Multicast

Stefan Saroiu
Computer Science
University of Toronto
Administrivia

• Thursday class canceled
 – No need to review paper

• No class next week because of OSDI

• Resume on Tuesday, November 14
 – Project mid-term presentations

• Progress report due on November 10th, 11:59 EST
 – Deadline is firm!!!!!
Progress Report

• Draft of your final report
• Start by motivating your problem
 – What is the problem?
 – Why is it interesting?
 – Why it is hard?
• Present what you have accomplished so far
 – This section(s) must have a summary where you list accomplishments bullet-by-bullet
• Brief section of what you expect to accomplish
Project Presentations

- Two options:

1. 5 min. presentations on Tuesday

2. 10 min. presentations on scheduled day
 - Reserve a 2-hour slot for 10 min. presentations
 - After presentations, I’ll e-mail you my high-level feedback about the project
 - While this will not count towards final grade, they “might” serve as good pointers
Slides Today

• Some of the slides have been adapted from Ramesh Govindan’s slides.
Unicast
Unicast
Unicast
Unicast
Unicast
Unicast
Multicast
Multicast
Multicast
Multicast
Multicast
Multicast
Multicast state

• Router:
 – learn of the existence of multicast groups (advertisement)
 – identify links with group members
 – establish state to route packets
 • replicate packets on appropriate interfaces

• Then, what is the router’s state affected by?
Multicast state

• Router:
 – learn of the existence of multicast groups (advertisement)
 – identify links with group members
 – establish state to route packets
 • replicate packets on appropriate interfaces

• Then, what is the router’s state affected by?
 – Host joins and leaves affect router state!
Example applications

• Broadcast audio/video
• Push-based systems
• Software distribution
• Web-cache updates
• Teleconferencing (audio, video, shared whiteboard, text editor)
• Multi-player games
• Server/service location
• Distributed apps -- file-sharing P2Ps?
Pondering....

• If so many applications exist, why hasn’t it taken off?
Pondering....

• If so many applications exist, why hasn’t it taken off?
• Many reasons have been argued:
 – Don’t know how to charge for multicast traffic
 – Require router state/changes (reluctant operators)
 – No “killer app”
 – Hard to debug

• Application-level multicast hasn’t taken off either
 – (my take) Internet apps fall into one of the following three categories:
 • Communication (typically one-to-one)
 • Request-based content delivery
 • Content search (e.g., search engines)
 – Multicast model doesn’t clearly fit any of these apps.
Components of the IP Multicast Architecture

service model

\{ host-to-router protocol (IGMP) \}

\{ multicast routing protocols (various) \}

hosts

routers
IP Multicast Service Model (RFC-1112)

- each group identified by a single IP address
- groups may be of any size
- members of groups may be located anywhere in the Internet
- members of groups can join and leave at will
- senders need not be members
Service model

- Group membership not known explicitly
- Analogy:
 - each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.
IP Multicast Addresses

Class D IP addresses:

| 1 1 1 0 | group ID |

in “dotted decimal” notation: 224.0.0.0 — 239.255.255.255

two administrative categories:
- “well-known” multicast addresses, assigned by IANA
- “transient” multicast addresses, assigned and reclaimed dynamically
IP Multicast Service — Sending

- uses normal IP-Send operation, with an IP multicast address specified as the destination
- must provide sending application a way to:
 - specify outgoing network interface, if >1 available
 - specify IP time-to-live (TTL) on outgoing packet
 - enable/disable loopback if the sending host is a member of the destination group on the outgoing interface
IP Multicast Service — Receiving

- two new operations:
 - Join-IP-Multicast-Group (group-address, interface)
 - Leave-IP-Multicast-Group (group-address, interface)

- receive multicast packets for joined groups via normal IP-Receive operation
Multicast Scope Control: (1) TTL Expanding-Ring Search

to reach or find a nearby subset of a group
Multicast Scope Control:
(2) Administrative TTL Boundaries

to keep multicast traffic within an administrative domain, e.g., for privacy or resource reasons

- TTL threshold set on interfaces to these links, greater than the diameter of the admin. domain
Multicast Scope Control:
(3) Administratively-Scoped Addresses

- RFC 1112
- uses address range 239.0.0.0 — 239.255.255.255
- supports overlapping (not just nested) domains

the rest of the Internet

an administrative domain

address boundary set on interfaces to these links
The MBone

- MBone = Multicast Backbone
- an “interconnected” set of multicast-capable routers, providing the IP multicast service in the Internet
- can be thought of as a virtual network, overlaid on the Internet
Components of the MBone

- **R**
- **H**

- Square/circle: host/router
- Thick square/circle: MBone router
- Solid line: physical link
- Dashed line: tunnel
- Thick line: part of MBone

Diagram:

```
[Diagram showing components of the MBone with labels and connections]
```
MBone Tunnels

• a method for sending multicast packets through multicast-ignorant routers
• IP multicast packet is encapsulated in a unicast packet addressed to far end of tunnel:

| IP header, dest = unicast | IP header, dest = multicast | transport header and data… |

• a tunnel acts like a virtual point-to-point link
• each end of tunnel is manually configured with unicast address of the other end
IGMP

- End system to router protocol is IGMP
- Member or process starts an application with mcast address
- IGMP process informed of joined mcast group
- When local router sends IGMP query, host sends IGMP report
- One router on LAN is IGMP querier
- Hosts listen to responses and suppress duplicates
Multicast Routing: IGMP
Components of the IP Multicast Architecture

- Service model
- Host-to-router protocol (IGMP)
- Multicast routing protocols (various)

Diagram:
- Hosts
- Routers

Diagram arrows indicate the flow of data or service model.
Internet Group Management Protocol (IGMP)

- the protocol by which hosts report their multicast group memberships to neighboring routers
- version 1, the current Internet Standard, is specified in RFC-1112
- operates over broadcast LANs and point-to-point links
- occupies similar position and role as ICMP in the TCP/IP protocol stack
How IGMP Works

- on each link, one router is elected the “querier”
- querier periodically sends a Membership Query message to the all-systems group (224.0.0.1), with TTL = 1
- on receipt, hosts start random timers (between 0 and 10 seconds) for each multicast group to which they belong
How IGMP Works (cont.)

- when a host’s timer for group G expires, it sends a Membership Report to group G, with TTL = 1
- other members of G hear the report and stop their timers
- routers hear all reports, and time out non-responding groups
How IGMP Works (cont.)

• note that, in normal case, only one report message per group present is sent in response to a query
 (routers need not know who all the members are, only that members exist)

• query interval is typically 60—90 seconds

• when a host first joins a group, it sends one or two immediate reports, instead of waiting for a query
IGMP Version 2

• changes from version 1:
 – new message and procedures to reduce “leave latency”
 – standard querier election method specified
 – version and type fields merged into a single field
• backward-compatible with version 1
• widely implemented already