Designing DCCP: Congestion Control without Reliability
This paper presents Datagram Congestion Control Protocol (DCCP). DCCP is a substitution for UDP and implements congestion control. Unfortunately, UDP does not implement congestion control, and many high-bandwidth applications over UDP have to implement congestion control by themselves. DCCP is a congestion-controlled unreliable transport protocol which is currently an IETF proposed standard. DCCP target applications include Internet telephony, streaming media and interactive games.
Several goals are enumerated for DCCP in the paper. These goals are: Minimalism in both functionality and mechanism; Robustness in the presence of attackers, NAT, firewalls and other middle boxes; A Framework for Modern Congestion Control to attract as many clients as possible; Self-sufficiency; and Support Timing-Reliability Tradeoff.
DCCP is a unicast, connection oriented protocol with bidirectional data flow and packet headers similar to TCP and UDP. Since unreliable applications generally send and receive datagrams instead of portions of a byte stream, the sequence number in DCCP should measure packets, not bytes. Therefore, every packet including pure acknowledgements occupies sequence space and uses sequence number. Since cumulative acknowledgements do not make sense in an unreliable protocol, DCCP’s ACKs report the latest packet received. DCCP uses explicit synchronization. It means when an endpoint receives an unexpected sequence or acknowledgement number, sends a Sync packet asking its partner to validate that sequence number. Sequence number length can be 24 or 48 bits. Connection initiation, synchronization, and tear down packets always use 48 bit sequence number to eliminate the probability of success for some serious attacks. But data and acknowledgement packets use 24-bit sequence numbers.
As a congestion control framework, DCCP gives the application a choice of congestion control mechanisms. This choice is made via Congestion Control IDs (CCIDs). CCID2 is a TCP-like congestion control mechanism and uses congestion window. CCID2 maintains a feature called Ack Ratio that controls the rough ratio of data packets per acknowledgement. CCID2 uses an AIMD-like algorithm to control congestion. CCID3, on the other hand, uses a TFRC congestion control algorithm and controls the sending rate instead of congestion window. If no feedback is received for several round-trip times, the sender halves its sending rate.
This paper is nice and clear. It has developed the protocol clearly and has discussed several aspects of the protocol in detail. However, it has not used simulations or real measurements in evaluating any part of the protocol.
