<u>CSC2209</u> Computer Networks

Congestion Control (in-the-middle + end-view)

Stefan Saroiu Computer Science University of Toronto

Project

- By now, you should have:
 - Send me an e-mail with your group's members
 - Send me an e-mail with your group's project topic
- Please do so by Wednesday at 9am
 - No extensions for next Tuesday's project proposal
 - Submit by e-mail by 10am
- Several teams already approached me about their projects
 - I don't like surprises...

Fair-Queuing

- FQ requires O(n) state and O(log n) computation
 Expensive to deploy in core (i.e., very fast) routers
- Any ideas on how to go about deploying FQ?

Idea: CSFQ

- Edge routers compute per-flow rate estimates + label packets w/ estimates.
- Core routers: FIFO queuing + keep no state, they employ probabilistic dropping based on packet labels and own aggregate traffic estimates.

Source: CSFQ, Stoica, Berkeley

Trends

- Networks are becoming very fast
 - Bandwidth-delay product is growing
- Implications: ...

Trends

- Networks are becoming very fast
 - Bandwidth-delay product is growing
- Implications:
 - TCP is not-aggressive enough following a burst of congestion
 - Is this a problem?
 - Longer gap between congestion occurring and TCP's reaction
 - Things are not tightly coupled
 - TCP becomes oscillatory with AQM
 - Fairness is becoming more important
 - At least that's what the paper claims :-)

Idea?

- Why not controlling number of flows for cc?
 - Every RTT with no loss, initiate additional TCP flow?
 - Every RTT with loss, kill half of TCP flows?
- More flows makes everything more aggressive?
- Tighter control: not every TCP flow needs to experience a loss before backing off
- Problems?

Idea?

- Why not controlling number of flows for cc?
 - Every RTT with no loss, initiate additional TCP flow?
 - Every RTT with loss, kill half of TCP flows?
- More flows makes everything more aggressive?
- Tighter control: not every TCP flow needs to experience a loss before backing off
- Problems?
 - More state. Yuck.
 - But hold on... isn't this just changing TCPs cc scheme?

XCP's Gist Idea

- Generalize ECN
 - If plenty of spare bandwidth --> increase a lot
 - If little spare bandwidth --> increase little
- Decouple fairness control from congestion control
 - They should be done orthogonal
 - CC controls how much additional data to send
 - FC controls who should the additional data be allocated to

XCP: The protocol

The protocol

- Sender
 - Fill in congestion information
- Receiver
 - Change rate according to feedback
- Router
 - Compute feedback
 - Operate on top of other dropping policy
 - Make decision every average RTT
 - Efficiency controller and Fairness controller

Efficiency Controller

- Maximize link utilization, minimizing drop rate and persistent queues.
- Look at aggregate traffic only, not individual flows
- Aggregate feedback ...

Efficiency Controller

- Maximize link utilization, minimizing drop rate and persistent queues.
- Look at aggregate traffic only, not individual flows
- Aggregate feedback $\phi = \alpha \cdot d \cdot S \beta \cdot Q$ α , β constant, d average RTT, S spare bandwidth, Q persistent queue size
- Proportional to spare bandwidth
- Also want to drain the persistent queue

Fairness controller

- Convergence to fairness
 - ▶ If $\phi > 0$, increase all flows with same <u>Xput</u>
 - ¬ If ϕ < 0, decrease all flows with same <u>fraction</u> of their Xput
- What if $\phi = 0$? Is this a problem?

Fairness controller

- Convergence to fairness
 - For \flat If $\phi > 0$, increase all flows with same <u>Xput</u>
 - ¬ If $\phi < 0$, decrease all flows with same <u>fraction</u> of their Xput
- What if $\phi = 0$? Bandwidth shuffling
 - $h = max(0, \gamma \cdot y |\phi|)$
 - γ constant = 0.1, y input traffic
 - At least 10% of traffic is redistributed using AIMD

Deployment Story

- Can benefit from CSFQ-like deployment
- TCP-friendly XCP

Is there congestion today? Where?

Is there congestion today? Where?

- Congestion is found typically on last-mile router
 - Core is believed to be very well-provisioned
 - Congestion/drops caused by broadband ISPs shaping Xfic

How Do You Design Congestion Control for Broadband?

• New assumptions

How Do You Design Congestion Control for Broadband?

- New assumptions
 - Endhost has full view on number of flows
 - No lagging response
 - Full information about congestion, but lack of understanding router policy
- Case for endhost congestion control scheme
 - Could be deployed on top of UDP