize performance

• Step 1: Find bottleneck in the system

• Step 2: Widen the bottleneck



CSC2231: Internet Systems Stefan Saroiu 2005

How to optimize performance

• Step 1: Find bottleneck in the system
– May be tough to find in complex/parallel systems
– May depend on the workload

• Scale, concurrency, popularity distribution
– May change over time

• Hardware trends, workload trends

• Step 2: Widen the bottleneck
– Add more resources
– Optimize current resource consumption



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Packet processing path

• 1400 byte packet arrival costs on 1.7 GHz P4/Linux
– Device driver: 12us
– TCP stack: 10us
– User/kernel crossing: 1us
– Extra copies: 0.3us

• Max throughput:
– 550Mbps or roughly 10K web requests/sec
– Upper bound (CPU is 100% utilized, nothing left for apps)

• Probably not the bottleneck for Web servers



CSC2231: Internet Systems Stefan Saroiu 2005

Packet processing

• Per-byte overhead:
– Cost scales with packet size

• DMA between NIC/host
• Memory copies (kernel/user space)
• Data manipulation (checksums)

– Solutions? Zero-copy networking, user-level networking, smart NICs
• Per-packet overhead:

– Cost scaled with number of packets
• Buffer allocation
• Interrupt processing overhead
• Data structure manipulation

– Solutions? Optimize network stacks, OS architecture



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Socket abstractions

• Pitfall: benchmarking on a LAN rather than WAN
– # of concurrent connections = f(latency, Xput)
– State size is proportional to # of concurrent connections

• Scaling to large number of concurrent connections
– initial select() was broken for long-lived connections

• Handling long-lived, large transfers
– Provision socket buffers correctly

• Only matters for high throughput connections
– Any issues related to exceeding the 32bit TCP number space?



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Concurrency management

• A religious topic: threads vs. events
– Threads

• Easier to program
• Easy to understand and exploit parallelism (multi-proc)

– Events
• Easier to program
• Scheduling can be controlled and exploited

– Not hidden in the thread scheduler or lock
• Performance, scaling

• All this makes sense only…
– If the bottleneck is due to threads/events (unlikely)



CSC2231: Internet Systems Stefan Saroiu 2005

Pipeline servers: L1/L2 cache

• Claim: instructions-per-cycle is low on servers
– Threads hurt l-cache performance
– Idea: re-architect software into computational stages

• Execute each task repetitively in a stage

• Problems:
– Quite a drastic change in architecture
– Working set size of stage must align well with l-cache size
– Performance pay-off is minimal

• 5-10% improvement (1 month of Moore’s law)



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Memory management

• Cache and VM performance:
– Memory allocation research:

• Efficient layout to avoid VM pressure
• Parallelize to avoid becoming bottleneck on SMPs
• Stack layout matters also

• Issues:
– This machinery is very well-hidden

• Hard to expose or take advantage of it



CSC2231: Internet Systems Stefan Saroiu 2005

Disks

• If you move the disk arm, it will be your bottleneck
– Seek: 5ms

• 16 millions cycles on a 3GHz machine
• 500 Kilo-bytes of throughput over a Gb link

• Ideas?



CSC2231: Internet Systems Stefan Saroiu 2005

Disks

• If you move the disk arm, it will be your bottleneck
– Seek: 5ms

• 16 millions cycles on a 3GHz machine
• 500 Kilo-bytes of throughput over a Gb link

• Ideas?
– Buy lots of memory to cache disk
– Avoid writes, or use logging to write sequentially
– Avoid reads, or read more data and cache (just in case)

• Clever layout
– Batch reads and writes
– Buy lots of disks



CSC2231: Internet Systems Stefan Saroiu 2005

Single machine Web server

file abstractionsfile abstractions

TCP/IP stackTCP/IP stack VMVM

memory memory allocatorsallocatorssocket abstractionssocket abstractions

file systemfile system

device driversdevice drivers

disks

NIC

WAN

CPU, $$, mem

concurrency management (threads, events, select, …)

HTTP processing

CGI processing (if needed)
the app

threading

libC/runtime

the OS

the hardware



CSC2231: Internet Systems Stefan Saroiu 2005

Higher-level Issues

• Overload management
– If offered load exceeds your capacity, what happens?
– Need to reject load early, otherwise you’ll livelock

• Admission control outside server (L4 switch)
• Switch to polling (instead of interrupts) on high load
• Reject early in the TCP stack

• Differential quality of service
– Service only high-priority requests



CSC2231: Internet Systems Stefan Saroiu 2005

Latency vs. Throughput

• Harchol-Balter: optimizing order of request handling
– Network stacks and servers are “fair”

• Each connection is processed at an equal rate
– Not optimal if we want to minimize average latency

• Or minimize amount of state in a server
– Instead: process connections with SRJF

• Doesn’t matter under light load
• Matters as approach capacity (10x latency at 90% load)

• Issues:
– How do you estimate the “length” of a connection
– Starvation of long jobs



CSC2231: Internet Systems Stefan Saroiu 2005

HTTP Mambo-Jambo

• HTTP is broken in many ways
– Many small connections (HTTP 1.0)

• Overhead of establishing TCP connection is bad
• Persistent connections helped

– Chatty, untokenized wireline protocol
• Headers account for 5-700 bytes / object
• Irrelevant for wired servers/clients
• Matters more for wireless



CSC2231: Internet Systems Stefan Saroiu 2005

Clusters

• Increase performance:
– Replicate:

• Load-balancing: avoid any replica from becoming
bottleneck

• Mitzenmacher:
– State information is good enough
– Goal: avoid worst-case (and not achieve optimal)
– Sample two or three, pick best

– Partitioning:
• LARD



CSC2231: Internet Systems Stefan Saroiu 2005

Discussion

• Low-bandwidth last-hop:
– We know how to make server faster, but …
– The real bottleneck is low bandwidth on the last mile
– Solutions?



CSC2231: Internet Systems Stefan Saroiu 2005

Discussion

• Low-bandwidth last-hop:
– We know how to make server faster, but …
– The real bottleneck is low bandwidth on the last mile
– Solutions?

• Better compression
– Content adaptation
– Content hashcaches

• Latency-hiding with pipelined rendering/streaming
– Works well for the Web

• Latency-hiding with aggressive prefetching
– Every bit of unused bandwidth is a missed opportunity
– ISPs hate this



CSC2231: Internet Systems Stefan Saroiu 2005

Discussion

• Content is getting bigger
– Web: 4-6KB
– P2P: audio 4MB, video 1GB

– Other forms of distribution?



CSC2231: Internet Systems Stefan Saroiu 2005

Discussion

• Content is getting bigger
– Web: 4-6KB
– P2P: audio 4MB, video 1GB

– Other forms of distribution?
• Sneaker-net
• Satellites/TV cable/HDTV

– Any new server issues?


