TCP Nice: A Mechanism for Background Transfers
This paper presents TCP Nice. Many distributed applications can make use of large background transfers to improve availability, reliability, latency or consistency. TCP Nice is designed to bound the interference inflicted by background flows on foreground flows. 

TCP Nice is designed on top of TCP Vegas. Nice adds three components to Vegas. First component is a more sensitive congestion detector. A Nice flow monitors round-trip delays,
estimates the total queue size at the bottleneck router, and signals congestion when this total queue size exceeds a fraction of the estimated maximum queue capacity. In fact, when more than a fraction of packets experience a delay more than “ minRTT + ( maxRTT-  minRTT ) * threshold” the detector signals congestion. Round-trip delays of packets are indicative of queue size and threshold represents the fraction of the total queue capacity that starts to trigger congestion. Second component is multiplicative reduction in response to increasing round-trip times versus Vegas that only reacts multiplicatively to packet drops, and responses additively to the RTT increments. Third component is the ability to reduce the congestion window below one. By allowing the window to go below one, Nice retains the non-interference property even for a large number of flows. In contrast, a Vegas flow tries to keep 1 to 3 packets in bottleneck queue.
Paper uses analysis, various simulations and real measurements from Internet to evaluate TCP Nice protocol. All these evaluations show that Nice flows cause almost no interference irrespective of the number of flows. In addition, Nice uses a significant fraction of the available spare bandwidth to do background transfers, and performs better than other existing protocols including Reno and Vegas. Nice has been evaluated by HTTP prefetching applications as well. In this case study, we observe that Nice simplifies the design of prefetching applications. Applications can aggressively prefetch data that might be accessed in the future. Nice prevents interference if the network does not have spare bandwidth and improves application performance if it does.
This paper is very nice and introduces very practical concepts and applications. Nice can be used in a large group of applications to utilize spare capacity of the network thoroughly.
