
IPNL: A NAT-Extended Internet Architecture�

Paul Francis
Tahoe Networks

Ramakrishna Gummadi
UC Berkeley

ABSTRACT
This paper presents and analyzes IPNL (for IP Next Layer), a NAT-
extended Internet protocol architecture designed to scalably solve
the address depletion problem of IPv4. A NAT-extended architec-
ture is one where only hosts and NAT boxes are modified. IPv4
routers and support protocols remain untouched. IPNL attempts to
maintain all of the original characteristics of IPv4, most notably ad-
dress prefix location independence. IPNL provides true site isola-
tion (no renumbering), and allows sites to be multi-homed without
polluting the default-free routing zone with per-site prefixes. We
discuss IPNL’s architectural benefits and drawbacks, and show that
it comes acceptably close to achieving its goals.

1. INTRODUCTION
The IP architecture has undergone steady change over the last

10 years or so. The most significant change has been the introduc-
tion and spread of NAT (Network Address Translator) [9], and the
resulting loss of end-to-end addressability. Despite this loss, the
Internet has seen, and, we believe, will continue to see nearly all of
its tremendous growth in a NAT’ed world. How can this be, if end-
to-end addressability is so fundamentally important to the Internet?

The answer is “obvious”—the dominant applications of the In-
ternet, such as email and web, are client/server applications. Only
the servers need to be globally addressable. As long as the servers
are not behind NATs, they are addressable and everything can be
made to work. The kinds of applications that are disabled by NAT,
including so-called peer-to-peer applications, simply have not been
important economic drivers of the Internet.

But this cannot be all of the answer. It isn’t enough to say that
NAT has spread because it doesn’t break client/server applications.
NAT must also be providing some benefits.

1.1 Pros and Cons of NAT
The main obvious benefit of NAT is that it expands the IPv4 ad-

dress space. The second important benefit of NAT is that it isolates
a site’s address space from the global address space1. This address

�Work done while both authors were at ACIRI.
1A site is defined loosely as a private IP network that connects to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

isolation benefits both the provider and the subscriber. A site be-
hind a NAT box can change providers without having to renumber
internal hosts. Likewise, providers can freely renumber their net-
works for better address aggregation. We suspect that address iso-
lation is one of the primary reasons that NAT is as popular as it is,
and that the IETF has underestimated the appeal and importance of
this feature.

Because of this address isolation, a NAT’ed site can be attached
to multiple ISPs (Internet Service Providers) without having the
site’s address prefix advertised across the default-free routing zone
of the Internet. Because of this, it can be argued that NAT is a key
technology responsible for what limited scalability the Internet has.

The primary negative aspect of NAT is that it inhibits the intro-
duction of certain kinds of peer-to-peer applications. It does this
in two ways. First, a host behind a NAT box is not generally ad-
dressable from the global Internet, at least not in the traditional
pre-NAT way. Second, some peer-to-peer applications fail to work
properly in the face of address translation or port translation. These
applications require application layer gateways in the NAT boxes.
An example of such an application is SIP (Session Initiation Proto-
col) [13].

A second negative aspect of NAT is that it complicates scalable
network operation and new protocol and application design. Every-
thing must now take into consideration the various possible NAT
deployments, of which there are many. So while it is possible to
address hosts behind NAT boxes, doing so is much more compli-
cated than it would be with global IP addresses. For instance, a
given port at the NAT box can redirect packets to a given address
and port. Or, the NAT box can snoop SIP, assign port translations,
and modify SIP messages accordingly.

A significant part of the problem with NAT is that there has been
little effort on the part of the Internet community to design and
standardize ways of interoperating with NAT boxes, and making
them easier to deal with. When the first commercial NAT products
were being sold, the IAB (Internet Architecture Board) and IETF
took a “just say no” attitude towards NAT, assuming that IPv6 [6]
would take over before NAT spread too far. It is only this year, a
decade after NAT was first published, that the IETF has decided to
work to improve interoperating with NAT2.

1.2 An Extension to NAT
Given the popularity of NAT, its success at mitigating the ad-

the Internet via one or more providers. A site may be as large as a
global enterprise network or as small as a single home.
2The midcom (middlebox communication) working group is char-
tered with the task of enabling communications between applica-
tions and NATs and firewalls. This is in contrast with the several
years old NAT working group, which was primarily chartered with
documenting NAT and the problems associated with it.

69

dress depletion and scaling problems of IPv4, the existence of an
economic driver for its deployment, and the simple fact that the In-
ternet has thrived on a NAT’ed architecture, we were motivated to
ask whether some extension of NAT wouldn’t make for a genuinely
suitable Internet architecture. That is the question addressed by this
paper.

This question leads to two more questions:

1. What constitutes a suitable Internet architecture, and

2. What constitutes an extension of NAT (versus a whole new
Internet protocol)?

We have chosen to define a suitable Internet architecture as one
that preserves the original characteristics of IPv4 while solving its
scalability and address depletion problems. These characteristics
include:

1. All hosts have long-lived, globally routable addresses (if they
so choose) that serve to also identify the host.

2. Routers are stateless—they do not require per-connection state,
and failure in a router does not result in failure of the connec-
tions3 going through them if an alternate path exists.

3. A network’s address prefix is assigned independently of where
the network attaches to the Internet.

4. Packets cannot be easily hijacked by rogue or misconfigured
hosts that are not on the physical path of the packets. In IPv4,
this characteristic derives from the fact that addresses are
both locators and identifiers, and that routers enforce packet
delivery to the right location through hop-by-hop coordina-
tion and trust.

We emphasize that, in maintaining the characteristics of the orig-
inal IP while improving its scalability and size, we are, in essence,
trying to design a better protocol than IPv4.

Regarding the second question, we define an extension of NAT
as one that works by modifying only hosts and NAT boxes. In par-
ticular, existing IPv4 routers must not change, and, by extension,
the IPv4 layers of hosts must also not change. We also require no
changes to DNS, and no new global addressing authorities.

By allowing changes to hosts, we break one of the fundamen-
tal properties that has allowed NAT to succeed—that it can be de-
ployed without changes to hosts. This seems to us to be inevitable.
We cannot think of any way to significantly improve NAT without
making changes to the host. Having said that, we can make the ob-
servation that not all host changes are equal. In particular, changes
above the transport layer are easier to deploy than changes below
the transport layer. Because we have chosen to maintain the orig-
inal characteristics of IPv4, we have been compelled to make our
changes below transport and above IPv4.

An alternative approach would be to forego trying to maintain
the original characteristics of IPv4, but allow simpler changes to
hosts. For instance, SIP provides end-to-end addressability in the
face of NATs, as long as the NAT boxes are SIP proxies or tightly
coordinated with SIP proxies. This NAT-as-SIP-proxy approach
is stateful, unscalable, has a costly setup, and is a single point of
failure (failure recovery would require additional changes to appli-
cations). Therefore, it loses some of the important characteristics
of the original IPv4 architecture.

Unless IPv6 gets deployed, however, it seems likely that a SIP-
like approach, where the host communicates with the NAT box and
3The term connection in this paper refers to data flow between
transport layer entities.

the firewall out-of-band4, is the next likely step in the evolution of
the Internet.

1.3 IPNL: IP Next Layer
This paper presents a NAT-extended protocol called IPNL, for

IP Next Layer. The purpose of pursuing a totally new design at
this relatively late stage in the IPng process is not so much to try
to supplant IPv6. Rather, we wish to shed light on a number of
questions that remain relevant a full decade after the first wave of
IPNG proposals, including a number of NAT-extended proposals,
documented in RFC1380 [12].

These questions include:

1. Can a NAT-extended protocol achieve the original character-
istics of IPv4, and therefore serve as a long-term architec-
ture?

2. Can the router scaling problem be solved while maintaining
the original IPv4 characteristic of addressing independence?

3. Is a NAT-extended approach less expensive than a full re-
placement of IPv4?

We believe the answer to the first two questions to be a qualified
“yes”. The original characteristics of IPv4 include long-lived ad-
dresses, robustness/statelessness, address independence, and packet
hijacking resistance. As will be shown in the remainder of this pa-
per, IPNL is somewhat inelegant in its approach to robustness and
hijack resistance. In both cases, additional complexity in the host’s
IPNL layer is required to bring IPNL close to IPv4 in those areas.
Except for that, we believe that we have succeeded in our goals.

As for the third question, more experience with IPNL would be
required to determine if it is less expensive than IPv6. In particu-
lar, the full set of protocols (routing protocols, mobility protocols,
multicast protocols, etc.) would have to be specified in order to
compare the two side-by-side. Nevertheless, we make some argu-
ments later on that suggest that a NAT-extended approach may be
less expensive to deploy than IPv6.

