Resilient Overlay Networks
This paper presents a Resilient Overlay Network (RON) architecture that enables applications to detect and recover from path outages, and periods of degraded performance within several seconds, instead of waiting for BGP to do it in several minutes. Previous works show that periods of delayed convergence affect end-to-end communications adversely. Previous studies showed that more than 10 percent of routes were available less than 95% of time, and many of failures lasted more than 10,000 or even 100,000 seconds. RON wants to solve these problems in an application layer solution.
The design of RON seeks to meet three main design goals. Fast failure detection and recovery is the first goal. There are two types of failure in the network: path failure and link failure. Applications perceive these failures in two ways: outages or performance failures. RON’s goal is to detect and recover from above failures within several second. The second goal of RON is tighter integrated with applications. Different applications interpret network conditions differently. Network conditions that are fatal to an application may be acceptable for another application. RON allows applications to independently define and react to failures. The last goal of RON is expressive policy routing.
RON has a simple design. Each RON node monitors the quality of every virtual link regularly. Each client communicates with the RON software through an API called a conduit. Entry pad determines the path from its topology table, encapsulates the packet into a RON header, tags it with some information that simplifies forwarding for downstream RON nodes, and forwards it on. Each subsequent node simply determines next hop until the packet reaches exit node (its destination). Routing is done using a link-state routing protocol. Each node sends its summary information of the different performance metrics to all other nodes. By default, RON maintains information about three different metrics for each virtual link: latency, packet loss rate and throughput in its performance database. Router uses an active probing mechanism to implement outage detection. It also implements the latency minimizer, the loss minmizer, and TCP throughput optimizer to select the best path for each packet. RON allows users or administrators to define the types of traffic allowed on particular network links. It separates policy routing into two components: classification and routing table formation, and each packet includes a policy tag which is used in its routing. 
The RON system is implemented at a user-level as a flexible set of C++ libraries. Every component can pick and choose the components that best suits its needs. The paper evaluates RON using two distinct datasets, one with 12 nodes and 132 distinct paths over 36 different AS’s (RON1), and the other with 16 node and 240 paths over 50 AS’s (RON2). The experiments showed that RON was able to overcome more than 100% in RON1 and 60% in RON2 of several hundred significant observed outages. On average, it takes 18 seconds to detect and recover from a fault which is significantly better than several minutes taken by BGP-4. RONs also overcome performance failures in badly performing Internet paths improving the loss rate, latency and TCP throughput.
The paper was nice, clear and well organized and every detail was supported well. In addition, the design and implementation was evaluated by a large volume of experimental results. These results suggest that RON can be a good platform to be developed on Internet and also for researchers to develop and test new routing algorithms on this framework.