The major attributes of IPNL are as follows:

� It is a NAT-extended architecture, which means that it maxi-
mizes reuse of the existing IPv4 infrastructure, primarily by
adding a new layer above IPv4 that is routed by NAT boxes.

� It utilizes Fully Qualified Domain Names (FQDNs) as an
end-to-end host identifier in packets.

� It extends the IP address space such that the globally unique
IP address space forms the high order part of the IPNL ad-
dress, and the private IP address space forms its low order
part.

� It completely isolates site addressing from global addressing.

The rationale for these attributes is as follows:
Infrastructure reuse: We make the assumption that reusing an

existing infrastructure lowers the cost of deploying a new protocol.
This reduction in cost comes not just from continued use of the cur-
rent IPv4 infrastructure (including the human skills needed to run
it), but also from shrinking the number of phases for deployment
of the new protocol from three to two. Specifically, deployment of
IPv6 requires three (concurrent) phases: 1) IPv4 hosts talking to
IPv6 hosts, 2) IPv6 hosts talking to each other tunneled over IPv4,

4Broadly stated, this is the approach being taken by the IETF mid-
com working group.

70

and 3) pure IPv6. Mechanisms to fully support all three phases and
their interactions must exist.

By architecting IPNL as a layer above IPv4, we avoid the third
phase. We assume that this significantly reduces complexity (two
phases instead of three, one combination of phases instead of four).
For example, approximately half of RFC3056 (6to4) [2] is devoted
to interoperability between 6to4 and ”native” IPv6. In other words,
half of the complexity of RFC3056 comes from interactions be-
tween the second and third phases of IPv6 deployment. Having
said this, we are quick to point out that we have not analyzed the
costs of both approaches any deeper, so this is only an assumption
at this point.

FQDN Utilization: The motivation behind using FQDNs also
derives from an assumption of lowered deployment cost. In this
case, the lowered cost comes from 1) not having to define and ad-
minister a new global address space, and 2) being able to reuse
much of the existing support infrastructure and applications, in-
cluding host configuration infrastructure (for example, DHCP [8]),
AAA infrastructure (for example, RADIUS [20]), and SIP [13], all
of which use FQDNs as the primary form of host identification.
The use of the FQDN in this role, however, results in a somewhat
different architecture, and the costs and potential weaknesses of
this change must be considered.

Extended IP address space: This is a natural result of using the
existing topology of private address realms connected to each other
and the global IP Internet by NAT boxes. Again, by using existing
addresses and topological components (realms and NAT boxes), we
attempt to minimize deployment costs.

Isolated site addressing: This is the only major attribute that
doesn’t derive from an attempt to reduce costs. Rather, this attribute
is the cornerstone of our approach to achieving global scalability in
the face of multi-homed sites. The basic idea here is that if we can
completely isolate site operation from issues of global connectivity,
the ISPs are free to manage addresses as they see fit. The impor-
tance of this cannot be understated, and can be understood in light
of the following thought experiment.

Consider the case where an ISP has, to pick a number, 50,000
home subscribers in a given address aggregation. The ISP would
like to modify the prefixes of half of these subscribers in order to
improve its aggregation. Now imagine the ISP having to coordinate
with 25,000 home subscribers in order to carry out this change in
prefix. Even with automatic renumbering mechanisms, it is highly
likely that many things will go wrong in the home networks, mak-
ing the whole process difficult and expensive. If, on the other hand,
the home network addressing is isolated from global addressing,
the change could be made without having to contact the home sub-
scribers at all, and the whole process would be greatly simplified.

As part of site isolation, IPNL allows connections to survive
renumbering and address change “events” during their lifetime (Sec-
tion 3).

1.4 Outline
Because of space constraints, this paper does not give a complete

description of IPNL. Rather, it focuses only on the key architectural
aspects of IPNL. As a result, the reader will walk away from this
paper with a basic understanding of IPNL, but also with a host of
unanswered questions, some large, some small. For instance, this
paper does not describe how IPNL does mobility, multicast, host
auto-configuration, anycast, or interworking between legacy IPv4
and IPNL hosts, even though these are obviously critical require-
ments. For these and other details, the interested reader is referred
to [11] for a complete specification of IPNL.

Sections 2 through 5 describe how IPNL implements the cor-

responding four major attributes of IPNL listed above. Section 2
describes IPNL’s topology and addressing mechanisms, and lays
down the basic architectural constructs. Subsequently, each section
introduces additional key IPNL mechanisms; a basic understanding
of IPNL is obtained only after reading all four sections. Section 6
describes our prototype implementation. Section 7 compares IPNL
with other approaches, prominently IPv6, and Section 8 discusses
next steps.

2. TOPOLOGY, ADDRESSING, AND ROUT-
ING

The IPNL topology is the same as today’s Internet topology:
privately-addressed realms connected to the globally-addressed In-
ternet, and, sometimes, to each other, by NAT boxes. The NAT
boxes are called nl-routers, and the globally-addressed part of the
Internet is called the middle realm. Privately addressed realms are
called private realms.

An nl-router that connects a private realm with the middle realm
is called a frontdoor nl-router, or simply a frontdoor. An nl-router
that connects two private realms is called an internal nl-router. A
single physical device can be both a frontdoor and an internal nl-
router. These entities are shown in Figure 1.

Global IP

Global IP Realm Local IP

Extend IP Address

TCP/UDP

IP

Link

TCP/UDP

IP

Link

IPNL

Add New Protocol Layer

IP Host

IPNL Host

Global IP
and DNS

Global IP
and DNS

Frontdoor

Extend Edges of Infrastructure

Internal nl-router

Figure 1: IPNL Topology

To IP routers5 in a realm, an nl-router appears to be just an-
other host. To nl-routers, a realm appears to be a multi-access non-
broadcast “link”. The “link-layer” protocol of this non-broadcast
link is IPv4. In IPNL, the IPNL header is the end-to-end addressing
header, and the IPv4 header is delegated the role of an encapsulat-
ing “link” header. In other words, at every nl-router hop, the IPv4
header of the incoming packet is stripped away, and a new IPv4
header is attached to the outgoing packet.

IP addresses for a given realm have no meaning outside that
realm and never appear in IP headers outside of that realm. This is
in contrast to today’s situation, where a global IP address does have
meaning in a private realm, but not vice versa6. This IP address
5Henceforth, IP boxes mean IPv4 boxes, and IP addresses mean
IPv4 addresses.
6Of course, during transition, NAT and two-faced DNS will con-
tinue to operate as they do today, and, in this non-IPNL context, a
global address does have meaning in a private realm.

71

isolation partly extends to DNS as well—while there is a single
namespace, the DNS infrastructure itself operates independently in
each realm, with no knowledge about other realms. This implies
no new DNS resource record types are required.

IPNL headers can carry two kinds of routable addresses. One is
the FQDN of the host, and the other is the IPNL address of the host.
IPNL addresses are fixed-length numerical addresses. Datagram
packets may be addressed using FQDNs only, IPNL addresses only,
or both. Nl-routers can route packets using either type.

The FQDN serves as a somewhat static “long-term” address.
While a host may have multiple FQDNs, the FQDN used for a
given connection (or socket instantiation lifetime) must not change
during the connection. Applications would normally use the FQDN
to identify other hosts, and pass the FQDN to lower layers through
the socket API. In such cases, the application is unaware of the
IPNL addresses of hosts (including itself).

The IPNL address, on the other hand, is much more dynamic.
A host may have multiple IPNL addresses, and these may change
during a connection. The FQDN is the glue that binds these mul-
tiple IPNL addresses together. FQDNs are transmitted in the ini-
tial packet for a connection in each direction. Subsequent packets
typically carry only IPNL addresses. IPNL uses both FQDNs and
IPNL addresses because FQDN addresses, while fully routable by
nl-routers, are of variable length, and expensive to route on. IPNL
addresses are short fixed length fields, and, while transient, have
the advantage of being efficiently routable. IPNL uses FQDNs to
bootstrap and maintain the IPNL addresses.

2.1 Routing by FQDN
Every realm has associated with it one or more DNS zones. This

is necessary in order for FQDNs to be routable addresses. Con-
versely, every DNS zone is associated with exactly one realm (al-
though its parent zone may be spread over multiple realms). The
realm associated with a given DNS zone is called the home realm
of the zone. It is possible for a host from a given zone to be at-
tached to a realm other than the home realm. Such a host is said to
be a visiting host, and the realm where it is attached is called the
visited realm. In Figure 2, the home realm for a.com is realm R1.
Host y.a.com is a visiting host at realm R6.

site A

a.com

R2

R3 R4

R6
R5

R5

R1

R2

R1

site B

host

private
realm

/16

/24

fr
on

td
oo

r
nl

-r
ou

te
rs

internal nl-router

home
networks

middle realm

R1
H1

x.a.com

H2
x.b.com

H4
y.a.com

b.com

c.com

H3
x.c.com

M1

M2

M3

M4

z.a.com
y.b.com

Figure 2: Example IPNL Configuration

We say that an internal nl-router is behind a frontdoor if it uses

that frontdoor to reach the middle realm. Zone routing informa-
tion is dynamically maintained in nl-routers so that a packet can
be routed from any nl-router behind a given frontdoor to any zone7

behind the same frontdoor. This routing information can consist of
either an explicit forwarding table entry for the zone, or a default
entry towards the frontdoor.

Typically, an nl-router would contain explicit routing table en-
tries for zones in the same administrative domain, and a default
entry would be used for all other zones. At a minimum, though,
the frontdoor must have explicit routing table entries for all zones
behind it. (An nl-router may also have explicit routing table entries
for zones behind other frontdoors. These “backdoor” routes are
not core to the routing architecture, however, and are not discussed
further; [11] has the details for the interested reader.)

This zone routing information is established with dynamic rout-
ing algorithms. Zones are treated as maskable addresses in the
same way that IP addresses are maskable. Whereas IP addresses
are bit-maskable, zones are maskable only at the “dot” boundaries.
Nevertheless, mechanistically, they are aggregatable in the same
way that IP addresses are aggregatable. As such, multiple zones
may be represented by a single routing table entry (for example,
zones a.x.com, b.x.com, and c.x.com might appear as zone x.com
in a routing table entry).

Zones are, of course, not as aggregatable as IP addresses, both
because the assignment of domain names is primarily based on ad-
ministrative closeness, not topological closeness, and because there
are lots of administrative domains. Typically, we wouldn’t expect
to see much aggregation of zones across realms. Aggregatable
zones would normally share the same home realm.

In practice, this lack of zone aggregatability is not a problem be-
cause nl-routers only need to keep explicit entries for a tiny fraction
of all zones—namely those behind the same frontdoor. If a source
and destination zone do not share the same frontdoor, packets are
routed from the source zone to the frontdoor by default. The front-
door then uses conventional global DNS to route8 packets across
the middle realm to the destination frontdoor.

Specifically, A-records in middle realm DNS refer not to the IP
address of a host behind a frontdoor, but to the middle realm IP
address of the frontdoor. Before a frontdoor can forward a received
default-routed packet across the middle realm, it must first have
done a DNS lookup over the middle realm to learn the IP address
of the neighboring frontdoor.

Up to now, we have described how a packet is routed to a zone
behind the same frontdoor, and how a packet is routed across the
middle realm to a zone behind a different frontdoor. What remains
to be described is how an internal nl-router forwards a packet to
individual hosts attached to the same realm. For this, we require
that internal nl-routers maintain the following per-host routing in-
formation:

� The FQDN and private realm IP address of all hosts in the
realm, whether the host is visiting or not, and

� For each host whose home realm is the attached realm, but
which is visiting another realm, the FQDN of a zone in the
visited realm must be known.

An internal nl-router can learn of non-visiting hosts via a DNS
zone transfer. Visiting hosts must register both with an nl-router in

7We say “route to a zone” as shorthand for “route to an nl-router
attached to the home realm of the zone”.
8This simply means that the frontdoor also acts as a DNS server,
and does not mean that it queues up FQDN-attached packets wait-
ing for resolution (see Section 3.3 for an example).

72

its home realm, and with an nl-router in its visited realm. When an
nl-router receives such a registration, it, in turn, informs all other nl-
routers attached to the realm. These neighbor nl-routers are learned
through static configuration.

Because nl-routers must know about every host in its attached
realms as well as about every other attached nl-router, it should
be clear that private realms are not expected to be very big. They
should have only a fraction of the over 16 million (Sections 2.2
gives the IPNL address format, including the sizes of various fields)
possible hosts from the private address space.

To summarize, take the case where host x.a.com in Figure 2 is
sending a packet to host x.c.com. Default routing gets the packet
to frontdoor M1 (or M2). DNS information gets the packet from
M1 to M4 (or M3). Dynamic routing on zones gets the packet from
M4 to the R5-R6 internal nl-router. Internal nl-router R5-R6’s host
database gets the packet from there to host x.c.com.

2.2 Routing by IPNL Address
IPNL addresses are 10 bytes long, and consist of three parts (in

order of high-order to low order):

1. A 4-byte globally unique IP address, which is the Middle
Realm IP address (MRIP) of a frontdoor that the host cur-
rently uses to reach the middle realm.

2. A 2-byte Realm Number (RN) identifying the realm behind
this frontdoor; because of the possibility of realm number
translation (Section 3.2), the exact RN value in this field is
meaningful only from the perspective of this frontdoor, and
may differ from the RN value used by internal hosts within a
site, and by other frontdoors.

3. A 4-byte IP address, which is the End Host IP (EHIP) ad-
dress of the host within the realm specified by the RN field.

Neither RNs nor EHIPs are globally unique.

<------- 4 bytes ------>|<-2 bytes->|<------- 4 bytes ------>
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| MRIP | RN | EHIP |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Figure 3: IPNL Address Format

In addition to being able to route to zones behind their front-
doors, internal nl-routers also know how to route to each realm
using the 2-byte RN. This routing information is conveyed by the
same dynamic routing protocol used for zones. Such a routing pro-
tocol would have several parallels with BGP, and, in fact, a mod-
ified BGP could be used. Whereas BGP calculates routes to Au-
tonomous System (AS) numbers and associates IP prefixes with
those ASs, IPNL’s routing algorithm would calculate routes to RNs,
and associate zones with those RNs. In addition, whereas BGP
neighbors are reachable across ASs, nl-router neighbors are reach-
able across private realms.

Packets for realms behind different frontdoors are routed by de-
fault to the frontdoor. Frontdoors use the MRIP to forward pack-
ets across the middle realm. Once a packet reaches its destination
private realm, the attached nl-router uses the EHIP to forward the
packet across the private realm to the destination host. Note that the
realm-routing protocol may establish different forward and reverse
paths between a host and its frontdoor. Thus, we do not require any
routing path symmetry assumptions9.
9We, of course, assume that the destination uses the MRIP speci-
fied in the source address as part of the destination IPNL address
for packets in the reverse direction.

Now, we repeat the example of a packet from host x.a.com to
x.c.com, but using IPNL addresses instead. The destination address
for the packet would be M4:R6:H3 (where M4 is the MRIP, R6 is
the realm number, and H1 is the EHIP). Default routing gets the
packet to M1 (or M2). MRIP M4 gets the packet from M1 to M4.
Dynamic routing on RNs gets the packet from M4 to the R5-R6
internal nl-router. Internal nl-router R5-R6 uses the EHIP H3 to
deliver the packet to host x.c.com.

2.3 Persistent Host Knowledge
IPNL hosts are configured with only two pieces of information:

1) their EHIP, and 2) their FQDN. Note that this is exactly the
same information they are configured with for IPv4 today. In other
words, no new configuration mechanisms (i.e., enhancements to
DHCP) are required. Note too that an IPNL host does not keep
persistent information about its MRIPs. Instead, these are learned
dynamically, literally with every packet received (Section 4.1).

IPNL hosts must also learn the set of nl-routers attached to their
realm. The basic approach is for the host to find one nl-router, using
either IP anycast or a well-known domain name. This nl-router
can then inform the host of the other nl-routers. Hosts periodically
refresh this information.

2.4 The IPNL Header
1 2 3

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-------+-----+-+---------------+---------------+---------------+ local
|Version|Loc|G|F| Protocol | Local or Used Source Realm | header
+-------+-----+-+---------------+---------------+---------------+
| Source EHIP |
+---------------+---------------+---------------+---------------+
| Rsv | Local Dest Realm |
+---------------+---------------+---------------+---------------+
| Dest EHIP |
+---------------+---------------+---------------+---------------+
| |
+ Random ID (RID) +
| |
+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+ optional
| Global Dest Realm | Global Source Realm | global
+---------------+---------------+---------------+---------------+ header
| Dest MRIP |
+---------------+---------------+---------------+---------------+
| Source MRIP |
+---------------+---------------+---------------+-------+-------+
| Used Source MRIP |
+---------------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+ optional
| | FQDN
˜ FQDN Header ˜ header
| |
+---------------+---------------+---------------+---------------+

Figure 4: IPNL Header Format

Figure 4 shows the IPNL Header. It consists of a 24-byte local
header, an optional 16-byte global header, and an optional variable
length FQDN header. The FQDN header contains, among other
things, the source and destination FQDNs of the packet. There is
no time-to-live (hop count) field. Nl-routers increment and copy the
time-to-live field of the incoming tunnel’s IP header to the outgoing
tunnel’s IP header. The IPNL header is designed so that the RN and
EHIP of the source host are in the first 8 bytes of the packet. This
allows nl-routers to identify the source host in received ICMPv4
messages. This is important for making debugging tools like tracer-
oute and ping work across realms. Most of the other header fields
will be described in subsequent sections.

2.5 Administrative Domains
There is no correspondence between administrative domains and

IPNL topological entities. A large corporation may consume mul-
tiple frontdoors and all the realms behind those frontdoors (for in-

73

stance, the shaded area labeled “site A” in Figure 2). A small cor-
poration may consume only a single realm, sharing an ISP-owned
frontdoor with other corporations. A home network may consume
part of a realm (for instance a /16 or /24) and share the realm with
many other home networks. As such, an ISP could support over 17
million /16 home networks with a single global IP address (65536
RNs by 272 private /16’s), for example.

3. SITE ADDRESS ISOLATION
This section describes the aspects of IPNL that allow site isola-

tion. By site isolation, we mean that changes in any of the MRIPs
of the site’s frontdoors have no effect on internal packet exchanges
or routing exchanges. In other words, the MRIP never shows up
in any internal routing messages, host configuration messages, or
headers of intra-site data packets.

A site’s frontdoor MRIPs do, of course, show up in packets be-
tween internal and external hosts (called global packets). But be-
cause these MRIPs are learned on a connection by connection basis,
there is no need to statically configure hosts and internal nl-routers
with their site’s MRIPs. This approach has two advantages:

1. There are no renumbering “events” where the addresses of
all of a site’s hosts must be simultaneously updated when-
ever the site’s prefix changes. While infrequent, this prefix
change entails massive changes to the entire site, and can be
highly disruptive because all support infrastructure must be
atomically updated.

2. Connections on a single host persist across multiple address
changes on its interfaces. This feature is useful for mobile
hosts that change realms or frontdoors. Given that private
realms are envisioned to be small, this address change may
be fairly frequent.

There are four primary mechanisms that provide site isolation:

1. Intra-site headers carry no MRIPs, and are not globally unique.

2. Realm number assignments are independently made, which
allows sites that share the same frontdoor to independently
number their realms.

3. IPNL addresses of packets are resolved in-flight, using FQDNs
to route unresolved packets.

4. A 2-bit “Loc” field in global header (Figure 4) is used to
indicate whether a global packet is behind the source or des-
tination frontdoor.

These four mechanisms are discussed in turn.

3.1 Separate Local and Global Headers
When a host transmits an IPNL packet that does not cross the

middle realm, it does not include the optional global header. Such
packets are called local packets. Internal nl-routers receiving a
packet without the global header know that the packet is to be
routed locally. Therefore, there is no need for IPNL hosts to know
their site’s MRIPs. This also means that a site’s internal traffic is
not effected even if its MRIP changes.

Because locally addressed packets carry no MRIPs, they are not
globally unique. Local packets behind other frontdoors can have
the same headers. This use of a local packet is similar in many re-
spects to the site-local address of IPv6 [14]. The IPv6 site-local ad-
dress is distinguished by a specific 48-bit prefix, and like the IPNL
local address is unique only within a site. The purpose of the site-
local address in IPv6 is to lessen the impact of site renumbering.

Thus, if an IPv6 site is renumbered, intra-site connections using
the site-local address will not be affected by the change. By al-
lowing hosts to dynamically learn MRIPs, IPNL takes this one step
further, allowing even global connections to survive renumbering.

The use of locally unique addresses in both IPNL and IPv6 raises
two problems:

1. How can the same local address from different sites be rec-
ognized as belonging to different sites, and

2. How does a host know that a given destination can be locally
addressed?

IPv6 has no explicit mechanism to address the first question. It
is up to site administrators to ensure that the context of all IPv6
site-local addresses is maintained. IPNL, on the other hand, uses
FQDNs for this purpose. Because FQDNs carried in packet head-
ers are fully routable, they can be used in lieu of IPNL addresses
in configuration files. IPNL addresses may still have to be used di-
rectly when debugging network problems, so IPNL doesn’t solve
the problem completely. But such instances are clearly constrained
and limited.

As for the second question, the primary mechanism by which
IPv6 hosts determine whether a destination host is within a site
or not is through the use of “two-faced” DNS. That is, DNS must
know whether a given query is from a host within the site or ex-
ternal to the site, and compose its answer accordingly. It should
be noted that the use of site-local addresses in IPv6 is entirely op-
tional, whereas in IPNL it is mandatory. Therefore IPv6 users can
get around the problems inherent in site-locals by simply not using
them.

The way an IPNL host learns that a destination is locally address-
able is through a technique whereby IPNL addresses are composed
“in-flight” (Section 3.3).

3.2 Realm Number Independence
A problem comes up with realm number assignment when mul-

tiple sites share the same frontdoor. The purpose of site address
isolation is to eliminate dependencies on the addresses assigned
by ISPs, and by extension, from the addresses assigned to topo-
logically nearby sites. Because all realm numbers behind a given
MRIP must be unique, without some additional mechanism, all
realm number assignments within sites that share the same front-
door would have to be coordinated. This would defeat some of the
benefits of site address isolation. For example, in Figure 2, the two
sites sharing frontdoor M3 would have to coordinate their realm
number assignments with each other. Without such coordination,
both sites may assign the same RN numbers, as is shown with both
sites having a realm numbered “R5”.

IPNL allows independent realm number assignment by allowing
different realm numbers to be used internal and external to a site.
This is possible because realms are identifiable by their DNS zones.
The neighbor nl-routers on either side of a site boundary know what
realm number the other is using to identify a given realm. When the
neighbors are internal nl-routers, this is scalably learned by the dy-
namic routing algorithm or by explicit configuration. When pack-
ets are locally addressed, the realm numbers are translated as the
packet crosses site boundaries.

Because each frontdoor must have explicit routing information
for all realms behind it, each frontdoor assigns realm number val-
ues to all realms behind it independent of the realm numbers as-
signed by the site. For globally addressed packets, the realm num-
bers assigned by the frontdoor are carried in the Global Dest Realm
and Global Source Realm fields (Figure 4). These fields are tightly

74

coupled to the Dest MRIP and Source MRIP fields respectively. In
other words, the realm number in the Global Dest Realm field is
always the realm number assigned by the frontdoor defined by the
Dest MRIP field. In the remainder of the paper, the Dest MRIP and
Global Dest Realm fields are treated a single unit, and written as
Dest MRIP+RN (and likewise for Source MRIP+RN).

For instance, in Figure 2, M3 recognizes that two realms have the
same realm number, and externally represents one of the realms as
having a different RN. As such, a host talking to a host on site B’s
R5 would see a different realm number, say R7. M3 would translate
between the two RNs.

Every frontdoor can assign its own values for the external rep-
resentation independent of other frontdoors. As such, it is a com-
pletely local and automatic function. For instance, M3 might rep-
resent site B’s R5 as R7, while M4 represents it by R8. Different
packets for a given connection may go through either frontdoor, for
instance if one of the frontdoors crashes. As described in Section 4,
IPNL has various mechanisms to maintain host identification in the
face of such changes.

3.3 In-flight IPNL Address Resolution
When a host initiates a connection, it only knows three addresses:

1. its own FQDN,

2. its own EHIP, and

3. the FQDN of the destination.

In particular, it does not know its own MRIP and RN. It learns the
destination host MRIPs by transmitting a message to a frontdoor
asking that frontdoor to do a middle realm DNS lookup for the
destination. But it does not know the destination’s RN and EHIP
when it transmits its first packet. Instead, the source MRIP and RN,
as well as the destination RN and EHIP, are written into the packet
as the packet travels from source to destination.

This is best described by example. In Figure 2, assume that host
H1 is transmitting a packet to host H3. First, it requests a DNS
lookup for H3’s MRIPs from one of its own frontdoors. This is
done by transmitting a request message hop-by-hop to each nl-
router on the way to the frontdoor. The first nl-router that can
answer the message does so. If no nl-routers can answer it, the
frontdoor does a DNS lookup over the middle realm.

The initial packet from H1 to H3, then, contains both hosts’
FQDNs, H1’s EHIP, and one of H3’s MRIPs (say M4). All other
IPNL address fields are transmitted as values defined as “unknown”.
When the packet reaches the R1-R2 internal nl-router, it knows that
the packet came from realm R1, and writes that RN into the Lo-
cal Source Realm field. When the packet reaches frontdoor M1,
it writes its MRIP and its representation of the source RN into
the Used Source MRIP+RN fields (overwriting the Local Source
Realm value, which is no longer needed once the packet traverses
the frontdoor). When the packet reaches M4, it uses the FQDN
to determine the RN for the destination zone. It writes its own
MRIP and its representation of the destination RN into the Dest
MRIP+RN fields. It also writes the local representation of the des-
tination RN into the Local Dest Realm field. When the R5-R6 inter-
nal nl-router receives the packet, it looks up H3’s EHIP and writes
that into the destination EHIP field.

When H3 receives the packet, both IPNL addresses are com-
plete. H3 stores the received values in a control block used only
for this connection. In the return packet, the received Used Source
MRIP+RN (M1+R1) are copied into the Dest MRIP+RN fields,
the received Dest MRIP+RN fields (M4+R6) are copied into the
Source MRIP+RN fields, and the FQDNs and EHIPs are reversed.

When this packet exits site B, the exiting frontdoor writes it’s MRIP+RN
into the Used Source MRIP+RN fields. If the exiting frontdoor was
M3, then H1 will receive a return packet with M1+R1 as the Dest
MRIP+RN, M4+R6 as the Source MRIP+RN, and M3+R6 as the
Used Source MRIP+RN.

H1 stores M4+R6 as a valid MRIP+RN for H3, but stores M3+R6
as the active MRIP+RN for H3. H1’s return packet does not require
the FQDNs. The Source MRIP+RN is copied from the received
Dest MRIP+RN (M1+R1). This allows H3 to identify the source
of the packet, even if, for instance, the packet exits site A through
M2. The Dest MRIP+RN is set as M3+R6, and the EHIPs are re-
versed. Subsequent packets do not require FQDNs. The Source
MRIP+RN is always used to identify the incoming packet. The
most recently received Used Source MRIP+RN is always used to
return packets.

Now consider the case of a packet from H1 to H2, a host in a
different realm but behind the same frontdoor. In this case, when
H1 transmits the DNS lookup request message, the first internal nl-
router to receive the packet (say R1-R2) knows from the destination
FQDN that the destination realm is local. The internal nl-router
replies to this effect to H1. H1 then transmits a packet similar to
the one in the previous example, but with the Dest MRIP field set to
a well-known value meaning “none”10. The source RN and desti-
nation RN and EHIP fields are filled in as described in the previous
example, but using the Local Source and Local Dest Realm fields.
Once H1 learns these fields from the return packets, subsequent
packets contain neither the FQDN nor global headers.

Consider a packet from H1 to z.a.com attached to the same realm.
In the case the nl-router receiving the DNS lookup request message
knows that the destination is in the same realm, and returns an an-
swer to that effect including the destination host’s EHIP. H1 then
transmits a packet directly to z.a.com with the source and destina-
tion EHIP fields set, and the source and destination RN fields set to
a well-known value meaning “this realm”.

Finally, consider a packet from H2 to H4. H4’s home realm is
R1, but it is visiting realm R6. In this case, H2’s initial packet will
be routed to one of R1’s nl-routers, say R1-R3. R1-R3 knows that
H4 is in realm R6 with zone c.com, based on a registration message
previously sent by H4 and distributed to nl-routers R1-R3 and R1-
R2. R1-R3 will return a “redirect” message to H2 telling it the vis-
ited realm of H4. (As will be described in Section 5, the redirect is
weakly authenticated by the Random ID (RID) field which makes
spoofing hard, but is subject to man-in-the-middle attacks.) Sub-
sequently, H2 will transmit a packet containing two Dest FQDNs
in the FQDN header: y.a.com and c.com. FQDN c.com will get
the packet routed to an nl-router of R6. This router will know the
EHIP of y.a.com due to a previous registration from y.a.com, and
the packet will be delivered.

3.4 The Location Field
The reader may have noticed a problem in the above H1-H3 ex-

ample with regards to packets that do not contain the FQDN header.
The problem arises because internal nl-routers do not know their
own MRIPs. Without additional information in the packet header,
the nl-router cannot know whether a packet should be routed to a
local realm or to the frontdoor.

This problem is solved by the 2-bit location (or loc) field. The
loc field is used only for packets that contain the global header but
not the FQDN header. The loc field has three values: “behind the
source frontdoor”, “in the middle realm”, and “behind the desti-

10IPNL header formatting requires that the global header be at-
tached anytime the FQDN header is attached. In this example,
however, the global header plays no role.

75

nation frontdoor”. Packets are initially transmitted as “behind the
source frontdoor”. This tells internal nl-routers to default route the
packet to the nearest frontdoor. This frontdoor changes the loc field
to “in the middle realm” when it transmits the packet to the desti-
nation frontdoor. The destination frontdoor then changes the loc
field to “behind the destination frontdoor” and forwards the packet
towards the destination realm. Internal nl-routers behind the des-
tination frontdoor continue to route the packet to the destination
realm until it reaches the destination.

4. ROBUSTNESS
This section discusses robustness issues in IPNL, and describes

the mechanisms used to achieve robustness. Specifically, we are
concerned with how paths can be re-routed around failed nl-routers.
Before discussing robustness in IPNL, we need to first consider
what makes IPv4 robust. The primary principles of robustness in
IPv4 are:

� Statelessness: There is no connection state in IPv4 routers.
As long as an alternate path can be found around a failed
router or link, communications between end-points can con-
tinue.

� Dynamic routing: This is what finds paths around failed routers.

� Neighbor pinging: Before dynamic routing can find alter-
nate paths, a node (host or router) must first discover that its
neighbor router is down. This is not possible unless either 1)
each node has a relatively small number of neighbors (small
fanout), or 2) there is native multicast between nodes in order
to efficiently broadcast neighbor reachability information.

� Decoupled name resolution and routing.

IPNL attempts to follow these same principles. All nl-routers
in IPNL are stateless (as long as both hosts are IPNL hosts. If
one of the hosts is an IPv4-only host, then the nl-router must, of
course, perform NAT, which is stateful). IPNL also uses a dynamic
routing algorithm behind frontdoors. Although IPNL uses FQDNs
as routable addresses, name resolution within a realm works the
same way as it does today.

The only IPv4 robustness principle IPNL can not use is neighbor
pinging between hosts and nl-routers across private realms, and be-
tween frontdoors across the middle realm. Both of these cases have
a large fanout over non-multicast infrastructures. It is impossible
for frontdoors to even know about each other, much less be ex-
pected to ping each other. Likewise, it is unrealistic to expect the
nl-routers attached to a private realm to send reachability messages
to all hosts attached to the realm.

IPNL uses two basic mechanisms to overcome this inability:

1. An “in-band trace” mechanism, and

2. Additional “path discovery” mechanisms in hosts, which are
invoked after a timeout when no packets are received from a
remote host.

4.1 In-band Trace
IPNL has two forms of in-band trace. One allows hosts to quickly

detect failure of an nl-router in its realm. The other allows hosts to
quickly detect failures in a destination host’s frontdoor. The prin-
ciple of in-band trace is best described through example. We start
with the first because it is easier to understand.

For each connection, the host IPNL layer maintains a variable
called “next-hop” that contains the IP address of the nl-router to

which it should transmit packets for that connection. Next-hop is
initially set to any attached nl-router. Subsequently, next-hop is
always set to the source IP address of the latest received packet.

For example, assume that H1 is receiving packets from H4 via
internal nl-router R1-R2. H1’s next-hop value for this connection
is R1-R2. Now, suppose that R1-R2 crashes. The dynamic rout-
ing algorithm operating in site A will discover this crash because
of keep-alive messages between neighboring nl-routers across pri-
vate realms. As a result, packets transmitted by H4 will be routed
through nl-router R1-R3. When H1 receives such a packet, it will
change its next-hop value from R1-R2 to R1-R3. Subsequent pack-
ets sent by H1 will go through R1-R3.

The principle here is that the presence of the source IP address in
received messages represents a “trace” of part of the path from H4
to H1—specifically the last hop. This trace tells H1 how to route
subsequent packets. The same principle applies to frontdoors.

For every globally addressed connection, the host IPNL layer
maintains three pieces of information:

1. A list of MRIPs for the destination host (learned through
DNS),

2. A list of MRIP+RN combinations for the destination host re-
ceived in either the Used Source or Source MRIP+RN fields
of previous packets for the connection, and

3. The latest Used Source MRIP+RN combination received.

Continuing the example of Section 3.3, assume that packets be-
tween H1 and H3 are using frontdoors M1 and M3 respectively.
As long as this is the case, the Source MRIP+RN and Used Source
MRIP+RN fields will match. Now assume that M1 crashes. Site
A’s internal dynamic routing will discover this. As a result, subse-
quent packets will exit site A through frontdoor M2. M2 will write
M2+R1 into the Used Source MRIP+RN fields. When H3 receives
this packet, it will recognize the source from the Source MRIP+RN
fields (M1+R1), and also that a new frontdoor is being used (from
M2+R1 in the Used Source MRIP+RN fields). Subsequent packets
from H3 use M2+R1 in the Dest MRIP+RN fields, thus routing the
packets through frontdoor M2.

Note that both of these trace mechanisms require that return
packets be sent by the destination host. Fortunately, most appli-
cations send packets in both directions relatively frequently. How-
ever, some do not. In addition, the trace mechanism does not work
for certain simultaneous failures. For instance, if both M1 and M3
in the previous example crash simultaneously, this mechanism does
not work. Packets from H3 to H1 will indeed travel out of M4, but
they will be transmitted to M1 and lost. H1, as a result, will never
see a packet from H4, and will not learn that M3 has crashed. This
leads to the need for the following path discovery mechanism.

4.2 Additional path discovery
If a host unexpectedly stops receiving packets for a given con-

nection, it does not know if the reason is because the host has died,
or some combination of failures is preventing packets from being
received. When this happens, the host IPNL layer takes proactive
steps to resolve the problem. The trigger for this can be either from
the IPNL layer’s own timeout mechanisms, or by request from the
upper layer. The latter is preferred because the upper layer has a
better idea as to whether it should be receiving packets.

The IPNL layer takes a series of steps to resolve the problem.
First, it pings its own nl-router to make sure that it is alive. If not,
it pings other nl-routers until it finds one. If this succeeds, then
the host, in turn, sends pings to the destination host using all of the
MRIP+RN combinations it has learned for the connection. If still

76

no return packets are received, the host tries the MRIPs it learned
from DNS, or if it hasn’t queried DNS, it does so.

If all of this fails, then the destination host is considered un-
reachable. The application or the IPNL layer may choose either to
terminate the connection, or to wait for a while and try again.

5. FQDNS AS OVERLOADED ADDRESSES
The biggest departure from current IP architectures is IPNL’s use

of FQDNs for end-to-end routing and identification. Note that we
say routing and identification, not simply identification. This is
because, in a sense, IPNL can be viewed as routing on FQDNs
across the middle realm.

To understand the pros and cons of using FQDNs as both a lo-
cator and an identifier, we must first examine the role of the IP
address in locating and identifying the destination. The fact that IP
addresses are “overloaded”, that is that they serve to both locate and
identify hosts, has been discussed in numerous articles ([3] [21]).
The primary issue has been whether the location and identification
functions should be combined in a single address, as with IP, or
split.

The first author of this paper came out strongly for the split
approach a decade ago in an early IPng proposal called Pip [10].
While he still believes in the principle, he also acknowledges that
the mechanism used in Pip, a simple 64-bit flat identifier, was naively
inadequate. This is because it would have been trivial to spoof a
host and hijack its packets from anywhere in the network (not just
from a man-in-the-middle position).

The only way to really effectively separate location from identi-
fication is to use an identifier that is both cryptographic and inde-
pendent of any network layer addresses. Recent work proposed in
IETF, particularly the Host Identity Payload (HIP) [17]11 but also
Purpose Built Keys (PBK) [1], take this approach. Both of these
have an anonymous mode in which a public key infrastructure or
exchange of keys in advance is not necessary, making them appro-
priate for general use over the Internet. IPNL as of yet does not use
a HIP approach, but would likely do so if the approach pans out.

The overloaded approach is a simple and elegant way to subvert
hijacking of packets, at least where there is no man-in-the-middle
attack. Because routing algorithms enforce delivery of packets
to the destination address, and because router neighbor relation-
ships are manually configured and therefore relatively hard to spoof
(though by no means impossible), making the address also the iden-
tifier makes it very hard to hijack packets. This powerful feature is
primarily what makes the overloaded approach attractive to its pro-
ponents.

The negative aspect of overloading the address is that the iden-
tification part becomes dependent on where a host is attached to
the Internet. This results in the renumbering issue that has caused
so much concern and added complexity (renumbering algorithms,
site-local addresses) in IPv6. It is primarily this negative aspect that
makes the overloaded approach unattractive to its opponents.

IPNL attempts to get around this impasse through the use of three
components:

1. The FQDN, which is used primarily as an identifier, but often
as a kind of locator too,

2. The IPNL address, which is used primarily as a locator, but
sometimes also as a short-term identifier (i.e. when the Used
fields contain a different value),

11These are only Internet drafts as of yet, and so, strictly speaking,
should not be cited.

3. A Random ID (RID), which is used purely as a per-connection
short-term anonymous identifier in order to prevent spoofing.

We concede that we are not happy about there being three com-
ponents. We wish that one were enough, because that would be a
lot simpler. The need for three is a reflection of the difficulty of
getting both location independence and spoof-resistance out of a
single address.

We start with the FQDN. We maintain that the FQDN as used in
IPNL is, in essence, an overloaded address. That is, it both locates
and identifies a host in the same sense that the original IPv4 address
both located and identified a host. The original IPv4 address had
the following overloading characteristics:

1. Immediately returnable: A non-spoofed source address in
a received packet can be used to transmit a packet back to the
source host.

2. Non-hijackable: A spoofed source address in a received
packet does not cause a return packet to go to the source host.

3. Long-term identifiable: A non-spoofed address can be used
at a much later time to send packets to the same host. This
can be an address that was learned from a received source
address or through some other means.

We can say the same three things about the FQDN as used in
IPNL. This leads to the question: how can an FQDN have the same
address overloading characteristics of the original IPv4, and yet not
be subject to the renumbering problem? The answer lies in three
important differences between the way DNS scales and the way
IPv4 scales.

1. DNS derives its scalability from caching (especially NS-record
caching), while IPv4 gets its scalability from aggregation.
The chain of pointers in DNS start at a handful of root DNS
servers. If there were no caching, and all DNS queries had
to go through the root servers, DNS would obviously never
scale.

2. DNS is dependent on IPv4, whereas IPv4 has no such depen-
dencies. Because of IPv4, any two DNS servers anywhere in
the world can be configured as neighbors.

3. A leaf DNS domain has only one parent domain. Put an-
other way, DNS domains are all single-homed. Therefore,
the multi-homing issue doesn’t even come up in DNS.

These three things taken together result in the property that the
name of a host has no dependence on where that host connects to
the Internet. As it turns out, this does not quite solve all renumber-
ing issues, though it comes close. The issue here is that of a multi-
homed network that gets Internet connectivity from two ISPs, but
gets its DNS service from only one of the ISPs. (By virtue of the
third DNS scalability property above, it has no choice but to gets
its DNS service from one and only one ISP.)

Consider again our example of an ISP L changing the prefix of
25,000 home subscribers. Suppose that 15,000 of these are multi-
homed as described above, and that 1/2 of them get their DNS ser-
vice from some other ISP M. To change these 7,500 subscribers’
prefixes, for each subscriber ISP L has to communicate this change
to ISP M. This would be far less difficult than getting subscribers to
renumber their home networks as with IPv6. For instance, the ISP
can discover which ISP is hosting its customers’ DNS simply by
doing a DNS query on the customers’ domain name. Note that this
same problem also exists for IPv6 (in addition to the renumbering
issue).

77

There are some other important limitations regarding the use of
FQDNs as overloaded addresses. The main limitation is that, to re-
turn a received packet, the returning host must do a DNS lookup in
the return direction to prevent a spoofed source FQDN successfully
hijacking a packet. A rogue host would have to hack into DNS to
hijack packets. While this extra DNS lookup is an acceptable over-
head for many cases, particularly peer-to-peer, it is no good for
heavily loaded servers. The cost of doing the DNS lookup in the
return direction for every received connection is too high for such
servers, and could be used against the server in a Denial of Service
(DoS) attack. Note that this applies only to packets that cross the
middle realm. Behind a frontdoor, a traditional routing algorithm
(FQDN-based) prevents hijacking in exactly the same way that IP
routing algorithms do today.

Another limitation is that we cannot efficiently include a pair of
FQDNs in every packet. The IPNL address, including the Used
fields, and the RID are used to overcome these two weaknesses.

As described in Section 4.1, when an IPNL host talks to another
IPNL host, its IPNL layer keeps an FQDN and a list of one or more
IPNL addresses for the other host. Any of these (the FQDN and
the IPNL addresses) can act as overloaded addresses once they are
“securely” obtained12.

The question is, given that an IPNL host has an FQDN that it
trusts, how does it obtain IPNL addresses that it can also trust? The
simplest answer is for the host to do a DNS lookup on the FQDN.
This approach always applies to the initiating host. It also applies
to respondent hosts that can afford the extra overhead.

The only case remaining is where the respondent host cannot
afford the extra overhead of a DNS lookup. Specifically, this is
the case of hosts anonymously accessing a heavily loaded server.
By anonymous, we mean the case where the server does not care
“who” is accessing it (or if it does, it resolves that at higher layers,
for instance using a cookie or a login/password). The only thing it
cares about, at least at the network layer, is that once it does identify
a host, packets sent to the identified host indeed go to that host13.

For these anonymous accesses, the IPNL address in the first packet
received is, by definition, trusted. Even if the initiating host is ly-
ing about its FQDN, the respondent host doesn’t care. Because it
is an anonymous access, all the respondent host cares about is that
packets returned to the initiating host get to the initiating host. Of
course, if the respondent host is logging information about the ac-
cess, it must log both the FQDN and the IPNL address as a unit. It
cannot log only the FQDN and assume that the IPNL address is the
right one for that FQDN.

Note that a host lying about its FQDN (for anonymous accesses)
does not affect traffic for the host that genuinely owns that FQDN.
This is because IPNL does not generalize about FQDNs not learned
from DNS. It isolates all knowledge about FQDNs and IPNL ad-
dresses to the individual connections that produced that knowledge.

For example, say host X has address Xa and FQDN X.com. An-
other host Y has address Ya, and pretends to have FQDN X.com.
Host Y anonymously accesses respondent host R with address Ya
and FQDN X.com. R creates a record for this specific connection
(i.e. the port numbers and protocol), and remembers that the host
has FQDN X.com and address Ya. Next host X accesses respon-
dent host R with address Xa and FQDN X.com. R simply creates
another record for this specific connection and does not associate
the two connections in any way. In other words, it never tries to

12We “secure” in quotes here because we don’t mean strong secu-
rity. There are no secret keys or encryption involved.
13We assume that if a respondent host does care about non-
anonymous accesses at the network layer, it has the wherewithal
to learn the MRIPs of the host in advance.

send a packet for host X’s connection to Ya, nor does it try to send
a packet for host Y’s connection to Xa.

The tricky part comes when packets to and from an initiating
host need to go through a different frontdoor than the one learned
in the initial packet. This must be done in an efficient and trusted
way.

The efficiency comes from the use of the Used fields, as already
described in Section 4. We mention it again here just to point out
the architectural role that the IPNL address fields are playing when
a packet with new Used fields arrives. Specifically, the Used fields
play the role of the “true” source address (the one that can be used
to return packets), and the source IPNL address plays the role of an
identifier only. In other words, the source IPNL address tells the
host who the packet came from, and the Used fields provide a new
overloaded address that should be used subsequently.

The RID is used to prevent a rogue host from trivially spoof-
ing the Used fields to hijack packets, and works as follows: The
initiating host picks a different random value for the RID for each
connection. All packets in either direction for that connection con-
tain the RID. Because a hijacking host cannot easily guess the RID,
the respondent host can trust that the IPNL learned from the Used
fields is indeed from the true initiating host. Of course the RID
does not protect against MITM attacks. For this, true security is
needed (HIP or IPsec). The same can be said for IPv4 or IPv6.
Neither of these are secure against a MITM attack in the absence
of true security. Note that the RID can also be used for mobility
while providing the same amount of hijack protection for anony-
mous access.

As already mentioned, we are not entirely happy with the fact
that IPNL requires three different mechanisms to achieve the level
of hijack resistance that IPv4 has. The whole thing has a certain
cobbled together feel about it that smacks of lacking a strong archi-
tectural principle. The thing it lacks is that the architectural prin-
ciple that it does have—an overloaded address (the FQDN) with
scalability based on caching rather than aggregation—is not usable
in the common case of a heavily loaded server.

A stronger architectural principle from which IPNL might bene-
fit is a cryptographically strong host identifier. In HIP, the identifier
is a 128-bit hash of a public key which is subsequently represented
in packets as a 32-bit tag (specifically, the IPsec SPI [15]). If used
in IPNL, the host identifier would take the place of the RID.

A cryptographic identifier could also potentially take the place of
the Used fields. This is because the originator of the packet would
be identifiable from the host identity alone, so the source MRIP
could always be that of the frontdoor through which the packet ac-
tually passed.

HIP is still in the process of receiving community review, so it
is premature to say whether it or something similar will suffice.
HIP certainly has some cost associated with it—a Diffie-Hellman
key exchange in a four packet handshake. It is possible that these
costs are also prohibitive for the heavily loaded server case. Hav-
ing said that, HIP has a cookie challenge mechanism that makes
DoS attacks harder, so in certain ways it improves the situation for
heavily loaded servers.

6. PERFORMANCE EVALUATION
We prototyped IPNL in the Linux 2.2.16 kernel by implementing

the nl-router functionality in Click [16], and the host functionality
in the Linux TCP/IP stack. We altered about 50 files, most of them
under the net/ipv4 kernel source subtree, to fully implement the
host unicast algorithms, and added a new element directory called
ipnl under the elements subtree to implement the internal and
frontdoor nl-router algorithms. The prototype testbed consisted of

78

8 Linux boxes acting as end-hosts—4 each in 2 sites, with each
site consisting of 2 realms, and another 8 Linux boxes acting as nl-
routers, with an internal nl-router for each realm, and 2 frontdoor
routers for each site. Each realm was configured with one DNS
zone. We ran a simple BGP-like path vector protocol within each
site to propagate both the realm reachability and FQDN routing
information. The 2 frontdoor routers were to test the failover and
load-balancing characteristics of the routing algorithms (the routing
protocol sent traffic from each of the two internal nl-routers in each
site to a different frontdoor under normal conditions, and to the
remaining frontdoor under one frontdoor failure). Each of the two
sites was interconnected by a network of 2 Bay networks Passport
8600 routing switches that forwarded the traffic between the 2 pairs
of frontdoors. These routers simulated the middle realm, and could
do only native IP forwarding.

We ran “netperf” [18] TCP throughput benchmarks to measure
the overhead due to IPNL. The NIC cards used in the Linux boxes
were 3Com 3c905B 10/100 Fast Ethernet cards, that could, without
IPNL, attain a 99.1 Mbits/sec throughput for a packet size of 1500
bytes. After IPNL layer was added, we could see no degradation
in the throughput at all. We also performed latency tests associated
with a connection failover due to a frontdoor failure. Using a rout-
ing protocol that refreshed routes every 5 seconds, the end-to-end
connection was restored after about 3 seconds on average. Using
a link-state protocol to propagate the link-down failure event gave
much better response times.

Frontdoor

Hosts

Interior NL router

Realm Site

Figure 5: Layout of the Implementation Testbed

7. RELATED WORK

7.1 Comparison with IPv6
It is interesting to compare IPNL with various IPv6 transition

mechanisms because their addressing and forwarding semantics
share some commonality with IPNL. In one of the transitional de-
ployments of IPv6, IPv6 is tunneled over IPv4. A deployment in
which only the NAT boxes and hosts spoke IPv6 and always tun-
neled over IPv4 could be considered an extension of NAT. As it so
happens, such an architecture is emerging from ngtrans, the IETF
working group responsible for transition from IPv4 to IPv6.

There are two separate ngtrans working group projects contribut-
ing to this. Neither project explicitly sees itself as a NAT extension

per se. This is purely our interpretation. As such, it should be un-
derstood that when we speak of a NAT box in what follows, we are
referring to the IPv6 router that is positioned where a NAT box is
normally positioned: between a site using private IPv4 addresses,
and the globally routable IPv4 infrastructure. We call this NAT box
a v6NAT box.

One of the projects, called 6to4 [2], uses the global IP address
of the v6NAT box14 as the prefix of the IPv6 addresses assigned to
hosts behind the v6NAT box. When a packet with a 6to4 address
arrives at a v6NAT box on its way out of a site, the v6NAT box reads
the IPv4 address from the 6to4 prefix, writes it into the destination
IPv4 address field of the tunneling IPv4 header, and transmits it
across the globally routable IPv4 backbone.

The other project, called ISATAP [24], is much more recent.
With ISATAP, the IPv4 address of the host is embedded in the lower
64 bits of the IPv6 address. As with 6to4, a v6NAT uses the em-
bedded IPv4 address to automatically generate the appropriate tun-
neled IPv4 header In the case of ISATAP, however, the automatic
tunnel is created by the v6NAT receiving a packet from the globally
routable IPv4 backbone destined for a host behind the v6NAT box.

6to4 and ISATAP are unique among IPv6 transition tools in that
they alter the semantics of the IPv6 address and the operation of the
IPv6 forwarding engine! Without 6to4 or ISATAP, the IPv6 address
is treated as a simple bit-wise best-match routing table lookup to
determine the next hop IPv6 node. With 6to4 or ISATAP, a simple
best-match routing table lookup is no longer enough to determine
the next-hop: the router must additionally find a specific field in
the IPv6 address and use that to determine the next hop. It is this
change in the semantics of the IPv6 address to accommodate IPv4
that leads us to characterize 6to4+ISATAP as a NAT-extended ar-
chitecture.

The primary objection to a v6NAT approach might be that it does
not improve the scaling characteristics of the Internet, since IPv4
would continue to run as-is. While this is true, we point out that
there is concern that even “native” (non-6to4) IPv6 will not im-
prove on this situation even after it is widely deployed. This is
because the renumbering requirements of IPv6 and complexities of
multi-homing may result in individual site prefixes being advertised
across the Internet core. Indeed there is enough concern here that
the IETF has chartered a new working group specifically to look at
these issues [22].

The primary difference between IPv6 tunneled over IPv4 and
IPNL is that, even with 6to4+ISATAP, hosts must be aware of their
address prefixes and must renumber when necessary. Another ma-
jor difference is that once two IPv6 hosts start communicating with
a given pair of addresses, they cannot change addresses, for in-
stance, because of problems at the ISP connection point.

The GSE proposal of Mike O’Dell [7] proposed fully separating
the identifier portion of the IPv6 address (the lower 64 bits) from
the prefix (the upper 64 bits). The purpose of this was, among other
things, to allow site multihoming by being able to change the prefix
while still identifying the host. In this sense, GSE has parallels with
IPNL.

The major problem with GSE is that the identifier could not be
used to do DNS (or any other kind of) lookups to verify the map-
ping of prefix to identifier. Another problem was that GSE was tied
to the IPv6 header, which does not include a Random ID field. As
a result, GSE had unresolved hijacking problems.

14RFC 3056 itself does not refer to NAT boxes, but rather to “6to4
routers” that are “normally the border router between an IPv6 site
and a wide-area IPv4 network”. This is exactly where the NAT
function resides.

79

7.2 Other Work
There are many recent efforts [4] [23] to provide enhanced ser-

vices based on the notion of using FQDNs as persistent end-host
identifiers.

TRIAD [4] is a recently proposed Internet architecture whose
goal is to support an explicit content layer. Two of the major com-
ponents of TRIAD are name-based routing (DRP), and wide-area
relaying protocol (WRAP). These two components share two prop-
erties with IPNL. DRP uses FQDNs as the end-to-end identifier/address.
WRAP, like IPNL, is a NAT-extended architecture. The primary
difference between DRP and IPNL is that DRP proposes to glob-
ally distribute routes to DNS domains through a traditional rout-
ing protocol whereas IPNL uses DNS globally and traditional rout-
ing protocols only at the edges. Because of this, in spite of DNS
aggregation, NBR is not likely to scale adequately—there are far
more top-level domains (those under .com, .org, etc) than there
are top-level IPv4 aggregations. Furthermore, WRAP uses stateful
address translators that, while providing symmetric addressing15,
have the same well-known disadvantages of NATs—lack of robust-
ness, scalability problems, and costly setup.

In [23], the authors use FQDNs as identifiers, and dynamically
update DNS as part of an end-to-end approach towards supporting
host mobility. Their focus is on providing a better mobility solution
than Mobile IP [19]. While IPNL does not require any modifica-
tions to DNS to support mobility, their approach [23] relies on a
securely-updateable DNS. The downside of not using secure DNS
(or some other alternative such as a certificate infrastructure) is to
introduce a certain amount of inelegance and uncertainty, as de-
scribed in detail in Section 5.

8. NEXT STEPS
IPNL has a number of interesting and even promising character-

istics, such as the various mechanisms for site isolation and scalable
multihoming. It is premature, however, to say anything definitive
about it. IPNL is a major new architecture, and it will take a lot of
time, thought, and implementation experience from a broad com-
munity to be able to say convincingly that it works and works well.

Earlier in this paper, we argued that IPNL may be easier to de-
ploy than IPv6 because it has two phases of deployment rather than
three. This statement is only partially true. Before these three “box
deployment” phases, there are at least three preliminary phases:

1. Standardization

2. Obtaining mindshare

3. Vendor implementation

In spite of the ongoing problems with IPv6, it has at least a 5 year
head-start on the above three preliminary phases.

Given all this, an appropriate future for IPNL might be to pursue
it as a community research project (perhaps under the auspices of
the IRTF), and for IPv6 to incorporate whatever aspects of IPNL
make sense.

ACKNOWLEDGMENTS
We thank Prof. Hari Balakrishnan for his valuable comments on
earlier drafts of this paper. We also thank the anonymous reviewers
for their useful comments and suggestions which helped improve
the paper.

15This requires host protocol changes.

9. REFERENCES
[1] S. Bradner, A. Mankin, J. Schiller, “ A Framework for

Purpose Built Keys (PBK)”, Internet Draft,
draft-bradner-pbk-frame-00.txt, February 2001.

[2] B. Carpenter, K. Moore, “Connection of IPv6 Domains via
IPv4 Clouds”, RFC3056, February 2001.

[3] I. Castineyra, N. Chiappa, M. Steenstrup, “The Nimrod
Routing Architecture”, RFC1992, August 1996.

[4] D. R. Cheriton, M. Gritter, “TRIAD: A Scalable Deployable
NAT-based Internet Architecture”, Stanford Computer
Science Technical Report, January 2000.

[5] M. Crawford, “Router Renumbering for IPv6”, RFC2894,
August 2000.

[6] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, RFC2460, December 1998.

[7] Mike O’Dell, “GSE-an alternate addressing architecture for
IPv6”, Internet Draft, draft-ietf-ipngwg-gseaddr-00.txt,
February 1997.

[8] R. Droms, “Dynamic Host Configuration Protocol”,
RFC1541, March 1997.

[9] K. Egevang, P. Francis, “The IP Network Address Translator
(NAT)”, RFC1631, May 1994.

[10] P. Francis, “Pip Near-term Architecture”, RFC1621, May
1994.

[11] P. Francis, R. Gummadi, “IPNL Protocol Specification”;
available from http://www.ipnl.net/spec/

[12] P. Gross, P. Almquist, “IESG Deliberations on Routing and
Addressing”, RFC1380, November 1992.

[13] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg,
“SIP: Session Initiation Protocol”, RFC2543, March 1999.

[14] R. Hinden, S. Deering, “IP Version 6 Addressing
Architecture”, RFC2373, July 1998.

[15] S. Kent, R. Atkinson, “IP Encapsulating Security Payload
(ESP)”, RFC2406, November 1998.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek,
“The Click Modular Router”, ACM Transactions on
Computer Systems, 18(3), August 2000.

[17] R. Moskowitz, “Host Identity Payload Architecture”, Internet
Draft, draft-moskowitz-hip-arch-02.txt, February 2001.

[18] http://www.netperf.org
[19] C. Perkins, Editor, “IP Mobility Support”, RFC2002,

October 1996.
[20] C. Rigney, A. Rubens, W. Simpson, S. Willens, “Remote

Authentication Dial In User Service (RADIUS)”, RFC2138,
April 1997.

[21] J. Saltzer, “On the Naming and Binding of Network
Destinations”, RFC1498, August 1993.

[22] Site Multihoming in IPv6 (multi6),
http://www.ietf.org/html.charters/multi6-charter.html

[23] A. Snoeren, H. Balakrishnan, “An End-to-End Approach to
Host Mobility”, Proc. of 6th ACM/IEEE International
Conference on Mobile Computing and Networking
(Mobicom ’00), August 2000.

[24] F. Templin, “Intra-Site Automatic Tunnel Addressing
Protocol (ISATAP)”, Internet Draft,
draft-ietf-ngtrans-isatap-00.txt, March 2001.

80

